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We consider a triatomic system with zero total angular momentum and demonstrate that, no matter
how complicated the anharmonic part of the potential energy function, classical dynamics in the
vicinity of a saddle point is constrained by symmetry properties. At short times and at not too high
energies, recrossing dynamics is largely determined by elementary local structural parameters and
thus can be described in configuration space only. Conditions for recrossing are given in the form of
inequalities involving structural parameters only. Explicit expressions for recrossing times, valid for
microcanonical ensembles, are shown to obey interesting regularities. In a forward reaction, when
the transition state is nonlinear and tight enough, one-fourth of the trajectories are expected to recross
the plane R = R∗ (where R∗ denotes the position of the saddle point) within a short time. Another
fourth of them are expected to have previously recrossed at a short negative time, i.e., close to the
saddle point. These trajectories do not contribute to the reaction rate. The reactive trajectories that
obey the transition state model are to be found in the remaining half. However, no conclusion can
be derived for them, except that if recrossings occur, then they must either take place in the distant
future or already have taken place in the remote past, i.e., far away from the saddle point. Trajectories
that all cross the plane R = R∗ at time t = 0, with the same positive translational momentum PR∗ can
be partitioned into two sets, distinguished by the parity of their initial conditions; both sets have the
same average equation of motion up to and including terms cubic in time. Coordination is excellent
in the vicinity of the saddle point but fades out at long (positive or negative) times, i.e., far away from
the transition state. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870039]

I. INTRODUCTION

The conceptual simplicity of transition state theory (TST)
provides a fascinating framework for analyzing chemical
reactions.1–3 Soon after its inception by Eyring and Polanyi,
Wigner4 rooted it in firmer ground by postulating the exis-
tence of a hypersurface in phase space dividing reactants from
products. The theory is then based on the assumption that all
trajectories cross this surface only once and never return to
it. Wigner pointed out that the optimal shape of the surface
and its position should be obtained by minimizing the reac-
tive flux, a remark that later on gave rise to variational TST.5

The recrossing problem has received exact and elegant
solutions if the number of degrees of freedom is limited to
two. First, Pollak and Pechukas1, 6 showed that the best choice
of transition state (TS) in a collinear collision of an atom with
a diatomic is a periodic vibration of the triatomic system.
Later on, Davis and Gray7 defined the TS as a separatrix in
phase space and showed it to be always free from barrier re-
crossings. Unfortunately, these solutions cannot be extended
to higher dimensionalities.

Closely related to the problem is the separability assump-
tion of the reaction coordinate.5 Experimental observations8, 9

were interpreted as evidence that, near the energy thresh-
old, internal energy is tied up in vibrational modes orthog-
onal to the reaction coordinate during passage through the TS

a)Electronic mail: jc.lorquet@ulg.ac.be

region. This interpretation was endorsed by Marcus,10 but was
later on found to be inconsistent with quantum dynamical
calculations.11, 12

Decoupling of the reaction coordinate from a bath of
oscillators for a nonseparable Hamiltonian has been the
subject of intensive theoretical research. Miller exploited the
dichotomy between imaginary and real frequencies to demon-
strate the existence of locally conserved action variables
associated with a TS even when the Hamiltonian involves a
non-separable potential energy function.13–16 Berry and Wales
calculated Liapunov exponents to characterize the dynamics
and presented evidence of regularity in the dynamics close to
the saddle point in a systematic study of rare gas clusters17–19

and, more recently, in more strongly coupled systems.20, 21

The question took a new turn when Wiggins,22–24 Komat-
suzaki, Berry,25–33 and their co-workers advocated the use of
a particular system of coordinates to study the connection be-
tween decoupling and recrossing. The new set of coordinates
transforms the Hamiltonian to a form containing local ap-
proximate invariants of motion even when the potential con-
tains anharmonic terms. These normal form coordinates are
nonlinear functions of both coordinates and momenta. Indi-
vidual modes of the system are now defined in phase space
(i.e., mixing coordinates and momenta) and there is no need
to invoke, e.g., separation of time scales for their justifica-
tion. At low internal energies, all of the degrees of freedom
are observed to be regular and to locally maintain approxi-
mate constants of motion in the region of the TS. At higher

0021-9606/2014/140(13)/134304/12/$30.00 © 2014 AIP Publishing LLC140, 134304-1
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energies, invariants of motion disappear, except that of the
reactive mode,25–30 because the latter is characterized by an
imaginary frequency.15, 16 These contributions led to the defi-
nition of a dividing surface free from recrossings.

Yet, chemists are craving for a theory of reaction dy-
namics in configuration space, with momentum dependence
reduced to a minimum.34, 35 Despite the warning that com-
plete information cannot be obtained from theories that are
based on a configuration space picture22–24 and notwith-
standing the advantages offered by the use of normal form
coordinates,22–32 we adhere in the present paper to the sim-
plest version of TST, which reduces the dividing surface to a
plane in configuration space, containing the saddle point and
perpendicular to the path of steepest descent. In a trade-off be-
tween scope and simplicity, we want to know whether there
exist particular cases for which recrossing of this particular
surface can be approximately predicted. If dynamics can be
correlated with the topography of the potential energy surface
(we do not say is entirely determined by), this makes its study
not only computationally simpler but also more amenable to
chemical intuition.

The scope of the present contribution is necessarily
restricted. The treatment is strictly classical, limited to a
triatomic system, namely an atom-diatom reaction taking
place in gas phase, assumes zero value for the total angular
momentum and focuses attention on low internal energies.

In Sec. II, we consider a triatomic system and demon-
strate the existence of symmetry properties – and therefore of
dynamical constraints – in the neighborhood of a saddle point,
irrespective of the shape of the potential energy function and
of the internal energy. In Sec. III, a particular expression of
the Hamiltonian is specified. In Sec. IV, the assumption of
energy equipartition at the saddle point is shown to greatly
simplify the mathematics. Recrossing times are calculated in
Secs. V and VI and are shown to obey interesting regularities.
In Sec. VII, the results derived by the equipartitioned model
are shown to remain valid for microcanonical ensembles. Mo-
tion coordination among all degrees of freedom is studied in
Sec. VIII; it is excellent in the vicinity of the saddle point but
fades out at long (positive or negative) times, i.e., far away
from the TS. The paper closes with a discussion, presented in
Sec. IX.

II. GENERIC PROPERTIES OF THE
ATOM-DIATOM INTERACTION

The Hamiltonian describing an atom-diatom interaction
for a body-fixed rotationless study has been derived by several
authors:22, 32, 36–41

H = 1

2 M
P 2

R + 1

2 μ
p2

r + 1

2

(
1

M R2
+ 1

μ r2

)
p2

θ

+V (R, r, θ), (2.1)

where R is the distance between the atom and the center of
mass of the diatomic, r the internuclear distance of the latter,
θ the angle between the two position vectors, PR, pr, pθ the
conjugate momenta, μ the reduced mass of the diatomic, and
M that of the atom–diatom system.

A closed-form expression of Hamilton’s canonical equa-
tions cannot be obtained. However, local analytic solutions,
valid in the neighborhood of the saddle point, can be derived
as a formal series solution by repeated application of the Pois-
son bracket equation,42

•
X = [X,H ] ≡

∑
j

(
∂H

∂pj

∂X

∂qj

− ∂H

∂qj

∂X

∂pj

)
, (2.2)

which gives the rate of change of any dynamical variable X.
Assuming initial conditions (R0, r0, θ0) at time t = 0, the equa-
tion of motion of the reaction coordinate R can be formulated
as follows:42

R(t) = R0 + t [R, H ]0 +
(

t2

2 !

)
[[R, H ], H ]0

+
(

t3

3 !

)
[[[R, H ], H ], H ]0 + · · ·

= R0 + c1 t + c2

(
t2

2 !

)
+ c3

(
t3

3 !

)
+ · · · , (2.3)

where the subscript zero refers to the initial conditions at time
t = 0.

The first coefficients in this expansion are easily evalu-
ated:

c1 = PR0

M
, (2.4)

c2 = p2
θ0

M2 R3
0

− 1

M

∂V

∂R

∣∣∣∣
0

. (2.5)

Now, assume that the potential energy surface is charac-
terized by a saddle point at coordinates (R∗, r∗, θ∗) and
consider a bundle of 16 forward trajectories that all be-
gin at time t = 0 at R0 = R∗, with the same transla-
tional momentum normal to the dividing surface denoted PR0

= PR∗ , and with the 16 possible sign combinations in the set
{r∗ ± δr,±pr0 , θ∗ ± δθ,±pθ0} for the other variables. As dis-
cussed in detail in Paper I,41 it is advantageous to split this
bundle into two sets of eight trajectories. The set having an
even number of minus signs in the specification of their initial
conditions is denoted as gerade. The remaining eight trajec-
tories form the ungerade set. This distinction makes it possi-
ble to derive symmetry properties for coefficients c2 and c3

that are valid irrespective of the expression of the potential
energy function V (R, r, θ ). Symmetry induces constraints on
the trajectories and will be shown in what follows to have im-
plications for the dynamics on both sides of the time origin,
namely local regularity in the neighborhood of a saddle point.

First, note that the coefficient c2, which determines the
acceleration of the translational motion along the reaction co-
ordinate, depends neither on pr, nor on the sign of pθ . There-
fore, at very short times, trajectories are the same for the four
states {±pr0 ,±pθ0}. In other words, under the influence of
the quadratic term, the bundle splits into four sets of four
trajectories having the same translational motion.

The role of the coefficient c3 is to further split the bun-
dle into 16 individual trajectories at later times. However, as
shown in Paper I,41 the average value of c3 is observed to be
the same for the two sets: 〈c3〉g = 〈c3〉u. Unfortunately, the
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expression of the coefficient c4 is very complicated and no
regularity could be discerned. As a consequence, gerade and
ungerade trajectories have the same average equation of mo-
tion, up to and including terms cubic in time,

〈R(t)〉g = 〈R(t)〉u + O(t4) + · · · . (2.7)

A similar relation is also valid for the other two coordinates,
r and θ , and for their conjugate momenta.

Summing up, Eq. (2.1) provides a Hamiltonian with a
completely general potential part, which generates trajecto-
ries that are necessarily constrained by regularities and sym-
metries in the neighborhood of a saddle point.

In principle, the derivation of symmetry properties for the
coefficients c2 and c3 is valid at any energy. However, the con-
cept of average trajectories makes sense only if the 16 initial
points have at least comparable energies. This will be the case
if the anharmonicity of the vibrational and angular motions is
weak and if the elongations δr and δθ are not too great, i.e., if
the energy is not too high. Therefore, the concept of a bundle
of 16 closely related trajectories is particularly relevant at low
energies only. Note, however, that a certain range of tolerance
for the energy is acceptable because inherent in the definition
of microcanonical ensembles. This point will be discussed in
Sec. VII.

To get further insight and more detailed information, it
is necessary to specify the expression of the potential energy
surface.

III. A SPECIFIC HAMILTONIAN

After examination of several possible expressions of the
potential energy function, it was found most efficient to fol-
low the proposals of Murrell and co-workers43, 44 and of Green
et al.20 Specifically, the potential is written as a sum of two-
and three-body contributions, adopting the simplest possi-
ble expression for the two-body terms (in contrast to pre-
vious attempts45), and shifting most of the couplings to the
three-body term:

V (R, r, θ ) = Vsaddle(R) + Vdiat (r, R)

+Vang(θ, R) + V3b(R, r, θ ). (3.1)

A. Reaction coordinate

The first term of this expansion, representing a cross-
section along the reaction coordinate, is written as an inverted
6–12 Lennard-Jones potential where the zero of energy has
been shifted to the saddle point and in which the length-scale
parameter σ has been replaced by the position of the saddle
point, denoted R∗. It can be written either as

Vsaddle(R) = −�E

(
1 −

(
R∗
R

)6
)2

, (3.2)

where �E denotes the reverse activation energy barrier, or as

Vsaddle(R) = −M R2
∗�

2

72

(
1 −

(
R∗
R

)6
)2

, (3.3)

where � denotes the modulus of the imaginary frequency. The
use of Eq. (3.3) is preferable, because entirely defined in terms
of the local properties of the potential energy surface in the
neighborhood of the saddle point, whereas Eq. (3.2) depends
on how well the long-range −R−6 potential fits the actual sur-
face. Both parameterizations assume the same general shape
as an inverted Morse potential where the decreasing exponen-
tial is replaced by a (R∗ / R)6 function. The decrease in poten-
tial energy is sharp on one side of the saddle point and gentle
on the other.

The developments that follow are thus restricted to reac-
tions with a strongly asymmetric reaction profile, presenting
a steep increase on the left of the TS and a smooth − R−6

asymptotic decrease at larger internuclear separations. It is
therefore necessary to distinguish two cases in the applica-
tions that follow. If one wishes to study the last TS in a uni-
molecular dissociation or the exit channel in an endothermic
bimolecular reaction, then Eqs. (3.2) or (3.3) should be used
with initial conditions R0 = R∗ and PR0 = +PR∗ . These pro-
cesses will be referred to as forward reactions. Alternatively,
exothermic bimolecular reactions with an activation energy
barrier in the entrance channel or recombination reactions
seen as the inverse of a unimolecular dissociation will be
referred to as backward reactions, for which the appropriate
initial conditions are R0 = R∗ and PR0 = −PR∗ .

B. Vibration of the diatomic

The next two-body term describes the vibrational motion
of the diatomic fragment. To introduce anharmonicity in a
simple way, a Simons-Parr-Finlan potential is used.40, 46 Fur-
thermore, curvature of the reaction path is introduced by al-
lowing the frequency and equilibrium distance of the diatomic
fragment to depend on the reaction coordinate R. Altogether,

Vdiat (r, R) = 1

2
μω(R)2(r − req(R))2

(
req(R)

r

)2

(3.4)

with

req(R) = r∞ + (r∗ − r∞)

(
R∗
R

)6

, (3.5)

ω(R) = ω∞ + (ω∗ − ω∞)

(
R∗
R

)6

, (3.6)

where r∞ and ω∞ denote the equilibrium distance and angular
frequency of the diatomic fragment after complete separation,
respectively. The inverse sixth power dependence is in line
with the assumption of an inverse Lennard-Jones potential for
the reaction coordinate.

C. Angular degree of freedom

Angles are measured so that the equilibrium value at the
saddle point, denoted θ∗, is positive and tends to zero as
R increases. The potential that determines the angular mo-
tion, which is a hindered rotation with a strongly R-dependent
barrier, is written as

Vang(θ, R) = V0

(
R∗
R

)6

sin2(θ − θeq(R)), (3.7)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.165.205.242 On: Tue, 01 Sep 2015 14:35:19



134304-4 J. C. Lorquet J. Chem. Phys. 140, 134304 (2014)

with

θeq(R) = θ∗

(
R∗
R

)6

. (3.8)

At low energies, the motion resembles that of a harmonic os-
cillator having a frequency equal to47

ν = 1

π

√
V0

2 I∗
, (3.9)

where I∗ denotes the reduced moment of inertia

I∗ =
(

1

M R2∗
+ 1

μ r2∗

)−1

. (3.10)

D. Three-body interaction term

To derive the expression of the last term of the potential,
we adapt Murrell’s procedure to a saddle point topography
described in Jacobi coordinates. The three-body term is writ-
ten as a polynomial in the three coordinates R, r, θ , multiplied
by the product of two “range functions:”43, 44 first, a standard
Sorbie-Murrell hyperbolic tangent function for the vibrational
coordinates r and a second one for the translational coordinate
R.

The expression of the polynomial and that of the range
function appropriate to motion across a saddle point are de-
termined from the following requirements.44 First, V3b should
tend asymptotically to zero at large values of R. Second, its
Taylor expansion about the saddle point should not contain
linear terms. Third, it should change its sign as the saddle
point region is crossed. (Otherwise, the interaction would be
the same at R = R∗ + dR and at R = R∗ – dR, which is illog-
ical). It results from these requirements that the polynomial
should start with quadratic terms. The three-body interaction
term is therefore written as

V3b(R, r, θ ) = P (R, r, θ)

(
R∗
R

)6
(

1 −
(

R∗
R

)6
)

×
(

1 − tanh
(γ

2
(r − req(R))

))
, (3.11)

with

P (R, r, θ ) = βRR(R − R∗)2 + βrr (r − r∗)2 + βθθ (θ − θ∗)2

+βRr (R − R∗)(r − r∗) + βRθ (R − R∗)(θ − θ∗)

+βrθ (r − r∗) (θ − θ∗). (3.12)

Including only quadratic terms in the expansion of the three-
body interaction restricts the accuracy in the space domain
and therefore confines the validity of the laws of motion to
a limited range of time. Additional terms would certainly be
necessary to describe the dynamics at short R distances since
anharmonic couplings increase strongly in this region. On the
other hand, as pointed out by Murrell, a high-order polyno-
mial P is likely to induce spurious stationary points in the
potential energy surface. It has been checked that the use of
Eq. (3.11), with Eq. (3.12) truncated as it is, makes it possible
to describe shallow basins resulting, e.g., from the presence of
van der Waals complexes in the exit channel of the reaction.

Clearly, not all reactive processes can be studied with this
Hamiltonian. Recent research20, 21, 45 has shown that reaction
dynamics is highly sensitive to the topography of the sad-
dle point region. Results derived for the strongly asymmet-
ric steepest-descent paths considered here would not be valid
for smoother reaction profiles found, e.g., in isomerization
reactions of rare gas clusters.17–21, 45 Furthermore, so-called
non-RRKM reactions11, 12, 48 and roaming pathways49–51 are
outside its scope. Nevertheless, we believe it to be realistic
enough to identify general trends in short-time dynamics in
many cases.

IV. ENERGY EQUIPARTITION

To derive the equations of motion from Eq. (2.3) (and
similar ones for the other degrees of freedom) for the 16 tra-
jectories mentioned in Sec. II, it is necessary to specify the
initial conditions.

Energy randomization at the saddle point is a common as-
sumption in theories of chemical reactivity. During its previ-
ous history before reaching the TS, the system usually evolves
under the influence of a strongly anharmonic potential energy
function. Complications in the reaction path and nonlinear-
ities in the force field are expected to lead to rapid energy
transfer among the vibrational degrees of freedom leading to
a microcanonical distribution. This possibility is strengthened
by the fact that the molecular system usually receives its in-
ternal energy from a nonspecific random process, i.e., most
of the time by thermal excitation. However, phase space may
be metrically decomposable and warnings against the blind
use of this assumption have been issued, e.g., by Hase and
co-workers.11, 12, 48

The position adopted here is to consider the situation
where the internal energy is shared equally among all of its
components at the saddle point as a convenient reference point
that, as will be described in Secs. V and VI, greatly simplifies
the mathematics. At a later stage, in Sec. VII, it will be shown
that the derived results remain valid for systems that are not
equipartitioned but that are in microcanonical equilibrium.

For now, attention is restricted to a subset of trajectories
for which we assume, based on Eqs. (2.1), (3.1), and (3.4)–
(3.8),

1

2 M
P 2

R∗ = 1

2 μ
p2

r∗ = 1

2 I∗
p2

θ∗ = 1

2
μ ω2

∗ δr2
∗ = V0 sin2 δθ∗,

(4.1)
where δr∗, δθ∗, pr∗ , and pθ∗ denote the moduli of initial elon-
gations that satisfy energy equipartition. The latter quantities
are now expressed in terms of the modulus of the translational
momentum PR∗ . Each momentum and each elongation can be
positive or negative and its modulus is listed below:

pr∗ =
√

μ

M
|PR∗ |, (4.2)

δr∗ = |PR∗ |√
M μ ω∗

, (4.3)

pθ∗ =
(

I∗
M

)1/2

|PR∗ |, (4.4)
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δθ∗ = arcsin

( ∣∣PR∗

∣∣
√

2 M V0

)
. (4.5)

The 16 trajectories are generated by the 16 possible sign com-
binations assumed for these momenta and elongations. Due
to the dependence of the centrifugal energy on r, the 16 ini-
tial states are not degenerate at the saddle point. They split
into two groups of 8 states, one characterized by initial vi-
brational coordinates equal to r∗ + δr∗, and to r∗ − δr∗ for the
other. However, the energy difference between the two groups
is small, at least at low energies. The ratio between the energy
gap and the average energy of the two sets is calculated to be
of the order of δr∗ / r∗, which is tolerably small in an ensemble
average.

V. AVERAGE RECROSSING TIMES

A. The cubic approximation

The formal series solution, Eq. (2.3), has several severe
shortcomings. It converges poorly and it is impractical to in-
clude many terms because their complexity increases tremen-
dously rapidly with their order. Furthermore, even when it
can be calculated, the resulting high-order polynomial uses
its flexibility to scrupulously fit the trajectory near its origin
at t = 0, including insignificant irregularities if any, and is a
poor extrapolation function to predict the long-time behavior.
However, if interest is focused on short-time dynamics, then
truncation after the cubic term may provide reliable results.
This limits our study to the prediction of rapid recrossings,
taking place in the near future, or to the detection of those
that have already taken place at negative times, but in a recent
past. As a final justification, we note that a short-time approx-
imation is in the spirit of TST, which aims at linking reactivity
to the properties of a restricted range of the potential energy
surface in the immediate neighborhood of its saddle point.

Recall the conclusions of Sec. II. At very short times, the
bundle of 16 trajectories splits into four sets of four trajecto-
ries having the same translational motion. Each set is charac-
terized by a particular initial value of the spatial (i.e., vibra-
tional and angular) coordinates, r0 and θ0, and consists of four
trajectories corresponding to the four possible sign combina-
tions for the conjugate momenta {±pr0 , ±pθ0}. The role of
the coefficient c3 is to further split the bundle into 16 individ-
ual trajectories at later times.

We now define an average trajectory for each one of the
four sets, and determine its recrossing time by calculating the
roots of the following equation:

R(t) = R∗ + PR0

M
t + 1

2
〈c2〉t2 + 1

6
〈c3〉t3 = R∗, (5.1)

where 〈c2〉 and 〈c3〉 denote the averages of the quadratic
and cubic terms over the four possible sign combinations
{±pr0 , ±pθ0}. (Note, however, that the recrossing time of this
average trajectory is not necessarily the same as the average
of the recrossing times of each individual trajectory.) Equa-
tion (5.1) transforms into

PR0

M
+ 1

2
〈c2〉t + 1

6
〈c3〉t2 = 0. (5.2)

The short-time cubic approximation will be reliable only if
the two roots of Eq. (5.2) satisfy a number of requirements.
One root should be positive, the other should be negative.
Only that with the smallest modulus is deemed reliable.
To go further into the analysis, it is necessary to remember
that, as explained in Sec. III, one should distinguish between
two kinds of reactive processes, namely forward reactions
with a positive value of the initial translational momentum
PR0 = +PR∗ and reverse reactions where this momentum
is negative. Estimates of recrossing times will be reliable
only if the magnitude of 〈c2〉 and 〈c3〉 falls within a certain
range.

To make the equations that follow easier to read, we put

x = √
μ ω∗ (r∗ − r∞), (5.3)

y =
√

2 V0 θ∗, (5.4)

z =
√

M �R∗, (5.5)

u = 36 x2 + 36 y2 − z2, (5.6)

f (p, q ; m, n) = p (m x2 + n x y + m y2) − q z2. (5.7)

When Eq. (5.2) is rewritten in terms of these new variables
and when the assumption of energy equipartition is intro-
duced, average recrossing times can be obtained as a series
expansion in PR∗ . The results differ for forward and reverse
reactions and are now analyzed in each case.

B. Forward reactions

Consider unimolecular dissociations or endothermic bi-
molecular reactions. In that case, the fragments escape from
a deep well, overcome a barrier, and follow their course un-
der the influence of a −R−6 potential. The appropriate initial
conditions are R0 = R∗ and PR0 = +PR∗ .

1. The first set of initial conditions

Let us start with the first set, consisting of four trajecto-
ries with initial conditions for the spatial elongations equal to
r∗ + δr∗, and θ∗ + δθ∗, where δr∗ and δθ∗ are defined as pos-
itive quantities determined by energy equipartition, i.e., are
given by Eqs. (4.3) and (4.5). The recrossing time of the av-
erage of these four trajectories is obtained by calculating the
roots of Eq. (5.2). The root having the smallest modulus is
equal to

〈τf wd〉 = 〈τf wd〉0 + 3

2

PR∗R∗
u

Ff wd (x, y, z) + O
(
P 2

R∗

)
,

(5.8)

with

〈τf wd〉0 = 6
√

M R∗
9 (x + y) + √

3 f (9, 2 ; 11, 6)1/2
(5.9)
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and

Ff wd (x, y, z)

= 3 −
√

3

(
37x + 144

(
1 − r∞

r∗

)
x + 96

(
1 − ω∞

ω∗

)
x + 85 y − 4

√
2

V0
βRθ R∗ −8

βRr R∗√
μ ω∗

)
f (9, 2 ; 11, 6)−1/2

− 6

(
βrr

μω2∗
+ βθθ

2 V0
+ βRθ√

2
√

V0
√

μ ω∗

)
(1 − 3

√
3 (x + y) f (9, 2; 11, 6)−1/2)

+ 24

(
7 x + 36

(
1 − r∞

r∗

)
x + 24

(
1 − ω∞

ω∗

)
x + 19 y −

√
2

V0
βRθ R∗ − 2

βRr R∗√
μ ω∗

)

× (9 x + 9 y +
√

3 f (9, 2; 11, 6)1/2)−1. (5.10)

At very low energies, Eq. (5.9) provides a good approxima-
tion to the recrossing time. The role of the function F is to
provide a correction when energy is increased. Its daunting
appearance supports the view that TST is essentially a low-
energy theory.

Inspection of Eqs. (5.2) (when written explicitly), (5.9),
and (5.10) shows that recrossings will be rapid (and hence
reliably predicted) if two conditions are fulfilled:

x + y � PR∗√
M

, (5.11)

z 	 6 (x2 + y2)1/2. (5.12)

The physical significance of these conditions will be specified
shortly.

A particularly interesting situation is the limiting case
corresponding to very low energies. When PR∗ is vanishingly
small, the recrossing time of the average of the four trajec-
tories defined by the first set of initial conditions is equal to
〈τf wd〉0. Interestingly enough, it depends on structural param-
eters only, namely, M, μ, R∗, r∗, r∞, �, ω∗, θ∗, and V0. We
mention, for its simplicity and for the insight it provides, an
approximation which is valid if inequalities (5.11) and (5.12)
are obeyed, i.e., if the structure of the TS is sufficiently differ-
ent from that of the products (which amounts to requiring that
it be tight enough), with x and y having similar orders of mag-
nitude, a condition that excludes, e.g., linear TSs (for which
θ∗ ≈ 0):

〈τf wd〉0 ≈
√

M R∗
4 (x + y)

. (5.13)

At this juncture, it proves convenient to introduce a distinc-
tion based on the relative stiffness or softness of the oscillator
in the TS and in the separated fragment and to distinguish
two subcases. If ω∗ < ω∞, with, as a natural consequence,
r∗ > r∞ and hence x > 0, the TS will be termed soft. Con-
versely, in a stiff TS, ω∗ > ω∞, r∗ < r∞, and x < 0. This dis-
tinction should not be confused with the dichotomy between
tight and loose TSs. (In the present paper, a loose TS is de-
fined by the requirements r∗ ≈ r∞ and θ∗ ≈ 0, i.e., a nearly
collinear geometry and similar bond distances in the TS and

in the separated fragments, irrespective of the magnitude of
the reverse activation energy barrier.)

This distinction is useful in the discussion of recrossing
times. If the TS is soft, i.e., if x is positive, then the denomina-
tor of Eq. (5.9) consists of a sum of three positive quantities,
because θ∗ and thus y are always positive by definition. The
zero-energy recrossing time 〈τf wd〉0 of the average trajectory
is then necessarily positive. It will furthermore be small, i.e.,
reliably predicted, if the TS is tight enough, i.e., if x and y are
large enough and z small enough. The average trajectory is
then predicted to recross in the near future.

However, if the TS is stiff, x is negative, and Eqs. (5.9)
and (5.13) generate a large and hence unreliable estimate of
the recrossing time 〈τf wd〉0. In other words, the cubic approx-
imation is unable to provide any reliable prediction for the
first set of initial conditions if the TS is stiff. This means that
one must remain noncommittal: recrossings are possible but
uncertain and are shifted to an unpredictable distant future or
remote past.

To complete the discussion in terms of structural param-
eters, it is useful to derive the physical significance of param-
eter z, which is obtained by comparing Eqs. (3.2) and (3.3),

z =
√

M �R∗ = 6
√

2 �E. (5.14)

In plain language, this analysis shows that, in a forward reac-
tion, the tighter the TS (in the sense just defined), the lower
the reverse activation energy barrier, the more rapidly the re-
crossing will take place. The first set of four trajectories then
does not contribute to the reaction rate.

At higher energies, the whole set of Eqs. (5.8)–(5.10)
must be used. Average recrossing times now vary with the
internal energy and depend on coupling constants. This result
supports the conclusion derived by Berry, Komatsuzaki, and
Wales18, 25, 26, 28, 30 who distinguish three successive regimes
in the local dynamics as the internal energy is increased:
first, quasiregular, then intermediate semichaotic, and finally
stochastic.

2. The second set of initial conditions

In a similar way, the second set consists of four trajec-
tories that are all characterized by the same initial conditions

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.165.205.242 On: Tue, 01 Sep 2015 14:35:19



134304-7 J. C. Lorquet J. Chem. Phys. 140, 134304 (2014)

for the vibrational and angular variables, namely r0 = r∗ – δr∗
and θ0 = θ∗ – δθ∗. The recrossing time of the average of these
four trajectories is again obtained by calculating the roots of
Eq. (5.2) with these initial conditions. The one with the small-
est modulus is given by equations that are the same as those
derived for the first set, except that Eq. (5.9) is now replaced
by its opposite, namely

〈τf wd〉0 = − 6
√

M R∗
9 (x + y) + √

3 f (9, 2 ; 11, 6)1/2
. (5.15)

Therefore, if the TS is soft and the energy in excess of the
saddle point very low, one concludes that, before crossing the
dividing surface at time t = 0, the average trajectory has al-
ready recrossed in the recent past because it had its origin in
the fragment space. This conclusion can be expected to re-
main qualitatively valid at slightly higher energies, although
Eqs. (5.8)–(5.10) should be used in full. The second set of
four trajectories thus does not contribute either to the reaction
rate. If the TS is stiff, no reliable conclusion can be derived.

3. The remaining two sets of initial conditions

The remaining two sets of trajectories are similarly
treated. They now lead to recrossing predictions that are re-
liable for stiff TSs only. No conclusion can be derived for soft
TSs. The equations that determine recrossing times are easily
derived from the previous one, simply by replacing x by –x,
βRr by –βRr, and βrθ by –βrθ .

The initial conditions of the four trajectories of the third
set are r0 = r∗ – δr∗, and θ0 = θ∗ + δθ∗. The predictions
are entirely analogous to those derived for the first set, except
that they now concern stiff TSs. The recrossing time of the
average trajectory is predicted to take place in the near future.

The fourth set consists of four trajectories whose initial
conditions r0 = r∗ + δr∗ and θ0 = θ∗ – δθ∗. The situation is
now analogous to that of the second set. If the TS is stiff,
then the average trajectory is predicted to have previously
recrossed in the recent past.

4. Conclusions

In sum, whatever the soft or stiff nature of a TS, all of
the information on the recrossing times that can be derived in
a reliable way can be summarized by saying that there exist
four trajectories that can be expected to recross at times of the
order of 〈τf wd〉0 and four trajectories that have previously re-
crossed at negative times approximately equal to −〈τf wd〉0.
These eight trajectories do not contribute to the reaction rate.
No reliable information can be derived on the fate of the re-
maining eight trajectories.

5. Numerical example

Classical trajectories have been calculated for the formyl
radical decomposition reaction HCO → H + CO by numer-
ical integration of Hamilton’s canonical equations. The as-
sumed potential energy surface is that derived by Cho et al.52

with one modification. The calculated structure of the TS

100 50 50 100 t

0.10

0.05

0.05

0.10

R R

FIG. 1. Classical trajectories for the reaction HCO → H + CO calculated by
numerical integration of Hamilton’s canonical equations. Out of the bundle
of 16 trajectories, four (black lines) start in the reactant space, cross the divid-
ing surface at t = 0, and rapidly return to it; four (dashed red lines) have their
origin in the product space, cross the dividing surface at a negative time, re-
cross at t = 0 and head for infinity; the fate of the remaining eight trajectories
(dotted lines) is uncertain. Time and distances in atomic units.

does not fulfill the conditions expressed in Eqs. (5.11) and
(5.12). Therefore, we made it tighter by assuming a T-shaped
structure (θ∗ = 90◦). Furthermore, the CO bond distance in
the TS, r∗, has been increased (from 1.15 Å to 1.25 Å). All
other structural parameters were unchanged. The values of
the coupling constants β ij (Eq. (3.12)) have been chosen large
enough to generate conspicuous changes in the potential en-
ergy surface but not enough to introduce spurious energy bar-
riers. Trajectories have been calculated with initial conditions
corresponding to an energy of 1 kcal/mole above the saddle
point.

The graph representing the motion along the reaction co-
ordinate is given in Fig. 1. Clearly, four trajectories have their
origin in the product space, temporarily cross to the bound
space at a short negative time, and recross again at t = 0. Four
others start in the reactant space, cross the dividing surface
at t = 0, and rapidly return to it. The Pechukas characteristic
function1 χ is equal to zero for these two sets. The remaining
eight trajectories cross only once in the studied time range,
but their fate in the remote past or future is indeterminate and
cannot be analytically ascertained in the cubic approximation.
Reactive trajectories are to be sought among them.

Average trajectories have not been drawn to avoid clutter-
ing. The recrossing times calculated by numerical integration
are +95 a.u. and –86 a.u. (i.e., +2.3 or –2.1 femtoseconds)
for the first and second sets, respectively. The analytical re-
crossing times 〈τf wd〉 derived from Eq. (5.8) are +85 a.u. and
–76 a.u., whereas the zero-energy approximation 〈τf wd〉0 pre-
dicts +79 a.u. (Eq. (5.9)), –79 a.u. (Eq. (5.15)), and +75 a.u.
(Eq. (5.13)). The discrepancy between analytical and numeri-
cal estimates results from the use of the cubic approximation
and from the truncation to first order of the series expansion
in PR∗ .
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For the first group of trajectories, the maximum elonga-
tion beyond the dividing surface before returning to it is of the
order of 0.015 a.u. = 0.008 Å.

Clearly, the present method is limited to a semi-
quantitative study of short-time dynamics, i.e., of the
immediate neighborhood of the TS. It is, however, interesting
to note that there exist cases where, after a couple of fem-
toseconds, one half of the trajectories have to be discarded as
nonreactive.

C. Reverse reactions

We now consider the case of an exothermic bimolecular
reaction with an activation energy barrier in the entrance
channel, at large values of R, after which the potential falls off
steeply into the exit valley, or a recombination reaction seen

as the inverse of a unimolecular dissociation. The appropriate
initial conditions are now R0 = R∗ and PR0 = −PR∗ .

Here, we start with the set consisting of four trajectories
with initial conditions for the spatial elongations equal to r∗
– δr∗ and θ∗ – δθ∗ (where δr∗ and δθ∗ are defined as positive
quantities given by Eqs. (4.3) and (4.5)).

The shortest recrossing time of the average of these four
trajectories is equal to

〈τ rev〉 = 〈τ rev〉0 + 3

2

PR∗ R∗
u

F rev(x, y, z) + O
(
P 2

R∗

)
(5.16)

with

〈τ rev〉0 = 6
√

M R∗
9 (x + y) + √

3 f (−9,−2; 5,−6)1/2
(5.17)

and

F rev (x, y, z)

= 3 +
√

3

(
19 x + 144

(
1 − r∞

r∗

)
x + 96

(
1 − ω∞

ω∗

)
x + 67 y − 4

√
2

V0
βRθ R∗ −8

βRr R∗√
μ ω∗

)
f (−9,−2; 5,−6)−1/2

−6

(
βrr

μω2∗
+ βθθ

2 V0
+ βrθ√

2
√

V0
√

μ ω∗

)
(1 − 3

√
3 (x + y) f (−9,−2; 5,−6)−1/2)

−24

(
7 x + 36

(
1 − r∞

r∗

)
x + 24

(
1 − ω∞

ω∗

)
x + 19 y −

√
2

V0
βRθ R∗ − 2

βRr R∗√
μ ω∗

)

×(9 x + 9 y +
√

3 f (−9,−2; 5,−6)1/2)−1. (5.18)

The conditions for recrossings to be rapid in a reverse reaction
are, as before, derived from an analysis of Eqs. (5.2), (5.16),
and (5.17). The inequality expressed in Eq. (5.11) is again re-
quired and, here again, the TS is required to be tight. However,
Eq. (5.12) is now replaced by its opposite:

z � 6 (x2 + y2)1/2. (5.19)

The latter condition, together with the requirement that x and
y be large enough can be fulfilled only if the activation en-
ergy barrier is very large, as shown by Eq. (5.14). However,
a high value of this barrier is contradictory with the spirit of
our model where the parameterization as an inverse Lennard-
Jones potential with its smooth −R−6 decrease (Eq. (3.2)) is
appropriate for small barriers only. Hence, we will limit our-
selves to the statement that, in reverse reactions, recrossings
are impossible for flat saddles and small activation energy
barriers.

VI. INDIVIDUAL RECROSSING TIMES
AT LOW ENERGIES

The concept of average trajectory only makes sense if the
dispersion (i.e., the difference between the largest and small-
est values of the recrossing times) is not too large. Therefore,

we evaluate the individual recrossing times of each trajectory
in each set. Manageable formulas can be derived at vanish-
ingly small energies only. For reasons explained in paragraph
VC, we limit ourselves to the study of forward reactions.

A. Forward reactions for a soft TS

Reliable information on fast recrossings can be derived
for the four trajectories of the first set, having initial con-
ditions for the spatial elongations equal to r∗ + δr∗ and θ∗
+ δθ∗. They are found to recross at positive times given by
the four possible sign combinations of the following expres-
sion:

τ
f wd

sof t = 〈τf wd〉0 + Af wd

(
±ω∗ x ± 2

V0 θ∗√
I

)
, (6.1)

with 〈τf wd〉0 given by Eq. (5.9) and

Af wd = 6
M R2

∗
u2

(
9 x + 9 y −

√
3 f (9, 1; 7, 6)

f (9, 2; 11, 6)1/2

)
, (6.2)

Afwd being a negative quantity. Equation (6.1) is easily
rewritten as

τ
f wd

sof t = 〈τf wd〉0 ± �τvib ± �τang. (6.3)
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The individual recrossing times of each of the four trajecto-
ries at vanishingly low energies are symmetrically located on
either side of the average value 〈τf wd〉0. The shortest (and
most reliably predicted) recrossing time is observed for the
trajectory having {+pr∗ ,+pθ∗ } as initial conditions because
the two signs that occur in Eq. (6.1) are then positive. A sym-
metric pair of intermediate recrossing times is generated when
the vibrational and angular momenta have different signs. The
trajectory having {−pr∗ ,−pθ∗ } as initial conditions is pre-
dicted to be the last one to recross. However, this prediction
is the least reliable: because of the increasing influence of
the quartic and higher terms, one might end up with a near
miss although the cubic approximation predicts a genuine
recrossing.

The four trajectories of the second set, with initial con-
ditions given by r∗ – δr∗ and θ∗ – δθ∗, are expected to re-
cross at negative times, which are given by equations similar
to Eqs. (6.1) and (6.3) where the first term of the right-hand
side is now −〈τf wd〉0. In other words, these four trajectories
had their origin in the product state.

B. Forward reactions when the TS is stiff

The equations that determine recrossing times are easily
derived from those valid in the soft case, simply by replac-
ing x by –x. The four trajectories having initial conditions
for spatial elongations equal to r∗ – δr∗ and θ∗ + δθ∗ are
found to recross at four positive times positioned in a sym-
metrical pattern around the recrossing time of the average
trajectory. The same is true for the last set, with initial con-
ditions given by r∗ + δr∗ and θ∗ – δθ∗; the four recrossing
times are arranged symmetrically around a negative average
time.

C. Conclusions

In summary, assuming not too high energies, if inequal-
ities (5.11) and (5.12) are fulfilled, whatever the softness or
stiffness of the TS, out of the 16 trajectories of the bundle
there will always be a set of four trajectories whose average
recrosses the dividing surface at a small positive time in the
near future and thus returns to the reactant space. There will
be another set of four trajectories whose average has already
recrossed in the recent past, coming from the reactant space
and returning to it. These trajectories do not contribute to the
reaction rate.

If the energy is low, the eight trajectories that do not con-
tribute to the reaction rate are observed to recross or to already
have recrossed at the eight times given by the eight possible
sign choices in an equation having the form

τf wd = ±〈τf wd〉0 ± �τvib ± �τang. (6.4)

The complete list of predictions derived from a first-order ex-
pansion in PR∗ is given in Table I. The numerical example
presented in Fig. 1 illustrates these conclusions. A number of
points should be noted.

Inspection of Table I shows that rapid recrossings are
induced by a large amount of potential energy in the spatial
degrees of freedom; they require the vibrational coordinate to
be strongly stretched with respect to its asymptotic value (i.e.,
when r0 > r∗ > r∞ if the TS is soft or when r0 < r∗ < r∞ if
the TS is stiff) with, in addition, θ0 > θ∗ > 0 in both cases.
Recrossings are thus induced by the two components of the
curvature of the reaction path: vibrational and angular. Re-
crossing time estimates depend on structural parameters only.
Note, however, the role played by momenta: depending on
their phase, the two components of potential energy can ei-
ther cooperate and hasten recrossing or interfere and delay it.

TABLE I. Recrossing times for the 16 trajectories of a forward reaction studied at low energies. Initial conditions assuming energy equipartition defined in
Eqs. (4.2)–(4.5). Fifth column: g or u parity.

Initial conditions Recrossing time

r∗ + δr∗ θ∗ + δθ∗ +pr∗ +pθ∗ g 〈τf wd 〉0 − �τvib − �τang Recrossing in the near future if the TS is soft

r∗ + δr∗ θ∗ + δθ∗ +pr∗ −pθ∗ u 〈τf wd 〉0 − �τvib + �τang

r∗ + δr∗ θ∗ + δθ∗ −pr∗ +pθ∗ u 〈τf wd 〉0 + �τvib − �τang

r∗ + δr∗ θ∗ + δθ∗ −pr∗ −pθ∗ g 〈τf wd 〉0 + �τvib + �τang

r∗ − δr∗ θ∗ − δθ∗ +pr∗ +pθ∗ g −〈τf wd 〉0 + �τvib + �τang Recrossing in the recent past if the TS is soft

r∗ − δr∗ θ∗ − δθ∗ +pr∗ −pθ∗ u −〈τf wd 〉0 + �τvib − �τang

r∗ − δr∗ θ∗ − δθ∗ −pr∗ +pθ∗ u −〈τf wd 〉0 − �τvib + �τang

r∗ − δr∗ θ∗ − δθ∗ −pr∗ −pθ∗ g −〈τf wd 〉0 − �τvib − �τang

r∗ − δr∗ θ∗ + δθ∗ +pr∗ +pθ∗ u 〈τf wd 〉0 + �τvib − �τang Recrossing in the near future if the TS is stiff

r∗ − δr∗ θ∗ + δθ∗ +pr∗ −pθ∗ g 〈τf wd 〉0 + �τvib + �τang

r∗ − δr∗ θ∗ + δθ∗ −pr∗ +pθ∗ g 〈τf wd 〉0 − �τvib − �τang

r∗ − δr∗ θ∗ + δθ∗ −pr∗ −pθ∗ u 〈τf wd 〉0 − �τvib + �τang

r∗ + δr∗ θ∗ − δθ∗ +pr∗ +pθ∗ u −〈τf wd 〉0 − �τvib + �τang Recrossing in the recent past if the TS is stiff

r∗ + δr∗ θ∗ − δθ∗ +pr∗ −pθ∗ g −〈τf wd 〉0 − �τvib − �τang

r∗ + δr∗ θ∗ − δθ∗ −pr∗ +pθ∗ g −〈τf wd 〉0 + �τvib + �τang

r∗ + δr∗ θ∗ − δθ∗ −pr∗ −pθ∗ u −〈τf wd 〉0 + �τvib − �τang
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The behavior of the remaining eight trajectories cannot
be determined by the present methods. The reactive trajec-
tories expected in TST are to be found among them. How-
ever, recrossings cannot be excluded. They are possible but
uncertain. What can be said is that if they take place, then
they must either occur in the distant future or have taken
place in the remote past, i.e., far away from the saddle point.
The decision to recross is then taken in a region located far
away from the saddle where the parameterization adopted in
Sec. III may become inadequate. Here, we are beyond the
realm of TST, which postulates that the reaction rate is de-
termined by the dynamics in a very small fraction of phase
space. These remote past and distant future recrossings are
termed global recrossings by Wiggins and co-workers:22, 23

“A global recrossing is a mechanism by which a trajectory
that has left the neighborhood of the dividing surface crosses
it again . . . Global recrossings cannot be avoided, regardless
of the choice of dividing surface.” Explicit classical trajectory
calculations that substantiate these views have been done by
Garrett and Truhlar,53 by Cho et al.,54 and by Pritchard.55

VII. THE MICROCANONICAL ENSEMBLE

It is now highly desirable to move up from our bundle
of 16 trajectories to a full-fledged microcanonical ensemble.
Assuming microcanonical equilibrium at the saddle point as a
result of its previous history in a strongly nonlinear force field
is more realistic than taking energy equipartition for granted.
For that purpose, energy is increased in one degree of free-
dom and decreased in another one to the same extent. This
transfer can be done in a variety of ways, e.g., by replacing
Eqs. (4.2)–(4.5) by

pr∗ =
√

μ

M
PR∗

√
1 + ξ, (7.1)

δr∗ = PR∗√
M μ ω∗

√
1 − ξ, (7.2)

pθ∗ =
(

I

M

)1/2

PR∗

√
1 + ζ , (7.3)

δθ∗ = arcsin

(
PR∗√

2 M V0

√
1 − ζ

)
, (7.4)

where the dimensionless parameters ξ and ζ are confined to
the range [–1, +1].

With this new set of initial conditions, the recrossing time
of each individual trajectory, calculated from the cubic equa-
tion of motion as in Sec. V, is too complicated to be reported
here. However, two interesting remarks, valid only at not too
high energies, are appropriate.

First, considering, e.g., a soft TS, the eight trajectories
having {r∗ + δr∗ , θ∗ + δθ∗} and {r∗ − δr∗ , θ∗ − δθ∗} as
initial conditions all have recrossing times that, as before,
are still given by the eight possible sign choices in Eq. (6.4),
where each of the three terms 〈τf wd〉0, �τvib, and �τ ang, is
now a function of ξ and ζ .

Second, considering again a soft TS, a simpler expres-
sion is obtained for the doubly averaged recrossing time,
i.e., first averaged over the four members of the set having
{r∗ + δr∗ , θ∗ + δθ∗} as initial conditions, then over the pa-
rameters ξ and ζ in a symmetrical range. The broader the
range, the more it deviates from the estimate valid under en-
ergy equipartition, given in Eq. (5.9). The maximum deviation
is obtained after averaging over the maximum range [–1, +1];
it increases the average recrossing time by about 6% with re-
spect to the value given in Eq. (5.9) in practically all cases.

Similar remarks can be made, with other initial condi-
tions, if the TS is stiff.

Energy shifts other than those adopted in Eqs. (7.1)–(7.4)
(e.g., shifting energy from the angular coordinate to the vibra-
tional momentum, etc.) all lead to the same conclusion. This
means that the average recrossing times derived in Secs. V
and VI under the assumption of energy equipartition for the
bundle of 16 trajectories are also valid for a microcanonical
ensemble.

VIII. MOTION COORDINATION

We again come back to our bundle of 16 trajectories.
Recall that they can be partitioned into two sets, gerade
and ungerade. As shown in Paper I,41 and as stated here in
Eq. (2.7), these two sets are expected to have average equa-
tions of motion very close to each other. When the Hamil-
tonian is given by Eq. (2.1) and when initial conditions are
given by Eqs. (4.2)–(4.5), Eq. (2.7) can be written explicitly:

〈R(t)〉g−〈R(t)〉u =24
√

2
P 4

R∗

√
I∗

M3μ2 R∗r4∗ ω∗

×
(√

V0− βθθ√
V0

(1 + γ r∗/2)

)
t4 + · · · .

(8.1)

Due to the heaviness of the nuclear masses, the difference be-
tween the two average trajectories can be expected to be quite
small. This is even more so for the (more complicated) next
term, which is quintic both in time and momentum. The hexic
term is extremely complicated and starts with terms quartic in
the translational momentum.

Similar relationships hold for the other degrees of
freedom:

〈r(t)〉g − 〈r(t)〉u = −32
√

2
P 4

R∗

√
I∗

√
V0

M2μ3 r5∗ ω∗
t4 + · · · , (8.2)

〈θ (t)〉g − 〈θ (t)〉u = −4
√

2
P 4

R∗ γ βrθ

√
I∗

M4 μ R4∗ ω∗
√

V0
t4 + · · · ,

(8.3)

〈PR(t)〉g−〈PR(t)〉u =96
√

2
P 4

R∗

√
I∗

M2μ2R∗r4∗ω∗

×
(√

V0− βθθ√
V0

(1 + γ r∗/2)

)
t3 + · · · ,

(8.4)
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FIG. 2. Motion coordination among classical trajectories for the reaction
HCO → H + CO calculated by numerical integration of Hamilton’s canoni-
cal equations. Black solid line: Average of the set of gerade trajectories. Red
dashed line: Average of the set of ungerade trajectories. Time and distances
are in atomic units.

〈pr (t)〉g − 〈pr (t)〉u = −128
√

2
P 4

R∗

√
I∗

√
V0

M2 μ2 r5∗ ω∗
t3 + · · · ,

(8.5)

〈pθ (t)〉g − 〈pθ (t)〉u = 288
√

2
P 5

R∗

√
I∗ θ∗

√
V0

M3 μ2 R∗ r4∗ ω∗
t4 + · · · .

(8.6)
A numerical illustration of this coordination is given in
Fig. 2.

When initial conditions depart from strict energy equipar-
tition, the calculations are repeated with the energy parti-
tioning described in Eqs. (7.1)–(7.4) and similar ones. The
structure of Eqs. (8.1)–(8.6) is found to remain valid, except
that their right-hand side is now multiplied by (1 − ξ 2)1/2(1
− ζ 2)1/2. A further average transforms the latter expression
into a coefficient whose numerical value is lower than one.
Since

1

2

+1∫
−1

√
1 − ξ 2 dξ = π

4
,

the maximum lowering is seen to be equal to (π/4)2, i.e., of
the order of the order of 60%.

The smallness of the right-hand side of Eqs. (8.1)–(8.6),
(which results from the presence of heavy nuclear masses in
their denominators) indicates that gerade and ungerade tra-
jectories coordinate their motions. This coordination is excel-
lent in the vicinity of the saddle point but fades out at long
(positive or negative) times, i.e., far away from the TS.

IX. CONCLUDING REMARKS

The recrossing times estimates given in Secs. V and VI
have been derived from a series expansion in PR∗ , truncated
to its lowest term, and thus are valid at low energies only.
Note that they are expressed in terms of topographical fea-
tures of the potential energy surface only. Thus, at short times
and at not too high energies, essential dynamical features can
be described quite simply and in terms of elementary local
structural parameters only. The local nature of the needed
information achieves the objectives of TST.

The expressions of the recrossing times (Eqs. (5.9),
(5.13), (5.15), and (5.17)) all contain

√
M R∗ as a prefactor.

From Eq. (3.4), one deduces

√
M R∗ = 6

√
2 �E

�
. (9.1)

This relation accounts for the observation that, as noted by
Berry et al.,19, 45 a low value of the imaginary frequency �

is expected to induce long recrossing times and even, pos-
sibly, no recrossing at all. However, as argued in more re-
cent work,20, 21 this is not the only factor that determines the
“collimation”19 of trajectories; the magnitude of the reverse
activation energy barrier �E, together with the structural pa-
rameters μ, r∗ – r∞, ω∗, θ∗, and V0, also play a role. More-
over, at higher energies, the more complicated Eq. (5.10) must
be used, in which the coupling elements β ij of the three-body
interaction term (Eq. (3.12)) appear.

Equation (6.3) (which is valid only in the cubic approx-
imation) corresponds to a structuration of phase space in the
neighborhood of the TS. The set of initial conditions corre-
sponding to R = R∗ and to a prescribed value of PR∗ and of
the total energy can be seen as a subspace of the total phase
space. This subspace is structured in the sense that it contains
points that can be defined as groups of eight, in such a way
that the eight trajectories originating from them as initial con-
ditions all have recrossing times that are given by the eight
possible sign choices in an expression having the form

τr = ± 〈τ 〉0 ± �τvib ± �τang,

where the subscript r is as an index that runs between 1 and 8.
By analogy with fluid mechanics, one might be tempted

to term turbulent (and hence chaotic) that half of trajectories
that recross close to the saddle point, and laminar (hence reg-
ular) the other half whose contingent recrossing is excluded
in the TS region and shifted to distant future or remote past.
However, this description is not appropriate because the initial
conditions specified in Sec. IV are not separated by infinites-
imal deviations. Chaos requires fast separation of trajectories
for adjacent initial conditions. Hence, even the short-time re-
crossing trajectories must be termed regular. The local Lia-
punov exponent at the saddle point is zero for all trajectories.
An accurate diagnostic test for chaotic behavior requires an
analysis at a much finer mesh than what has been done here.
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