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Abstract
The present study focuses on the model reduction of non-linear systems. The proper orthogonal decomposition
is exploited to compute eigenmodes from time series of displacement. These eigenmodes, called the proper
orthogonal modes, are optimal with respect to energy content and are used to build a low-dimensional model
of the non-linear system. For this purpose, the proper orthogonal modes obtained from a chaotic orbit are
considered. Indeed, such an orbit is assumed to cover the phase space more uniformly. It is shown that the
modes for this particular behaviour are more representative of the system dynamics than any other set of modes
extracted from a non-chaotic response. This is applied to a buckled beam with two permanent magnets and the
reduced-order model is validated using both qualitative and quantitative comparisons.

1 Introduction

In many domains of applied sciences and in struc-
tural dynamics particularly, dealing with large-scale
dynamical structures is a central issue. In the pres-
ence of non-linearities, seeking for the solution by use
of mathematical modelling and simulation (e.g., finite
element method) may be computationally intensive.
Accordingly, due to the complexity of such a numer-
ical approach, it is worth reducing the dimensionality
of the system while retaining its intrinsic properties.

The general philosophy of model reduction is to
find a co-ordinate transformation in order to sort the
components in terms of their influence on the system
behaviour. Then, the components of the transformed
system with relatively small influence may be trun-
cated without substantially degrading the predictive
capability of the model. The proper orthogonal de-
composition (POD), also known as Karhunen-Loève
transform or principal component analysis, enables
such a co-ordinate transformation. It is a statistical
pattern analysis technique for finding the dominant
structures in an ensemble of spatially distributed data.
These structures, called the proper orthogonal modes
(POMs), may be exploited as an orthogonal basis for

efficient representation of the ensemble. A key advan-
tage of the decomposition is that each POM is associ-
ated with a proper orthogonal value (POV) which pro-
vides the relative energy captured by the correspond-
ing mode. Thus, it serves as a well-defined measure
of a mode influence on the system behaviour.

The present study is motivated by the fact that, in
the field of non-linear systems, new features must be
defined because mode shapes are no longer effective
to represent the system dynamics. While some simi-
larities between the POMs and the modes shapes have
been noticed [1, 2], the POMs are much more useful
for capturing the dynamics of a non-linear system. In
reference [3], lower dimensional models of non-linear
vibrating systems are created using the POMs in or-
der to prove their efficiency and their superiority over
the mode shapes.

In this work, the POMs obtained from a chaotic
orbit are considered. Indeed, such an orbit is assumed
to cover the phase space more thoroughly than a pe-
riodic orbit. It is shown in an example that the modes
for this particular behaviour are more representative
of the system dynamics than any other set of modes
extracted from a non-chaotic response. This is ap-
plied to a buckled beam with two permanent mag-



nets and the reduced-order model is validated using
both qualitative and quantitative comparisons while
the idea was also applied to frictionally excited sys-
tems [4].

2 Proper orthogonal
decomposition

The POD, also known as the Karhunen-Loève decom-
position, was proposed independently by several sci-
entists including Karhunen [5], Kosambi [6], Loève
[7], Obukhov [8] and Pougachev [9] (see reference
[10] for a recent survey) and was originally conceived
in the framework of continuous second-order pro-
cesses. When restricted to a finite dimensional case
and truncated after a few terms, the POD is equiva-
lent to principal component analysis (PCA). This lat-
ter methodology originated with the work of Pearson
[11] as a means of fitting planes by orthogonal least
squares and was also proposed by Hotelling [12].

The first applications of the POD in the field of
structural dynamics date back to the early nineties.
Cusumano et al. [13] exploited the technique to
estimate the intrinsic dimensionality of the dynam-
ics of an impacting beam. Kreuzer and Kust [14]
used it to control self-excited vibrations of long tor-
sional strings. Kappagantu and Feeny [4] worked
on the modal reduction of a frictionally excited sys-
tem. Other studies include the works of Azeez and
Vakakis [15], Benguedouar [16], Fitzsimons and Rui
[17], Georgiou and Schwartz [18] and Lenaerts et al.
[19].

The central idea of the POD is to reduce a large
number of interdependent variables to a much smaller
number of uncorrelated variables while retaining as
much as possible of the variation in the original vari-
ables. An orthogonal transformation to the basis of
the eigenvectors of the sample covariance matrix is
performed and the data is projected onto the sub-
space spanned by the eigenvectors corresponding to
the largest eigenvalues. This transformation decorre-
lates the signal components and maximises variance.
The most striking property of the POD is its optimal-
ity in the sense that it minimises the average squared
distance between the original signal and its reduced
representation.

For the sake of brevity, the complete mathemati-
cal description of the POD is not recalled here. The
reader is referred to reference [20] for a detailed de-
scription. For practical applications, the data is dis-
cretised in space and time. Accordingly, � observa-

tions of a � -dimensional vector � are collected and an� ��� ��� response matrix is formed:
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The POMs and POVs are defined as the eigenvec-
tors and eigenvalues of the covariance matrix

	&'� � �)(+* � � �)(+* ��, � respectively, where
&'� � � is the

expectation and * 	-&'� �.� is the mean of the vector� . Under the assumption that the process is ergodic
and that the number of observations is large, a reliable
estimate of the covariance matrix is given by the sam-
ple covariance matrix. If the data is zero mean, the
sample covariance is merely given by the following
expression: / 	10� �2� , (2)

The POMs and POVs are characterised by the eigen-
solutions of the sample covariance matrix

/
.

3 Reduced-order models

Conventionally, one of the methods used to analyse
non-linear systems is through projection of the equa-
tions of motion onto the modes shapes of the lin-
earised system. This method often requires the con-
current simulation of many modes to achieve a sat-
isfactory accuracy, and the resulting model may be
computationally expensive. The approach presented
herein conjectures that a reduced-order model based
on the POMs allow for much more efficient analysis
of the original system. Furthermore, due to the ’ran-
dom nature’ of chaos, the POMs of a chaotic orbit are
expected to better capture the system dynamics than
any other set of POMs extracted from a non-chaotic
response.

Even though the original physical model typically
has an infinite number of degrees of freedom to start
with, it is assumed that the equations of motion have
already been discretised in space by using a finite el-
ement model. For a non-linear mechanical structure,
the spatial discretisation usually yields the following
equations:354� �76 �98+:<;� �76 �98>= � �76 �98>?A@�B � � �76 �DC.;� �76 ��� 	 ? �76 �

(3)

where

3
, : , = are the mass, damping and stiffness

matrices respectively;� is the vector of displacement co-ordinates;?A@�B is the non-linear force vector;? is the external applied force vector.



However, this may lead to a large number � of de-
grees of freedom if a sufficient approximation of the
true physical phenomenon is required. In order to re-
duce the complexity, model reduction techniques are
to be considered. They may be viewed as a projec-
tion of the � -dimensional vector of displacement co-
ordinates � �76 � to a vector � �76 � of lower dimension� . The co-ordinate transformation considered in this
study is defined by an

� � � � � projection matrix
�

whose columns are the POMs corresponding to the �
greatest POVs:

� �76 � 	�� � �76 �98 * (4)

The equations of motion expressed in the lower di-
mensional setting are as below:4
� �76 �98 :�� ;� �76 �98>=�� � �76 ��8 � 3 � ����= * 8� 3 � ����?A@�B 	 � 3 � ����? �76 �

(5)
where : � 	 � 3 � � � : � , = � 	 � 3 � � � = � and 	 is
the pseudo-inverse. The solution in the original coor-
dinate system can be retrieved using Eq. (4). This of
course does not yield the correct solution but an ap-
proximation whose quality depends on the severity of
the reduction.

It remains to determine the order of reduction, i.e.,
the number of POMs to be included in matrix

�
. The

number � of POMs is chosen based on a prescription,
in this case such that:
��
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where � 
 is the � th POV. In other words, assuming
that the POVs are sorted in descending order, the first� POMs that account for 99.99 % of the total energy
are considered.

4 Correlation dimension and
Lyapunov exponents

Due to the sensitivity to initial conditions, the brute
analysis of time series is obviously not a suitable
means of characterising chaotic signals. Indicators
such as the correlation dimension or the Lyapunov ex-
ponents are helpful in this case. Analysis of chaotic
processes is often performed by reconstructing the
phase space using the method of delays [21]. Con-
sider x(t) as a single scalar component of a process of
unknown dimension. The embedding procedure aims
at generating a vector time series. This is achieved by

choosing a time delay � and an embedding dimension� such that:

� �76 � 	�� �
�76 � �
�76 8 � � ����� �

�76 8 � � ( 0 � � � � , (7)

Part of the phase space is thus reconstructed from the
time series �

�76 � without even knowing the state space
itself. The time delay � and the embedding dimension� are determined using the average mutual informa-
tion [22] and the false nearest neighbours techniques
respectively [23].

A possible measure of the spatial organisation of
a chaotic attractor is given by the correlation integral
[24]:
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where the Heaviside function
- � � � is equal to one

when its argument is positive and zero when its argu-
ment is negative. The expression counts the number
of points out of the data set within an hypersphere of
radius � and then divides by the square of the total
number of points. As � becomes small, the correla-
tion dimension 1 & is found to be characterised by:

� � � �324�6587 (9)

and is thus given by the slope of a log-log plot of the
correlation integral

� � � � vs. the distances � :
1 & 	:9 ��;�< � � � � � �9 ��;�< � � � (10)

The Lyapunov exponents quantify the average rate
of convergence or divergence of nearby trajectories.
A positive exponent is an indication of the global in-
stability and sensitivity to initial conditions and any
system containing at least one positive exponent is
defined to be chaotic. The magnitude of the expo-
nent reflects the time scale on which system dynam-
ics become unpredictable. The Lyapunov spectrum is
the set of numbers describing the rate of exponential
deformation of an infinitesimal hypersphere in phase
space over time. Due to the contracting or expanding
nature of directions in phase space, the sphere is de-
formed into an ellipsoid with principal axis = 
 �76 � . The� th Lyapunov coefficient � 
 is then defined by:

� 
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The approach proposed by Wolf [28] can be used
to estimate non-negative Lyapunov exponents from a



reconstructed attractor. The discussion here is limited
to the estimation of the largest Lyapunov exponent.
The evolution of a point and its nearest neighbour, ini-
tially distant from � 
 , is monitored. The points evolve
with time on different trajectories and once the dis-
tance ���
 between both points exceeds some thresh-
old, the procedure is restarted by considering a new
pair of points. This is repeated until the trajectory has
traversed the entire data file. The largest Lyapunov
exponent is then computed from:
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� 
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where � is the number of times the procedure is
restarted.

5 Numerical application

The numerical application under investigation is
a clamped beam ( � 	 ��� �
	�� � and

&
� 	
	 � � �
	 0 � ����� � & ) under the action of a sinusoidal
force applied to the beam as shown in Fig. 1. Magnets
are placed to the left and right of the free end to buckle
the beam. The magnetic field creates forces which
are assumed to be concentrated at the free end of the
beam. This gives rise to a two-well potential � � � �
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� 
 	 ( 0 0 � � � � � � and� & 	 � � � 	 0 � � � � � � are the magnet stiffness terms.
The damping matrix is proportional to the stiffness
matrix, i.e., : 	 0 � � 0 � ��� = . The beam is discre-
tised with seven beam elements (translational and ro-
tational degrees of freedom at each node). In the lit-
erature, numerous works were realised on the single
degree of freedom oscillator (e.g., references [25, 26])
but only a few studies tackled the multi degrees of
freedom problem [27].

The system is simulated with a forcing frequency
equal to 5 Hz and for amplitudes � � going from 0 up
to 3.5 N. To illustrate the varied dynamics of the sys-
tem, a bifurcation diagram is presented in Fig. 2. This
plot represents the horizontal displacement at the end
of the beam (at the moment when the sine force is
equal to � � ) as a function of the amplitude � � . For a
particular amplitude, the number of points is related
to the period. The initial conditions at each amplitude
are equal to zero and the bifurcation diagram is ob-
tained by checking for any periodicity within the first
800 s. In the absence of periodicity, the transients are
not yet died out or the dynamics is non-periodic. It is
worth pointing out that the beam can oscillate equally
around either a magnet or the other depending on the
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Figure 1: Clamped beam with two permanent mag-
nets.
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Figure 2: Bifurcation diagram of the full model.

initial conditions. This is the reason why points in the
diagram may be associated with a positive or nega-
tive displacement. For some amplitudes, particularly
between 1 and 2.5 N, the number of points is large
which may be interpreted as a non-periodic oscilla-
tion within the time allowed for the simulation. Fig.
3 shows phase portraits of the translational degree of
freedom at the end of the beam for various ampli-
tudes. For amplitudes equal to 0.1 N and 3.5 N, the
orbit is periodic while for the two selected intermedi-
ate amplitudes, i.e., 0.8 N and 2 N, the orbits appear
to be chaotic. This is confirmed by the greatest Lya-
punov exponents equal to 2.85 and 3.03 respectively
(Table 1).

As already mentioned, the POMs obtained from a
chaotic orbit are to be used to build a low-dimensional
model of the beam. However, the system is chaotic
for a wide range of amplitudes, and it remains to
determine the value of the amplitude for which the
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Figure 3: Phase portraits of the end of the beam com-
puted from the full model. (a) 0.1 N; (b) 0.8 N;(c) 2
N; (d) 3.5 N.

Table 1: Greatest Lyapunov exponent for the full and
reduced-order models.

Full Five-mode Three-mode
model model model

0.8 N 2.85 2.76 0 � � 
 �
2 N 3.03 2.95 0.71

Table 2: Correlation dimension for the full and
reduced-order models.

Full Five-mode Three-mode
model model model

0.8 N 2.65 2.52 —
2 N 2.85 2.73 1.93

modes are extracted. Interestingly enough, it was ob-
served that the POMs do not vary significantly as long
as the response is chaotic. The first five modes cor-
responding to an amplitude � � =1 N constitute 99.99
% of the total signal energy, and were thus chosen.
These modes are displayed in Fig. 4 (see Table 3 for
the POVs). All the degrees of freedom are used in the
POD but only the translational degrees of freedom are
illustrated in this figure. The greatest Lyapunov ex-
ponent computed for this amplitude is equal to 2.59,
which confirms the chaotic nature of the response.

Fig. 5 depicts the phase portraits computed from
the reduced-order model and is to be compared with
Fig. 3. A convincing correspondence between both
figures is obtained but the chaotic orbits, namely the
orbits for the 0.8 N and 2 N levels, need further verifi-
cation. The greatest Lyapunov exponent and the cor-
relation dimension were thus computed and are listed
in Table 1 and 2. It can clearly be seen that both
indicators for the reduced-order model are in good
concordance with the ones computed from the ”full”
model, i.e., the model discretised by the finite element
modelling (14 degrees of freedom). Another possible
means of assessing the results is to compare the occur-
rence of bifurcations. Indeed, bifurcations tend to be
sensitive to modelling errors. To this end, the bifurca-
tion diagram of the reduced-order model is presented
in Fig. 6(a) and is in satisfactory agreement with the
diagram obtained from the full model.

To confirm that the POMs extracted from a chaotic
orbit represents a convenient choice, the results are
also compared to another reduced-order model based
on the POMs of a non-chaotic orbit, i.e., for � � =0.01
N (see Fig. 7 and Table 3). In this case, only three



Table 3: Normalised POVs for 0.01 N (top row) and
1 N (bottom row) levels.

1st 2nd 3rd 4th 5th
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Figure 4: POMs of the 1 N level.

POMs are retained in the model in accordance with
the 99.99 % criterion. However, it is worth noticing
that five of these POMs were also used for reduced-
order modelling, and that the results were not sig-
nificantly improved. Fig. 8 displays the phase por-
traits computed from the three-mode model and is to
be compared with Figs. 3, and 5. Severe distortions
are now introduced in the phase portraits in compari-
son with the previous results. The orbit predicted for
� � =0.8 N [Fig. 8(b)] is even periodic while the actual
orbit is chaotic. The bifurcation diagram represented
in Fig. 6(b), the greatest Lyapunov exponent and the
correlation dimension listed in Tables 1 and 2 corrob-
orate these observations.
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Figure 5: Phase portraits of the end of the beam com-
puted from the five-mode model. (a) 0.1 N; (b) 0.8
N;(c) 2 N; (d) 3.5 N.
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Figure 6: Bifurcation diagram of the reduced-order
models. (a) Five-mode model; (b) three-mode model.
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Figure 7: POMs of the 0.01 N level.
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Figure 8: Phase portraits of the end of the beam com-
puted from the three-mode model. (a) 0.1 N; (b) 0.8
N;(c) 2 N; (d) 3.5 N.



6 Conclusions

In this paper, non-linear systems have been analysed
through projection of the equations of motion onto the
modes obtained from the POD instead of the modes
shapes of the linearised system. The POMs of a
chaotic orbit have been considered since these modes
better capture the system dynamics. Although it is
difficult to draw firm conclusions from a single nu-
merical application, appreciable results have been ob-
tained with the reduced-order model built with these
POMs. Furthermore, significant improvements have
been brought in comparison with a model built with
the modes of a non-chaotic orbit.
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