Reduced Order Modeling Techniques in Experimental Dynamic Substructuring

Objective

Substructuring Theory

- Component Mode Synthesis (CMS) is used to combine two substructures to predict the dynamic response of the assembly
- This is useful when testing a full assembly is impractical or trying to analyze the effects of changing out different sub-assemblies
- These predictions can be very sensitive to interface errors where two substructures are joined
- In order to exercise the joints as seen in the assembly the experiment can be connected to known fixture or transmission simulator (TS)
- The Craig-Mayes method uses the transmission simulator theory to create an experimental Craig-Bampton like form of the experimental results

 $\begin{bmatrix} \phi_A & 0 \\ 0 & \phi_A \end{bmatrix} \begin{bmatrix} \phi_C & 0 & -\phi_A \\ 0 & \phi_D & -\phi_A \end{bmatrix} \begin{bmatrix} q_C \\ q_D \\ q_A \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

References

- p. 4891-4906.

Wei Che Tai¹, Tilàn Dossogne², Seunghun Baek³, Benjamin Seegar⁴, Dan Roettgen⁵, Mentors⁶

¹University of Washington ,²University of Liège, ³University of Michigan, ⁴Universität Stuttgart, ⁵University of Wisconsin-Madison ⁶Robert Kuether - Sandia National Labs, Matthew Allen - University of Wisconsin-Madison, Matthew R. W. Brake - Sandia National Labs, Randall Mayes - Sandia National Labs

Compare different experimental substructuring techniques using two different systems Discover the best practices for experimental-numerical substructuring

- linearities in the system

Nonlinearity Characterization Experimental System • Experimental system consists of the can-plate-beam system **DETECTION** - Wavelet Transform **CHARACTERIZATION &** Most nonlinear modes (exercising QUANTIFICATION packed with foam and some internal instrumentation pieces Amplitude $\land \Rightarrow$ Natural the joints) • Mode 1: First bending mode frequency > • Testing complete with low-level excitations to avoid nonof the beam in the horizontal • Mode 2: First bending mode of • Mode 1: - 4% • 14 Elastic modes extracted from experimental data the beam in the vertical plane • Mode 2: - 3% • Mode 6: Axial mode, beam and • Mode 6: - 2.5% internals out-of-phase Natural frequency [Hz] nstantaneous frequency [Hz] – Amplitude / Time – $\leftarrow \text{Amplitude / Time} \rightarrow$ **Finite Element Model Substructuring Predictions** • Transmission Simulator approach completed using 13 modes • Transmission components and properties from the transmission simulator (A) and 17 modes of the new subsystem (D) • Modes of system A kept up to 989 Hz • Modes of system D kept up to 1495 Hz washers plate Axial Drive Point FRF (301Y) Material **Element type** Components Higher order 3-D 20 node solid 6061-T6 Aluminum Beam, plate, cylinder, ring Higher order 3-D 20 node solid Steel • System frequencies ----- Test Fit -- Substructuring Prediciton Measurement point Frequency [Hz] **MAC Values** System D Validation Structure System A -Plate-Beam with Ring % Chang 101.9 133.9 7 8 9 10 11 12 13 14 15 16 17 **Substructuring Prediction**

- Substructuring B=D+C-A by • Craig-Mayes model of C-A attached to Craig-Bampton model of D (CM-CB) and
- traditional transmission simulator (TS) • 2 degrees of freedom used at 3 node locations as connection

Convergence Test

- In this simulation, the TS and CM-CB method show similar convergence rates given the same TS and experimental modes
- The convergence improves when TS modes estimate the connection points motion more accurately
- After including sufficient (e.g., >6) experimental modes convergence rates show no significant improvement
- Further improvement is observed when the first bending mode of TS is included

Experiment	Can-Plate-	(
[HZ]	[Hz]	% Difference	
134.2	136.8	1.90	1
171.2	175.8	2.60	1
430.0	422.8	1.70	8
511.2	525.9	2.80	5
975.7	960.6	1.50	9
1027	1025	0.19	1
1312	1312	0.00	1
1528	1535	0.45	15
1637	1610	1.68	15
1801	1835.15	1.86	18
1833	1835.35	0.12	18

1. Mayes R.L. and Rohe, D.P. Coupling Experimental and Analytical Substructures with a Continuous Connection Using the Transmission Simulator Method. in 31st International Modal Analysis Conference. 2013. 2. Allen, M.S., Mayes, R. L., and Bergman, E.J., *Experimental Modal Substructuring to Couple and Uncouple*

Substructures with Flexible Fixtures and Multi-point Connections. Journal of Sound and Vibration, 2010. 329:

3. Mayes, R.L., A Modal Craig-Bampton Substructure for Experiments, Analysis, Control and Specifications, in 33rd International Modal Analysis Conference2015: Orlando, FL.

Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6113 DSandia Creative Group 284-2905 LW-07-15

4. Mayes, R.L., A Craig-Bampton Experimental Dynamic Substructure using the Transmission Simulator *Method, in 33rd International Modal Analysis Conference* 2015. 5. Allen, M.S., Kammer, D.C., and Mayes, R.L., *Experimental Based Substructuring Using a Craig-Bampton* Transmission Simulator Model, in 32nd International Modal Analysis Conference 2014. 6. Kammer, D.C., Allen, M.S., Mayes, R.L., Formulation of a Craig-Bampton Experimental Substructure Using *a Transmission Simulator, in 31st International Modal Analysis Conference* 2013.

7. Rixen, D.J., A dual Craig-Bampton method for dynamic substructuring. Journal of Computational and Applied Mathematics, 2004. 168(1-2): p. 383-391. 8.Allen, M.S., Kammer, D.C., and Mayes, R.L., *Metrics for Diagnosing Negative Mass and Stiffness when*

- *uncoupling*. Journal of Sound and Vibration, 2013. 332: p. 5856-5866.

Mode #	f _{test} [Hz]	f _{prediction} [Hz]	f _n Error [%]	ζ _{test}	$\zeta_{\text{prediction}}$	ζ Error [%]	MAC
7	88.33	87.09	-1.41%	0.00196	0.00214	8.83%	.9798
8	115.80	115.13	-0.58%	0.00163	0.00207	26.75%	.9925
9	275.97	276.21	0.09%	0.02468	0.02465	-0.14%	.9116
10	283.32	283.45	0.05%	0.02151	0.02166	0.72%	.9957
11	301.40	301.76	0.12%	0.02327	0.02290	-1.60%	.9869
12	346.25	349.95	1.07%	0.00291	0.00358	23.33%	.9683
13	584.71	583.33	-0.24%	0.02119	0.02138	0.92%	.9963
14	635.16	634.96	-0.03%	0.02037	0.01897	-6.85%	.9955
-	NA	671.02	NA	NA	0.00505	NA	NA
15	688.92	690.42	0.22%	0.01515	0.01367	-9.73%	.9372
24. Sec.	NA	721.79	NA	NA	0.00579	NA	NA
16	758.36	NA	NA	0.01131	NA	NA	NA
17	769.71	771.16	0.19%	0.01191	0.01203	1.09%	.9121

Uncoupling Experimental and Analytical Substructures. Journal of Sound and Vibration. 331(5435-5448 9. Mayes R.L., A., M.S., and Kammer D.C., *Correcting indefinite mass matrices due to substructure*

