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Intramolecular vibrational relaxation seen as expansion in phase space.
II. Reference ergodic systems

V. B. Pavlov-Verevkina) and J. C. Lorquetb)
Département de Chimie, Universite´ de Liège, Sart-Tilman (B6), B-4000 Lie`ge 1, Belgium

~Received 7 March 1995; accepted 20 October 1995!

The aim of the paper is to estimate the volume of phase space that is, in principle, available to a
nonstationary wave packet during its intramolecular vibrational relaxation. For that purpose, use is
made of the maximum entropy method, together with the concept of constrained ergodicity to
construct two so-called reference ergodic systems. The first one concerns thermal excitation
processes. In that case, the only two constraints that are imposed on the intramolecular dynamics
arise from the normalization of the wave function and from the conservation of energy. These
constraints affect the zeroth and first moments of the spectrum. The second reference system
concerns a situation where, as an additional constraint, use is made of the information that the
system has been prepared spectroscopically, i.e., by a specific excitation process, consisting in the
coherent excitation of an initial pure state. Then, the second moment of the spectrum, denoteds, is
shown to provide the appropriate additional constraint. Translated into the time domain, the prior
knowledge of the dynamics used as a constraint is limited to an infinitesimally brief period of time
@0,dt# with the remaining evolution determined by the maximum entropy method. The spectroscopic
reference system constructed in that way can be understood as the one that samples the maximal
volume of phase space available to a wave packet having a specified average energy and being put
in motion by a specified initial force. Closed-form expressions are obtained for the phase space
volumes occupied by these two reference systems for various simple parametrizations of the
functionD(E) that expresses the density of states as a function of the internal energy~power laws
or exponential increase!. Thermal reference systems are found to sample a larger volume of phase
space than their spectroscopic counterparts. The difference between these two cases depends
critically on the value ofs, and also on the symmetry characteristics of the excitation process. In
general, the volumes occupied by the reference systems, thermal as well as spectroscopic, can be
expressed ashEavD~Eav!, whereEav is the~conserved! average energy of the wave packet andh is
a correcting factor that depends on the functional form ofD(E) and on the nature of the imposed
constraints. In all cases studied, the value ofh was found not to greatly differ from 1. The method
has been applied to the analysis of three experimental photoelectron spectra presenting different
spectral characteristics~X̃ 2A1 state of NH3

1 , X̃ 2B3 state of C2H4
1 , and the X̃ 2A9 state of

C2H3F
1!. The fractional occupancy indexF defined by Heller as the fraction of the available

phase space eventually explored up to the break timeTB could be determined. After a time of the
order of 100 fs,F was found to be of the order of a few percent for thermal excitation. When the
molecule presents some symmetry, the expansion of the wave packet is restricted to that part of
phase space spanned by the totally symmetric wave functions. The use of this additional a priori
knowledge increases the fractional indexF. © 1996 American Institute of Physics.
@S0021-9606~96!02804-9#

I. INTRODUCTION

The efficiency of the intramolecular vibrational energy
relaxation which follows the initial excitation of an isolated
molecule by photon absorption is of central interest in the
Rice–Ramsperger–Kassel–Marcus~RRKM! theory of
unimolecular decay.1,2 In this connection, an especially ap-
pealing concept has been introduced by Heller,3,4 namely the
fractionF of the available phase space eventually explored.
The aim of the present paper is to specify the meaning of the

word availableand to propose a simple way to estimateF.
For that purpose, two interesting tools have been developed.

First, a precious source of information on flows in phase
space following an initial excitation derives from the connec-
tion between intramolecular dynamics and spectroscopy.3–9

Autocorrelation functions, obtained as the Fourier transform
of the vibrational structure of an electronic transition, have
provided much insight.9–22 Denoting the energies and
Franck–Condon factors of a spectrum byEk andpk , respec-
tively, the autocorrelation function is equal to

C~ t !5(
k

pk exp~2 iEkt/\!. ~1.1!
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The analysis of the problem requires a proper definition
of a measure of volumes in phase space. For an excitation
process obeying the Franck–Condon principle, Stechel and
Heller3,23–25measure these volumes by the quantity

N`5S (
k

pk
2D 21

. ~1.2!

In fact, the numberN` measures a dynamically weighted
number of phase space cells occupied by a dynamical statis-
tical ensemble when it has reached equilibrium.17 ‘‘Dynami-
cally weighted’’ means here that different phase space cells
contribute toN` with a weight proportional to the probability
of finding the system in each cell.

The second essential conceptual tool derives from the
maximum entropy method,26–34 which helps us to estimate
both the numerator and the denominator of the fractionF,
defined as3,4

F5N`/N* . ~1.3!

For the numerator, it has been pointed out by Levine and
his associates that entropy provides an adequate measure for
volumes in phase space.29,30 Equation~1.2! can be replaced
by

N`5exp~2Spk ln pk!. ~1.4!

The denominatorN* measures the number of available
phase space cells, i.e., the volume which could have been
accessed in a hypothetical situation, defined as as ergodic as
possible when theappropriateconstraints are taken into ac-
count. The knowledge of the numberF serves to determine
whether the system in fact accesses a region of phase space
more limited than what we think it should have, i.e., if only
the essential, a priori known constraints had been retained.
The maximum entropy method provides the adequate back-
ground to clarify these specifications. Heller3 invoked the
concept of ‘‘ergodicity under prior constraints’’ which is
clearly in the spirit of this method even when a different
measure is adopted. He recognized that, if enough con-
straints are introduced, then the system becomes trivially
ergodic35 and proposed to retain the spectral envelope
~equivalent to a knowledge of the dynamics during a very
short time! as the only constraint.

What we want to do is, for specific molecules, to com-
pare a numberN` of experimental origin~i.e., measuring the
asymptotic propagation in phase space of an actual wave
packet after a time limited by practical reasons10 to about
200 femtoseconds! with some convenient yardsticks~hereaf-
ter denoted ‘‘reference ergodic systems’’! in order to evaluate
the relative amount of phase space that has been actually
sampled. We wish to identify the nature and the importance
of the different constraints imposed on the intramolecular
dynamics. Two natural standards of comparison can be pro-
posed off hand.

~i! The volume of phase space that would have been
sampled in the absence of any constraint other than the con-
servation of energy. This corresponds to a nonspecific~e.g.,

thermal! preparation of the system of reference. The obtained
quantityN* will be affixed by a single asterisk, to indicate
nonspecific excitation.

~ii ! The volume of phase space that would have been
sampled if, as an additional constraint, use is made of the
information that the system has been prepared spectroscopi-
cally, i.e., by a specific excitation process, consisting in the
coherent excitation of an initial pure state. The resulting
quantityN** is then affixed with two asterisks.

In every case, bothN* andN** will be calculated by
maximizing the entropy under the constraint of energy con-
servation, which is of crucial importance in our problem.

II. REFERENCE ERGODIC SYSTEMS

A reference ergodic system is defined as the most er-
godic equilibrium state possible under particular constraints
imposed on the system. Therefore, it should fulfill the fol-
lowing requirements.

A reference ergodic system should be characterized by a
maximal value of an appropriate measure under constraints
imposed by the equations of motion and by a particular
preparation~thermal or spectroscopic!.

Whatever the preparation of the system, an obviously
essential restriction is that the reference ergodic systems
should be be characterized by the same value of the internal
energy as the actual system under study.

Reference ergodic systems describe an equilibrium situ-
ation. Hence, they are represented by a diagonal density op-
erator

r5(
k

pkuk&^ku, ~2.1!

whereuk& are the eigenfunctions of the HamiltonianH of the
system.

Next, we recognize the importance of specifying the
number and nature of the relevant degrees of freedom. In the
sequential model developed by Remacle and Levine,21,22 the
sampling of phase space proceeds stepwise: during each time
regime, it is limited to a single region of phase space. An
additional region is accessed during the next period of
time.36–38This stepwise process is associated with a progres-
sive reduction of the number of good quantum numbers. It is
accompanied by a progressive splitting of the spectral lines,
and by a progressive increase of the density of resolved
states. It is then essential to specify where the reference sys-
tem is located within the hierarchy of Hamiltonians22 in or-
der to limit the splittings which are taken into account in the
‘‘fully resolved spectrum.’’ For our present purposes, a natu-
ral choice of the model Hamiltonian is as follows.

The density of statesD(E) of the reference ergodic sys-
tem should be generated by an appropriate selection of those
degrees of freedom that are recognized as being relevant to
the problem at hand. Since our aim is to obtain information
on intramolecular vibrational energy relaxation within a life-
time of chemical interest, we consider only the set of 3N26
vibrational degrees of freedom~including the internal rota-
tions!. External rotations are disregarded since the informa-
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tion leading to the numberN` is ideally extracted from spec-
tra of jet-cooled molecules and since the correlation function
to be analyzed has been freed from the overall rotation.10

Electronic and nuclear spins are also absent from the model,
as well as splittings resulting from tunneling between iso-
mers if the inversion barrier separating them is so high that
tunneling is slow with respect to a timescale of chemical
interest.

The quantities of interest are expressed as traces, which
can be evaluated either as discrete summations~if the states
uk& form a sparse set!, or as integrals involving a density of
statesD(E) that steeply increases with energy~if the number
of degrees of freedom to be taken into account is large!. The
former procedure is always possible since exact state-
counting algorithms are available.1,2,39However, the use of a
continuous approximation offers definite advantages, be-
cause it leads to compact closed-form expressions given
later. The needed quantities are

(
k

pk5E
0

`

p~E!D~E!dE[E
0

`

I ~E!dE51. ~2.2!

@For optical processes,p(E) is the distribution function of
the Franck–Condon factors, whileI (E)[p(E) D(E) is the
spectral profile.# Equation~2.2! expresses the normalization
condition of these quantities. The moments of the spectrum
are given by

(
k

pkEk
n5E

0

`

EnI ~E!dE[^En&. ~2.3!

The measure defined in Eq.~1.2! then becomes

(
k

pk
25E

0

`

I ~E!2/D~E!dE. ~2.4!

Finally, the entropy of the reference ergodic system is
defined as

S52(
k

pk ln pk52E
0

`

dEI~E! ln@ I ~E!/D~E!#. ~2.5!

These integrals can exist only ifI (E) tends to zero asE
goes to infinity. This implies that the distribution function
p(E) has to cancel the steep increase with energy of the
density of statesD(E). This is automatically taken care of in
the maximum entropy method if the constraints are the first
few moments of the distribution. We therefore adopt the for-
malism implemented by Levine and Bernstein.28,31–34 The
Lagrangian functional to be varied with respect top(E)
writes

L52E
0

`

dE D~E!S p~E!ln@p~E!#1~l021!p~E!

1(
r51

l rE
rp~E! D , ~2.6!

where the quantities~l021! andlr are Lagrange multipliers.
Minimizing this functional, one finds

I ~E!5D~E!)
r50

exp~2l rE
r !. ~2.7!

Even a single constraint limited to the first moment of
the distribution ensures convergence since the density of
states of a set of oscillators increases less rapidly than an
exponential decreases. On the other hand, the situation is
quite different with the measure adopted by Stechel and
Heller. If one tries to minimize the functional~2.4! with con-
straints given by Eq.~2.3!, one easily arrives at the solution

I ~E!5D~E!(
r50

l rE
r . ~2.8!

One sees that it is impossible to cancel the rapid increase
of D(E) with energy unless an infinite number of moments
are introduced as constraints. Heller3,6 overcame this diffi-
culty by adopting as a single constraint the envelope corre-
sponding to very short-time dynamics, which is equivalent to
fixing the values of a large number of moments. However,
the overall evidence is clearly in favor of Eq.~2.7!. In the
present work, we use it to determine the model envelope of
the reference ergodic system by the maximum entropy
method.

III. THERMAL REFERENCE SYSTEMS

In the absence of any particular information, only twoa
priori restrictions should be applied to any conservative in-
tramolecular process, because they derive from the equations
of motion: the normalization condition and the law of con-
servation of energy. Then, the maximum entropy continuous
distribution functionp(E) should, from Eq.~2.7!, be ex-
pressed in terms of just two Lagrange multipliers, i.e., should
be represented by the function

p~E!5exp~2l0!exp~2l1E!. ~3.1!

The Lagrange multipliers are determined from the con-
straints

Tr~r!5E
0

`

I ~E!dE

5exp~2l0!E
0

`

exp~2l1E! D~E!dE51 ~3.2!

and

Tr~Hr!5E
0

`

I ~E!EdE

5exp~2l0!E
0

`

exp~2l1E!ED~E!dE5Eav. ~3.3!

The entropy is then equal to28,31–34

S*52E
0

`

dEp~E!D~E!ln@p~E!#5l01l1Eav ~3.4!

and the entropic measure of the reference system is given by

N*5exp~S* !5exp~l0!exp~l1Eav!. ~3.5!
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Hence, from Eqs.~3.2! and ~3.3!,

exp~l0!5E
0

`

exp~2l1E!D~E!dE[Z, ~3.6!

Eav52]~ ln Z!/]l1 . ~3.7!

The reference system constructed by limiting the con-
straints to Eqs.~3.2! and ~3.3! is seen to be the well-known
canonical ensemble.28,31–34 The rôle played by the two
Lagrange parameters is clear: the partition functionZ is
equal to exp~l0! and the Lagrange parameterl1 represents an
inverse temperature.34 In statistical physics,40 these en-
sembles have long been known to describe the most probable
state of a system in thermal equilibrium with a prescribed
average energy. Thus, the reference ergodic system predicted
by the maximum entropy formalism constructed with just
two constraints confirms physical intuition and will therefore
be referred to as thermal.

Closed form solutions are easily obtained if the density
of statesD(E) is fitted to simple algebraic expressions.
Three approximations can be proposed. Remarkably enough,
they lead to results having the same order of magnitude.

If D(E) increases exponentially with the energy, i.e., if

D~E!5B exp~bE! ~3.8!

it follows from Eqs.~3.2!–~3.5! that the entropic measure is
given by

N*5eEavD~Eav!. ~3.9!

If, on the other hand, the density of states increases as
some power ofE, i.e., if

D~E!5CEs21, ~3.10!

whereC and s are empirical parameters, then it is easily
found that

N*5~s21!! ~e/s!sEavD~Eav![h* ~s!EavD~Eav!.
~3.11!

For not too small values ofs, one has

N*'~2p/s!1/2EavD~Eav!. ~3.12!

For concrete applications, the parameters is expected to
range between about 3 and, say, 10. Within these limits, the
function (s21)!(e/s)s slowly varies between 1.49 and 0.8.
The correcting factorh* (s) is, in this case, always close to
unity.

A popular and accurate parametrization of the density of
states is provided by the Whitten–Rabinovitch
approximation1,2

D~E!5C~E1v!s21, ~3.13!

where parameterv is of the order of the zero-point energy.
Substituting Eqs.~3.1! and~3.13! into Eq. ~3.2! and expand-
ing the power by the binomial formula, one gets

Z5exp~l0!5C~s21!!l1
2s exp~l1v! ~3.14!

provided that

~vl1!
s/s!!1. ~3.15!

Substitution into Eq.~3.7! leads to

l15s/~Eav1v! ~3.16!

confirming the fact that the quantityl1
21 has to be interpreted

as the average energy per oscillator, in conformity with the
equipartition theorem of classical mechanics. Substituting
Eqs.~3.13!, ~3.14!, and~3.16! into Eq. ~3.5! gives

N*5~s21!! ~e/s!s~11v/Eav!EavD~Eav!, ~3.17!

N*'~2p/s!1/2~11v/Eav!EavD~Eav! ~3.18!

with Stirling’s approximation.
The condition of validity of these equations is obtained

by substituting Eq.~3.16! into Eq. ~3.15!:

@v/~Eav1v!#s!~2ps!1/2e2s. ~3.19!

When conditions~3.15! and ~3.19! are fulfilled, i.e.,
when Eq. ~3.17! is valid, the factor~11v/Eav! is not far
above 1. On the other hand, for molecules larger than tetra-
atomics, the factor~2p/s!1/2 in Eq. ~3.18! is smaller than 1,
because in the Whitten–Rabinovitch approximation,1,2 the
parameters represents the effective number of oscillators
and is usually larger than the empirical exponent defined in
Eq. ~3.11!. The final conclusion is again thatN* has the same
order of magnitude as the productEavD~Eav!.

In summary, for thermal reference systems, an order of
magnitude ofN* can in practice be obtained by the very
simple equation

N*5h*EavD~Eav!'EavD~Eav! ~3.20!

with h* defined as a correcting function which, usually, is
close to 1.

IV. SPECTROSCOPIC REFERENCE SYSTEMS

Can one arrive at as simple results for a spectroscopic
preparation? It is well known in the maximum entropy
formalism28,31–34 that the number and nature of the con-
straints depend on the preparation of the system. If the latter
results from an electronic transition in a polyatomic mol-
ecule, the initial state is represented by a multidimensional,
approximately Gaussian wave packet in a nonstationary
situation.5–9 The localized nature of the initial wave packet
in configuration and phase spaces leads to a set of Franck–
Condon factors having a characteristic hump followed by a
rapid decrease in the high energy region, associated with
localization in the energy domain.

Therefore, compared with the thermal systems studied in
Sec. III, an additional constraint has to be added to the two
necessary requirements expressed in Eqs.~3.2! and ~3.3! to
specify the spectroscopic origin of the initial state. In physi-
cal terms, the additional information concerns the existence
of a strongly localized Franck–Condon region. The most
natural way to translate this in the maximum entropy formal-
ism is to impose a restriction bearing on the second moment
of the spectrum since the latter quantity determines the width
of the Franck–Condon region in the energy representation.
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E
0

`

I ~E!E2dE5^E2&[s. ~4.1!

Thus, the second moment of the spectral distribution,
henceforth denoteds, is smaller than that of thermal refer-
ence systems because it is restricted by the localized nature
of the initially prepared state.

The maximum entropy distributionp(E) associated with
a spectroscopic preparation writes, as a result of Eq.~2.7!:

p~E!5exp~2l0!exp~2l1E!exp~2l2E
2!. ~4.2!

As explained by Levine and Kinsey,33 ‘‘even when the
magnitude of the average values is not given, the mere iden-
tification of the observables that serve as constraints suffices
to determine the functional form of the distribution.’’ The
value of the third Lagrange multiplierl2 is then determined
by maximizing the entropy with Eq.~4.1! used as the third
constraint. One is then looking for a maximum entropy ref-
erence system with a specified width of the Franck–Condon
region. That this choice very naturally specifies the spectro-
scopic origin of the ergodic reference system receives further
substantiation from the following considerations.

In order to determine the additional constraint character-
istic of a spectroscopic preparation, it is advantageous to
consider the time-dependent formulation of electronic
spectroscopy.5–9Heller based his definition of the stochastic-
ity of a spectroscopic system on ‘‘the division of dynamical
information into that which is known initially, and that which
remains to be discovered.’’6 He developed the concept of a
spectral envelope implying knowledge of the dynamics dur-
ing a restricted period of time@0,T* #. He noticed that there is
some freedom of choice as to the value to be given to time
T* and proposed to adopt for it the time at which the square
modulus of the autocorrelation function admits its first mini-
mum, at the end of its initial decay and before its first recur-
rence.

We suggest the following alternative. SinceC(t) is a
complex function, the minimal information on it involves
two independent equations: one for its real and one for its
imaginary part. A well-known theorem on Fourier transforms
relates the values of its derivatives at timet50 to the mo-
ments of the spectrum. From Eq.~1.1!, one gets easily

dC/dtu t5052~ i /\!(
k

pkEk52~ i /\!Eav, ~4.3!

d2C/dt2u t5052~1/\!2(
k

pkEk
252~1/\!2s. ~4.4!

Furthermore,

d2uC~ t !u2/dt2u t5052~2/\!2(
k

pk~Ek2Eav!
2

52~2/\!2~s2Eav
2 !. ~4.5!

These derivatives are related to the dephasing timetD of
the wave packet, which, as shown by Bixon and Jortner,41

represents in classical terms the time needed for it to move a

distance equal to its width when sliding along a potential
energy curve having a negative slope equal toF:

~h/2pmn!1/25~F/2m!\2/~s2Eav
2 !. ~4.6!

The second derivative of the correlation function att50
is thus determined by the slope of the potential energy sur-
face in the Franck–Condon region. Therefore, imposingEav
ands as constraints in Eq.~4.2! amounts to determining the
largest volume of phase space sampled by a wave packet
having a specified average energy and being put in motion by
a specified initial force.

In conclusion, we submit that the present procedure to
construct the spectroscopic reference ergodic system com-
bines the main ideas developed by Heller3,6 and those in-
cluded in the maximum entropy method. The spectroscopic
reference system should be determined by a minimal set of
constraints. In Heller’s method, the~short! period of time
@0,T* # during which the dynamics is assumed to be known is
used to determine the constraints. By dealing separately with
the real and imaginary parts of the autocorrelation function,
one is able to squeeze this period of time down to the infini-
tesimally short interval@0,dT#. ~Recall that since the real part
of the correlation function is an even function of time, its
second derivative can be calculated with just a single finite
element.! What remains to be discovered after timedT is
determined by the maximum entropy method. Adding the
third and fourth moments of the spectrum as additional con-
straints would amount to assuming prior knowledge of the
dynamics during a larger period of time equal to@0,2dT#.
Let us now evaluateN** in different approximations.

A. Power law for the density of states

If the density of states is fitted to Eq.~3.10!, with
Franck–Condon factors given by Eq.~4.2!, then the expres-
sions for the first three spectral moments are

Ce2l0~2l2!
2s/2G~s!exp~z2/4!D2s~z!51, ~4.7!

Ce2l0~2l2!
2~s11!/2G~s11!exp~z2/4!D2~s11!~z!5Eav,

~4.8!

Ce2l0~2l2!
2~s12!/2G~s12!exp~z2/4!D2~s12!~z!

5^E2&[s, ~4.9!

where

z5l1~2l2!
21/2 ~4.10!

andD2s(z) is the parabolic cylinder function
42 characterized

by the following recurrence relation:

D2~s12!~z!5@D2s~z!2zD2~s11!~z!#/~s11!. ~4.11!

Introducing a shorthand notation,

ms~z![D2~s11!~z!/D2s~z! ~4.12!

it turns out that all important quantities can be expressed as a
function of the variablez:

1366 V. B. Pavlov-Verevkin and J. C. Lorquet: Intramolecular relaxation in phase space. II

J. Chem. Phys., Vol. 104, No. 4, 22 January 1996
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.165.205.242 On: Fri, 04 Sep 2015 14:28:26



S** 5l01l1Eav1l2s

5S01z2/410.5szms~z!1 ln@D2s~z!#2s ln@ms~z!#,

~4.13!

where

S0[ ln@CG~s!~EavAe/s!s# ~4.14!

contains all the terms which do not depend onz. This leads
to an expression forN** having the same form as Eq.~3.20!:

N** 5h** ~z!EavD~Eav!, ~4.15!

where

h** ~z!5$Ae/@sms~z!#%sG~s!D2s~z!

3exp@z2/410.5szms~z!#. ~4.16!

The reduced variablez can be replaced by another di-
mensionless parameters/Eav

2 since

s/Eav
2 5@12zms~z!#/@sms~z!2#. ~4.17!

In summary, for spectroscopic systems, one again arrives
at

N** 5h** EavD~Eav!, ~4.18!

where the correcting factorh** is related to the shape of the
spectral envelope via a single parameters/Eav

2 . A graph
showing this relationship is given in Fig. 1. Analytical ex-
pressions and tables of numerical values can be obtained
from the authors.

B. Exponentially increasing density of states

The study of spectroscopic reference systems when the
density of states can be parametrized by Eq.~3.8! proceeds in
a completely analogous way. The previous equations,~4.7!–
~4.15! are easily adapted to the present case, simply by put-
ting s51, replacingC by B, andl1 by l12b. Furthermore,
Eq. ~4.14! must be replaced by

S050.51bEav1 ln~BEav!. ~4.19!

V. DISCUSSION

As shown by Eqs.~3.20! and ~4.18!, the maximum en-
tropy method leads to expressions for the measure of thermal
and spectroscopic reference systems which all have the same
general form. Whatever the parametrization adopted for the
density of states,N* andN** increase with energy as the
productEavD~Eav!. Both for thermal and spectroscopic sys-
tems, the correcting factorh can, in principle, vary between
0 ande. In practice, however,h* and h** are never very
different from one. Therefore, as a first approximation, an
order of magnitude of bothN* and N** is given by the
productEavD~Eav!.

The two-parameter functions, Eqs.~3.8! and ~3.10!,
which have been used to fit the density of states function
D(E) are not very flexible, but they generate results that are
as simple as possible. The use of a three-parameter empirical
equation, as the Whitten–Rabinovitch approximation, is pos-
sible for thermal excitation but is much more difficult for
spectroscopic processes, because the results would then no
longer depend on a single reduced variable.

As expected, thermal reference systems are found to
sample a larger volume of phase space than their spectro-
scopic counterparts. For a given value of the average energy
Eav, the broader the width of the Franck–Condon region, the
larger the initial force acting on the wave packet@according
to Eq. ~4.6!#, and the larger the volume of thea priori avail-
able phase space, i.e., the closerh** and h* . The second
moments is thus an informative observable.

However, an important distinction has to be introduced
in the comparison between thermal and spectroscopic refer-
ence systems. When the molecule under study presents some
symmetry, the expansion of the initial wave packet in the
basis of the eigenfunctions of the final state is restricted by
selection rules to the subset of eigenstates belonging to the
totally symmetric representation. This implies that the func-
tion D(E) that appears in Eq.~4.18! is to be understood as
the density of those states only. In other words, the number
N** estimated from a state counting procedure carried out,
e.g., by the Beyer–Swinehardt algorithm2,39 has to be cor-
rected. At sufficiently high energies, the partial density of
statesDG i corresponding to a particular representationGi is
proportional to the square of its dimension@Gi#,

43–46 i.e.,

DG1/DG25@G1#
2/@G2#

2. ~5.1!

A thermal process, on the other hand, is not subject to
symmetry restrictions.

FIG. 1. Value of the correcting factorh** for a spectroscopic transition as a
function of the dimensionless parameters/Eav

2 for various parametrizations
of the density of states.
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VI. ANALYSIS OF EXPERIMENTAL RESULTS

The previous formulas will now be applied to an analy-
sis of actual experimental photoelectron spectra. In order to
examine various possibilities, three different cases will be
considered. First, a spectrum consisting in a very long pro-
gression of a single frequency. Second, a spectrum involving
three progressions with the most intense transition leading to
the vibrationless level of the upper state. The third spectrum
consists again of a superposition of three progressions, but
with a less regular distribution of the intensities.

In all of the three cases, the autocorrelation function
could be determined at least up to Heller’s break time3 TB ,
equal to

TB5h/d, ~6.1!

where d is the smallest energy gap between two optically
active vibrational levels~i.e., having nonzero Franck–
Condon factors in the spectrum!.17 The break timeTB pro-
vides a convenient reference, because it determines the end
of the first step of phase space sampling, which consists in a
rapid energy exchange among the subset of optically active,
totally symmetric normal modes, i.e., in a process where the
dephasing of the wave packet is governed by large splittings.
The rate of exploration of phase space then drops down to a
very small value by that time,3,17but only temporarily.22,36–38

Reported here are the numberN` and the fractionsF* and
F** of phase-space cells sampled by timeTB . An overview
of the results is presented in Table I.

A. The X̃ 2A1 state of NH 3
1

The first band of the photoelectron spectrum of NH3
leading to the ground electronic state of the NH3

1 ion
(X̃ 2A1) exhibits a rich vibrational structure,

47 but limited to
a single progression involving a single frequency. The ex-
cited vibrational normal mode is thea1 bending moden2
which produces the inversion of ammonia. Sixteen vibra-
tional levels~from v50 to v515! are detected in the pro-
gression. This indicates a large amplitude vibrational motion
of the wave packet, but along a single degree of freedom
only. Values for the vibrational frequencies of the NH3

1 ion
have been reported48 and can be used to calculate the density
of states. The functionD(E) can be fitted either to an expo-
nential @D(E)'0.0056 exp~3.131024E!, with E in wave

number units#, or to a power law [D(E)'1.48310213E3],
or to a Whitten–Rabinovitch expression [D(E)
'6.7310218(E12000)4].

Averaging over these results, one finds that, by the break
time TB51/n2'34 fs, the wave packet that results from the
1A1→2A1 transition in ammonia has already sampled a frac-
tion equal to about 3% of that part of phase space that is
available to a thermal reference system~F*'0.03!. For a
spectroscopic excitation, the main restrictions derive from
symmetry considerations. The spectroscopic wave packet
can only expand in the subspace spanned by the totally sym-
metric wave functions. Since about 20% of the vibrational
states that are located in the energy range of theX̃ band
belong to theA1 representation, one finds for the fractional
occupation a valueF** '0.17.

B. The X̃ 2B3 state of C 2H4
1

The study of phase space sampling in the case of the
C2H4

1 ion in its X̃ 2B3 ground electronic state has already
been studied by us in a previous paper.17 We wish, however,
to reexamine the situation along the present lines of thought
and to correct a few inadequacies of the previous treatment.
The information is derived from a photoelectron spectrum of
C2H4

1 measured in a supersonic beam experiment by Pollard
et al.49 The density of statesD(E) has been calculated via
the Beyer–Swinehardt counting algorithm,2,39which requires
as an input the value of the normal frequencies of the twelve
normal modes of the C2H4

1 cation. Only three of them~n2,
n3, andn4! are optically active and have been experimentally
determined.49 However, the twelve frequencies have been
calculatedab initio ~in the MP2/6-31 G* approximation!.50

The agreement between calculated and observed frequencies
is excellent forn2 andn3, but not for the torsional moden4.
It has been pointed out by Ko¨ppel, Cederbaum, and
Domcke51 that, in the particular case of the C2H4

1 cation, the
values of the angle of twist and of the corresponding fre-
quency are strongly influenced by the nonadiabatic interac-
tion that exists between the first two electronic states of the
ion. Highly correlated wave functions are necessary to obtain
a reliable estimate forn4. Working at the MP2 level is ap-
parently not sufficient for the torsional mode. Therefore, the
calculated value ofn4 has been replaced by the experimental
measurement.

In the major part of the Franck–Condon envelope~say,
up to an energy of about 0.7 eV!, the calculated density of
states functionD(E) can be approximately fitted to an expo-
nential function@D(E)'0.0075 exp~1.131023 E!, with E in
wave number units#, or to a Whitten–Rabinowitch function
fulfilling condition ~3.19! [D(E)'1.5310215(E1750)4].
Averaging the values provided by the two results, one finds
for a thermal system, a fractionF* approximately equal to
0.1. For a spectroscopic excitation, this number should be
modified mainly by symmetry considerations. The fraction of
states that belong to the totally symmetric representation of
the D2 point group is about 0.4. Hence,F** '0.25. These
numbers measure the sampling of phase space by time
TB51.6310213 s.

TABLE I. Analysis of the sampling of phase space by the break timeTB
from three experimental photoelectron spectra.

NH3
1 (X̃ 2A1) C2H4

1 (X̃ 2B3) C2H3F
1 (X̃ 2A9)

Eav ~cm21! 6300 1500 2750
As ~cm21! 7000 2140 3460
TB ~fs! 34 160 120
N` 12 13 22
Eav D~Eav! 220 60 610
F* 0.03 0.1 0.025
F** 0.17 0.25 0.05
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C. The X̃ 2A 9 state of C 2H3F
1

The first band of the photoelectron spectrum of vinyl
fluoride has been studied by several authors.52 Three progres-
sions have been identified, leading to frequencies of 450,
1270, and 1550 cm21. Values for the other vibrational fre-
quencies have been calculated by anab initiomethod.53 The
results obtained at the UHF 6-31* G level were scaled by a
factor equal to 0.89 and were used to estimate the density of
states. The best fit to the functionD(E) is provided by a
Whitten–Rabinovitch expression obeying condition~3.19!.
@D(E)'3.4310219(E11000)5, with E in wave number
units#. Other, less accurate, fits are also
possible:D(E)'4.3310215E4, and D(E)'0.018 exp~1.0
31023E!.

Since the smallest splitting detected in the spectrum is of
the order of 275 cm21, a value of 1.2310213 s can be esti-
mated for the break timeTB . By that time, the wave packet
has sampled a fractionF* of that part of phase space that is
available to a thermal reference system equal to about 0.025.
The situation is less clear for a spectroscopic excitation, but
the main restrictions are again seen to derive from symmetry
considerations. The spectroscopic wave packet can only ex-
pand in the subspace spanned by the totally symmetric wave
functions. Since about 50% of the vibrational states that are
located in the energy range of the band belong to theA8
representation, one finds that, for a spectroscopic reference
system, the fractional sampling of phase space is about twice
that found for a thermal system, i.e.,F** '0.05.
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