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Intramolecular vibrational relaxation seen as expansion in phase space.
Il. Reference ergodic systems

V. B. Pavlov-Verevkin® and J. C. Lorquet®
Departement de Chimie, Universitke Ligge, Sart-Tilman (B6), B-4000 Lge 1, Belgium

(Received 7 March 1995; accepted 20 October 1995

The aim of the paper is to estimate the volume of phase space that is, in principle, available to a
nonstationary wave packet during its intramolecular vibrational relaxation. For that purpose, use is
made of the maximum entropy method, together with the concept of constrained ergodicity to
construct two so-called reference ergodic systems. The first one concerns thermal excitation
processes. In that case, the only two constraints that are imposed on the intramolecular dynamics
arise from the normalization of the wave function and from the conservation of energy. These
constraints affect the zeroth and first moments of the spectrum. The second reference system
concerns a situation where, as an additional constraint, use is made of the information that the
system has been prepared spectroscopically, i.e., by a specific excitation process, consisting in the
coherent excitation of an initial pure state. Then, the second moment of the spectrum, densted
shown to provide the appropriate additional constraint. Translated into the time domain, the prior
knowledge of the dynamics used as a constraint is limited to an infinitesimally brief period of time
[0,dt] with the remaining evolution determined by the maximum entropy method. The spectroscopic
reference system constructed in that way can be understood as the one that samples the maximal
volume of phase space available to a wave packet having a specified average energy and being put
in motion by a specified initial force. Closed-form expressions are obtained for the phase space
volumes occupied by these two reference systems for various simple parametrizations of the
functionD(E) that expresses the density of states as a function of the internal gperggr laws

or exponential increageThermal reference systems are found to sample a larger volume of phase
space than their spectroscopic counterparts. The difference between these two cases depends
critically on the value ofo, and also on the symmetry characteristics of the excitation process. In
general, the volumes occupied by the reference systems, thermal as well as spectroscopic, can be
expressed agE, D (E,,), whereE,, is the(conservetlaverage energy of the wave packet anid

a correcting factor that depends on the functional fornDQE) and on the nature of the imposed
constraints. In all cases studied, the valueyafias found not to greatly differ from 1. The method

has been applied to the analysis of three experimental photoelectron spectra presenting different
spectral characteristicéX 2A; state of NH, X 2B; state of GH;, and theX ?A” state of
C,HsF"). The fractional occupancy indei defined by Heller as the fraction of the available
phase space eventually explored up to the break Tigieould be determined. After a time of the

order of 100 fsF was found to be of the order of a few percent for thermal excitation. When the
molecule presents some symmetry, the expansion of the wave packet is restricted to that part of
phase space spanned by the totally symmetric wave functions. The use of this additional a priori
knowledge increases the fractional indek. © 1996 American Institute of Physics.
[S0021-960606)02804-9

I. INTRODUCTION word available and to propose a simple way to estim&te
For that purpose, two interesting tools have been developed.

The efficiency of the intramolecular vibrational energy First, a precious source of information on flows in phase
relaxation which follows the initial excitation of an isolated space following an initial excitation derives from the connec-
molecule by photon absorption is of central interest in theion between intramolecular dynamics and spectroséopy.
Rice—Ramsperger—Kassel-Marcu(RRKM) theory of  Autocorrelation functions, obtained as the Fourier transform
of the vibrational structure of an electronic transition, have
provided much insight-?> Denoting the energies and
Franck—Condon factors of a spectrumibyandp, , respec-
gvely, the autocorrelation function is equal to

unimolecular decay? In this connection, an especially ap-
pealing concept has been introduced by Hétfemamely the
fraction F of the available phase space eventually explored
The aim of the present paper is to specify the meaning of th

dpermanent address: Chemistry Department, Moscow State University,

Moscow 119899, Russia. C(t)= z Py eXp( —iEt/h). (1.2
YAuthor to whom all correspondence should be addressed. k

1362 J. Chem. Phys. 104 (4), 22 January 1996 0021-9606/96/104(4)/1362/8/$6.00 © 1996 American Institute of Physics



V. B. Pavlov-Verevkin and J. C. Lorquet: Intramolecular relaxation in phase space. Il 1363

The analysis of the problem requires a proper definitiortherma) preparation of the system of reference. The obtained
of a measure of volumes in phase space. For an excitatioquantity N* will be affixed by a single asterisk, to indicate
process obeying the Franck—Condon principle, Stechel andonspecific excitation.

Heller>*>~®measure these volumes by the quantity (i) The volume of phase space that would have been
. sampled if, as an additional constraint, use is made of the
wo_ 2 information that the system has been prepared spectroscopi-
N"= > pi| . (1.2 . system ha Spectrc
R cally, i.e., by a specific excitation process, consisting in the

coherent excitation of an initial pure state. The resulting
In fact, the numbeN” measures a dynamically weighted quantity N** is then affixed with two asterisks.
number of phase space cells occupied by a dynamical statis- |In every case, botitN* and N** will be calculated by
tical ensemble when it has reached equilibritfiDynami-  maximizing the entropy under the constraint of energy con-
cally weighted” means here that different phase space cellservation, which is of crucial importance in our problem.
contribute taN” with a weight proportional to the probability

of finding the system in each cell. . \l. REFERENCE ERGODIC SYSTEMS
The second essential conceptual tool derives from the

maximum entropy methot?3* which helps us to estimate A reference ergodic system is defined as the most er-
both the numerator and the denominator of the fraciion godic equilibrium state possible under particular constraints
defined a%* imposed on the system. Therefore, it should fulfill the fol-
lowing requirements.
F=N"/N*. 13 A reference ergodic system should be characterized by a

. . . maximal value of an appropriate measure under constraints
For the numerator, it has been pointed out by Levine antEg: pprop

: : : osed by the equations of motion and by a particular
his associates that entropy provides an adequate measure |p y q yap

. X eparation(thermal or spectroscopic
volumes in phase spaé®” Equation(1.2 can be replaced Whatever the preparation of the system, an obviously

by essential restriction is that the reference ergodic systems
N*=exp(— 3y In py). (1.4) should be be characterized by the same value of the internal
energy as the actual system under study.

The denominatoN* measures the number of available Reference ergodic systems describe an equilibrium situ-
phase space cells, i.e., the volume which could have beedion. Hence, they are represented by a diagonal density op-
accessed in a hypothetical situation, defined as as ergodic §&3t0r
possible when th@ppropriateconstraints are taken into ac-
count. The knowledge of the numbErserves to determine p=2 pulk)(Kl, 2.9
whether the system in fact accesses a region of phase space :
more limited than what we think it should have, i.e., if only where|k) are the eigenfunctions of the Hamiltonikinof the
the essential a priori known constraints had been retained. system.

The maximum entropy method provides the adequate back- Next, we recognize the importance of specifying the
ground to clarify these specifications. Heflenvoked the number and nature of the relevant degrees of freedom. In the
concept of “ergodicity under prior constraints” which is sequential model developed by Remacle and Let4éthe
clearly in the spirit of this method even when a different sampling of phase space proceeds stepwise: during each time
measure is adopted. He recognized that, if enough corregime, it is limited to a single region of phase space. An
straints are introduced, then the system becomes triviallgdditional region is accessed during the next period of
ergodi¢® and proposed to retain the spectral envelopeime3®—*8This stepwise process is associated with a progres-
(equivalent to a knowledge of the dynamics during a verysive reduction of the number of good quantum numbers. It is
short timg as the only constraint. accompanied by a progressive splitting of the spectral lines,

What we want to do is, for specific molecules, to com-and by a progressive increase of the density of resolved
pare a numbeN” of experimental origir(i.e., measuring the states. It is then essential to specify where the reference sys-
asymptotic propagation in phase space of an actual waviem is located within the hierarchy of Hamiltonidhn or-
packet after a time limited by practical reasth® about der to limit the splittings which are taken into account in the
200 femtosecondswvith some convenient yardstickeereaf-  “fully resolved spectrum.” For our present purposes, a natu-
ter denoted “reference ergodic systemsi order to evaluate ral choice of the model Hamiltonian is as follows.
the relative amount of phase space that has been actually The density of stateB (E) of the reference ergodic sys-
sampled. We wish to identify the nature and the importancéem should be generated by an appropriate selection of those
of the different constraints imposed on the intramoleculamdegrees of freedom that are recognized as being relevant to
dynamics. Two natural standards of comparison can be prahe problem at hand. Since our aim is to obtain information
posed off hand. on intramolecular vibrational energy relaxation within a life-

(i) The volume of phase space that would have beeiime of chemical interest, we consider only the set bif-36
sampled in the absence of any constraint other than the coribrational degrees of freedofincluding the internal rota-
servation of energy. This corresponds to a nonspe@fig., tions). External rotations are disregarded since the informa-
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tion leading to the numbeM™ is ideally extracted from spec-

tra of jet-cooled molecules and since the correlation function  (E)=D(E)I] exp(—\E"). 2.7

to be analyzed has been freed from the overall rotdfion. =0

Electronic and nuclear spins are also absent from the model, Even a single constraint limited to the first moment of

as well as splittings resulting from tunneling between iso-the distribution ensures convergence since the density of

mers if the inversion barrier separating them is so high thastates of a set of oscillators increases less rapidly than an

tunneling is slow with respect to a timescale of chemicalexponential decreases. On the other hand, the situation is

interest. quite different with the measure adopted by Stechel and
The quantities of interest are expressed as traces, whidteller. If one tries to minimize the functioné2.4) with con-

can be evaluated either as discrete summatiiriee states ~ straints given by Eq(2.3), one easily arrives at the solution

|k) form a sparse sgtor as integrals involving a density of

statesdD (E) that steeply increases with ener@ythe number I(E)= D(E)E N E" (2.8

of degrees of freedom to be taken into account is larglee r=0

former procedure is always possible since exact state- One sees that it is impossible to cancel the rapid increase

counting algorithms are availabté:**However, the use of a of D(E) with energy unless an infinite number of moments

continuous approximation offers definite advantages, beare introduced as constraints. HellBovercame this diffi-

cause it leads to compact closed-form expressions givegulty by adopting as a single constraint the envelope corre-

later. The needed quantities are sponding to very short-time dynamics, which is equivalent to
. . fixing the values of a large number of moments. However,

2 pk:f p(E)D(E)dEEf I(E)dE=1. (2.2) the overall evidence is clearly in favor of E(.7). In the
K 0 0 present work, we use it to determine the model envelope of

the reference ergodic system by the maximum entropy

[For optical processeq(E) is the distribution function of method.

the Franck—Condon factors, whil¢éE)=p(E) D(E) is the
spectral profilel Equation(2.2) expresses the normalization
condition of these quantities. The moments of the spectrumi. THERMAL REFERENCE SYSTEMS

are given b
g y In the absence of any particular information, only tevo

R e priori restrictions should be applied to any conservative in-
; PkE= 0 E"I(E)dE=(E"). (2.3 tramolecular process, because they derive from the equations
of motion: the normalization condition and the law of con-
The measure defined in E(L.2) then becomes servation of energy. Then, the maximum entropy continuous
. distribution functionp(E) should, from Eq.(2.7), be ex-
2 pizj' I(E)2/D(E)dE. (2.4 pressed in terms of just two !_agrange multipliers, i.e., should
k 0 be represented by the function
Finally, the entropy of the reference ergodic system is  P(E)=exp(—Xg)exp(—X;E). (3.9
defined as The Lagrange multipliers are determined from the con-
straints

S=-> pcIn pkz—f dEI(E) In[I(E)/D(E)]. (2.5 .
K 0 Tr(p)zf I(E)dE
These integrals can exist onlylifE) tends to zero a& °
goes to infinity. This implies that the distribution function
p(E) has to cancel the steep increase with energy of the
density of state® (E). This is automatically taken care of in
the maximum entropy method if the constraints are the firsBnd
few moments of the distribution. We therefore adopt the for- f

=exp(—)\o)fooc exp—\E) D(E)dE=1 (3.2

“l(E)EdE

malism implemented by Levine and Bernstéiii34The Tr(Hp)= .

Lagrangian functional to be varied with respect g6E)

writes @
=exp(—)\o)J0 exp(—NE)ED(E)dE=E,,. (3.3

L=— fO dE D(E)( p(E)In[p(E)]+()\O_ 1)p(E) The entropy is then equal%3l—34

LS )\rErp(E)), e  S=- f:dEp(E)D(E)In[p(E)]=xo+x1Eav (3.4
=1

where the quantitieé\,—1) and), are Lagrange multipliers. and the entropic measure of the reference system is given by

Minimizing this functional, one finds N* =exp(S*) =exp(Ag)exp(A{E,)- (3.5

J. Chem. Phys., Vol. 104, No. 4, 22 January 1996
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Hence, from Egs(3.2) and(3.3), Substitution into Eq(3.7) leads to

* N=s/(Egt+ 3.1
exr()\o)=J exp(—\,E)D(E)dE=2Z, (3.6) 1=8/(Eat @) (316

0 confirming the fact that the quantily * has to be interpreted
E.=—d(In Z)/N,. (3.7) as the average energy per oscillator, in conformity with the

equipartition theorem of classical mechanics. Substituting

The reference system constructed by limiting the CONEQs.(3.13, (3.14, and(3.16 into Eq. (3.5) gives
straints to Eqs(3.2) and(3.3) is seen to be the well-known

canonical ensembf@3'-3* The rde played by the two N*=(s=1)!(e/s)%(1+ w/E4)EaD(Eq), (3.17

Lagrange parameters is clear: the partition functibris * 1/2

equal to exp\,) and the Lagrange parameterrepresents an N*~(27/s)"(1+ w/E4)EaD(Ea) (318

inverse temperatur¥. In statistical physic&® these en- with Stirling's approximation.

sembles have long been known to describe the most probable The condition of validity of these equations is obtained

state of a system in thermal equilibrium with a prescribedby substituting Eq(3.16 into Eq.(3.15:

average energy. Thus, the reference ergodic system predicted s U2 —s

by the maximum entropy formalism constructed with just [w/(Eat 0)]><(279)" %", (319

two constraints confirms physical intuition and will therefore When conditions(3.15 and (3.19 are fulfilled, i.e.,

be referred to as thermal. when Eq.(3.17) is valid, the factor(1+w/E,) is not far
Closed form solutions are easily obtained if the densityabove 1. On the other hand, for molecules larger than tetra-

of statesD(E) is fitted to simple algebraic expressions. atomics, the factof2z/s)*? in Eq. (3.18 is smaller than 1,

Three approximations can be proposed. Remarkably enougbecause in the Whitten—Rabinovitch approximatidrthe

they lead to results having the same order of magnitude. parameters represents the effective number of oscillators
If D(E) increases exponentially with the energy, i.e., if and is usually larger than the empirical exponent defined in

Eq. (3.11). The final conclusion is again thif* has the same

D(E)=B exp(SE) 38 order of magnitude as the produgg,D(E,,).
it follows from Egs.(3.2—(3.5) that the entropic measure is In summary, for thermal reference systems, an order of
given by magnitude ofN* can in practice be obtained by the very
* —eE,D(E,). 3.9 simple equation
If, on the other hand, the density of states increases as N* = 7*EaD(Ea) ~EaD(Ea) (3.20
some power oE, i.e., if with 7* defined as a correcting function which, usually, is
D(E):CES—l (31() close to 1.
where C and s are empirical parameters, then it is easily
found that
IV. SPECTROSCOPIC REFERENCE SYSTEMS
*=(s—1)!(e/s)°EqD(Eq)=7*(S)E4D(Ey). . ) .
(3.11 Can one arrive at as simple results for a spectroscopic

preparation? It is well known in the maximum entropy
formalisn?®31-3* that the number and nature of the con-
N* ~(27/s)Y’E D (E,,). (3.12  straints depend on the preparation of the system. If the latter
results from an electronic transition in a polyatomic mol-
Scule, the initial state is represented by a multidimensional,
approximately Gaussian wave packet in a nonstationary
situation>~® The localized nature of the initial wave packet
in configuration and phase spaces leads to a set of Franck—
]Condon factors having a characteristic hump followed by a
rapid decrease in the high energy region, associated with
localization in the energy domain.

Therefore, compared with the thermal systems studied in
D(E)=C(E+w)S %, (3.13  Sec. lll, an additional constraint has to be added to the two
necessary requirements expressed in E8®) and (3.3 to
specify the spectroscopic origin of the initial state. In physi-
cal terms, the additional information concerns the existence
of a strongly localized Franck—Condon region. The most
Z=exp\g)=C(s—1)!\;° exp\ o) (3.19 natural way to translate this in the maximum entropy formal-
ism is to impose a restriction bearing on the second moment
of the spectrum since the latter quantity determines the width
(whq)%/s!<1. (3.195 of the Franck—Condon region in the energy representation.

For not too small values of, one has

For concrete applications, the parametés expected to
range between about 3 and, say, 10. Within these limits, th
function (s—1)!(e/s)® slowly varies between 1.49 and 0.8.
The correcting factory* (s) is, in this case, always close to
unity.

A popular and accurate parametrization of the density o
states is provided by the Whitten—Rabinovitch
approximatior?

where parametew is of the order of the zero-point energy.
Substituting Egs(3.1) and(3.13 into Eq.(3.2) and expand-
ing the power by the binomial formula, one gets

provided that

J. Chem. Phys., Vol. 104, No. 4, 22 January 1996
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o 5 5 distance equal to its width when sliding along a potential
fo I(E)E“dE=(E")=0. (4D energy curve having a negative slope equafFto
Thus, the second moment of the spectral distribution, (hi2m pv) V2= (Fl2m)%?l (o — Eezw . (4.9

henceforth denoted, is smaller than that of thermal refer-

ence systems because it is restricted by the localized natulrg th-[ge dsé?grorgﬁngsnt\)/amg (;L,thee g?:Leelatlgtr; ;l:igftéontfo sur-
of the initially prepared state. y P P gy

The maximum entropy distributiop(E) associated with face in the Frangk—Qondon region. Therefore, |mlp9ﬁg\g
a spectroscopic preparation writes, as a result of(Eq): and o as constraints in Eq4.2) amounts to determining the
' ' largest volume of phase space sampled by a wave packet

P(E)=exp — \g)exp(— N\ E)exp( — A,E?). 4.2 having a specified average energy and being put in motion by
) ) . . a specified initial force.
As explained by Levine and Kinséy,“even when the In conclusion, we submit that the present procedure to

magnitude of the average values is not given, the mere idensonstruct the spectroscopic reference ergodic system com-
tification of the observables that serve as constraints suffice§es the main ideas developed by Hétfeand those in-
to determine the functional form of the distribution.” The | ded in the maximum entropy method. The spectroscopic
value of the third Lagrange multipliex, is then determined  reference system should be determined by a minimal set of
by maximizing the entropy with E¢4.1) used as the third constraints. In Heller's method, thehor period of time
constraint. One is then looking for a maximum entropy ref-[o T*] during which the dynamics is assumed to be known is
erence system with a specified width of the Franck—Condogysed to determine the constraints. By dealing separately with
region. That this choice very naturally specifies the spectroghe real and imaginary parts of the autocorrelation function,
scopic origin of the ergodic reference system receives furthegne s able to squeeze this period of time down to the infini-
substantiation from the following considerations. tesimally short intervdl0,d T]. (Recall that since the real part

In order to determine the additional constraint characterys the correlation function is an even function of time, its
istic of a spectroscopic preparation, it is advantageous tgecond derivative can be calculated with just a single finite
consider the time-dependent formulation of electronlce|emem) What remains to be discovered after tird& is
spectroscopy:? Heller based his definition of the stochastic- getermined by the maximum entropy method. Adding the
ity of a spectroscopic system on “the division of dynamical {hjrg and fourth moments of the spectrum as additional con-
information into that which is known initially, and that which gtraints would amount to assuming prior knowledge of the
remains to be discovered.’He developed the concept of a dynamics during a larger period of time equal[@2dT].

spectral envelope implying knowledge of the dynamics durq et ys now evaluatél** in different approximations.
ing a restricted period of tim®,T*]. He noticed that there is

some freedom of choice as to the value to be given to timé\ Power law for the density of states

T* and proposed to adopt for it the time at which the square  |f the density of states is fitted to Ed3.10, with
modulus of the autocorrelation function admits its first mini- Franck—Condon factors given by E(qu), then the expres-
mum, at the end of its initial decay and before its first reCur-sions for the first three Spectra| moments are
rence.

We suggest the following alternative. Sin@{t) is a Ce *o(2\,) ¥T'(s)exp(z?/4)D _((z)=1, 4.7
complex function, the minimal information on it involves
two independent equations: one for its real and one for it 2(2\,) ~ STV (s+1)exp(Z/4)D _ (51 1)(2) = Eay,
imaginary part. A well-known theorem on Fourier transforms (4.8
relates the values of its derivatives at tite0 to the mo-

—\ —(s+2)/2 2
ments of the spectrum. From E@..1), one gets easily Ce "(2h;) I'(s+2)expz7/4)D - (s+2)(2)

=(E%=o0, (4.9

dC/dt|,_o=—(i/%)>, pEx=—(i/%)E,y, 4.9
K where
d2CIdE o= — (1A)ZS) pE2=—(1h)20. (4.4 z=\1(2)p) 12 (4.10
k
andD _((z) is the parabolic cylinder functidAcharacterized
Furthermore, by the following recurrence relation:
d2|C(t)|2/dt2|t=0:_(Z/ﬁ)ZE pk(Ek_ Eav)2 D,(S+2)(Z)=[D,S(Z)—ZD,<S+1)(Z)]/(S+ 1) (41])
k
Introducing a shorthand notation,
=~ (2/)%(o—EL). (4.5

ati L ms(2)=D_(511)(2)/D _(2) (4.12
These derivatives are related to the dephasing tignef s (s+1) s
the wave packet, which, as shown by Bixon and Jorther, it turns out that all important quantities can be expressed as a
represents in classical terms the time needed for it to move function of the variablez:

J. Chem. Phys., Vol. 104, No. 4, 22 January 1996
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B. Exponentially increasing density of states

The study of spectroscopic reference systems when the
density of states can be parametrized by B) proceeds in
a completely analogous way. The previous equatiths)—
(4.15 are easily adapted to the present case, simply by put-
ting s=1, replacingC by B, and\,; by \;— 8. Furthermore,
Eq. (4.14 must be replaced by

Sp=0.5+ BE+ IN(BEy,). (4.19

V. DISCUSSION

As shown by Egs(3.20 and (4.18), the maximum en-
tropy method leads to expressions for the measure of thermal
and spectroscopic reference systems which all have the same
general form. Whatever the parametrization adopted for the
density of statesN* and N** increase with energy as the
productE, D (E,,). Both for thermal and spectroscopic sys-

. tems, the correcting factay can, in principle, vary between
0 ande. In practice, howevery* and »** are never very
different from one. Therefore, as a first approximation, an
FIG._l. Value of Fhe correcting factoy*™* forza spectr_oscopic transi_tion‘asa order of magnitude of botiN* and N** is given by the
function of the dimensionless parametgEy, for various parametrizations
of the density of states. prOdUCtEaVD(Eav)'
The two-parameter functions, Eg$3.8) and (3.10,
which have been used to fit the density of states function
D(E) are not very flexible, but they generate results that are
S** =Nt N Eat Ao as simple as possible. The use of a three-parameter empirical
equation, as the Whitten—Rabinovitch approximation, is pos-
=So+2°/4+0.552u4(2) +In[D ()] = In[ us(2)], sible for thermal excitation but is much more difficult for
(4.13 spectroscopic processes, because the results would then no
longer depend on a single reduced variable.
where As expected, thermal reference systems are found to

So=IN[CT(s)(Ean/e/s)®] (4.14 sample a larger volume of phase space than their spectro-

scopic counterparts. For a given value of the average energy

contains all the terms which do not dependThis leads  Eay, the broader the width of the Franck—Condon region, the

1.5 T/E2,

to an expression fdl** having the same form as E®.20): larger the initial force acting on the wave packatcording
to Eq. (4.6)], and the larger the volume of tteepriori avail-
N** = 7** (2)EaD(Ea), (4159  able phase space, i.e., the closgt and 7*. The second

momento is thus an informative observable.

where However, an important distinction has to be introduced
** (= f Jellsud ) TVST(S)D _ (z in the comparison between thermal and spectroscopic refer-
7 (2) {\/—[ us(DIFT($)D o(2) ence systems. When the molecule under study presents some

X exf z2/4+0.55 Zu<(2)]. (4.16 symmetry, the expansion of the initial wave packet in the

. _ basis of the eigenfunctions of the final state is restricted by
The reduced vanablez can be replaced by another di- selection rules to the subset of eigenstates belonging to the
mensionless parametefE;, since totally symmetric representation. This implies that the func-

2 _rq_ 2 tion D(E) that appears in Eq4.18) is to be understood as
o/Ba=[1=21(2)][sps(2)7]. (4.17) the density of those states only. In other words, the number
In summary, for spectroscopic systems, one again arrived”™" estimated from a state counting procedure carried out,
at e.g., by the Beyer—Swinehardt algorithfi has to be cor-
rected. At sufficiently high energies, the partial density of
N** = p** E_D(E.), (4.18 statesD'' corresponding to a particular representatlgris

_ _ proportional to the square of its dimensifn],**~*®i.e.,
where the correcting factoy*™* is related to the shape of the

spectral envelope via a single parametdEZ,. A graph D"YD"2=[T,1%[T,]> (5.2
showing this relationship is given in Fig. 1. Analytical ex-

pressions and tables of numerical values can be obtained A thermal process, on the other hand, is not subject to
from the authors. symmetry restrictions.
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TABLE I. Analysis of the sampling of phase space by the break fige  number unit$ or to a power law D(E)~1.48<10™ 13E3],
from three experimental photoelectron spectra. or to a Whitten—Rabinovitch expression D{E)

NH (X2A)  CH: (X2By) CHF (X2An  =6.7X107*((E+2000)]. _
Averaging over these results, one finds that, by the break

Eay (€ ™) 6300 1500 2750 time Tg=1/v,~34 fs, the wave packet that results from the
Vo (em™) 7000 2140 3460 1 3 S :

T, (fs) 21 160 120 .A1—> A, transition in ammonia has already sampled a frac.—
N* 12 13 22 tion equal to about 3% of that part of phase space that is
E. D(E.) 220 60 610 available to a thermal reference systéRri ~0.03. For a

F* 0.03 0.1 0.025 spectroscopic excitation, the main restrictions derive from
P 0.17 0.25 0.05 symmetry considerations. The spectroscopic wave packet

can only expand in the subspace spanned by the totally sym-
metric wave functions. Since about 20% of the vibrational
states that are located in the energy range of Xhband

VI. ANALYSIS OF EXPERIMENTAL RESULTS belong to theA; representation, one finds for the fractional

_ _ _ occupation a valu&** ~0.17.
The previous formulas will now be applied to an analy-

sis of actual experimental photoelectron spectra. In order to .
examine various possibilities, three different cases will beB. The X 2B, state of C ,Hj

consit;iered. Fir_st, a spectrum consisting in a very Ipng Pro-  The study of phase space sampling in the case of the
gression of a single frequency. Second, a spectrum mvoIvmg:zH;1r ion in its X 2B, ground electronic state has already

three progressions with the most intense transition leading Been studied by us in a previous paPewe wish, however

the vibrationless level of the upper state. The third SPectrumy «axamine the situation along the present lines of thought

can|sts again of a _sup_erp_osmon of _three progressions, blétnd to correct a few inadequacies of the previous treatment.
with a less regular distribution of the mtensmes._ . The information is derived from a photoelectron spectrum of

In all of the_three cases, the autoc?rrelat|0n_functlonCZHI measured in a supersonic beam experiment by Pollard
could be determined at least up to Heller's break fifig, et al*® The density of stateB(E) has been calculated via
equal to the Beyer—Swinehardt counting algoritifri? which requires

as an input the value of the normal frequencies of the twelve

Tg=h/s, (6.)  normal modes of the &I, cation. Only three of thenfv,,

v, andy,) are optically active and have been experimentally
where 6 is the smallest energy gap between two opticallydeterminedi.9 However, the twelve frequencies have been
active vibrational levels(i.e., having nonzero Franck— calculatedab initio (in the MP2/6-31 & approximation.*
Condon factors in the spectrortl The break timeTg pro-  The agreement between calculated and observed frequencies
vides a convenient reference, because it determines the efgiexcellent forv, and s, but not for the torsional modey.
of the first step of phase space sampling, which consists in i has been pointed out by lpel, Cederbaum, and
rapid energy exchange among the subset of optically activd)omcke™ that, in the particular case of thel@; cation, the
totally symmetric normal modes, i.e., in a process where thealues of the angle of twist and of the corresponding fre-
dephasing of the wave packet is governed by large splittinggjuency are strongly influenced by the nonadiabatic interac-
The rate of exploration of phase space then drops down to #on that exists between the first two electronic states of the
very small value by that tim&%” but only temporarily??3-38 ion. Highly correlated wave functions are necessary to obtain
Reported here are the numié¥ and the fractions=* and a reliable estimate fop,. Working at the MP2 level is ap-
F** of phase-space cells sampled by tif. An overview  parently not sufficient for the torsional mode. Therefore, the
of the results is presented in Table I. calculated value of, has been replaced by the experimental
measurement.

In the major part of the Franck—Condon enveldpay,

The first band of the photoelectron spectrum of ;NH up to an energy of about 0.7 g\wthe calculated density of
leading to the ground electronic state of the {NNHon  states functioD(E) can be approximately fitted to an expo-
(X 2A,) exhibits a rich vibrational structuf®,but limited to  nential function[D (E)~0.0075 exfl.1x10 2 E), with E in
a single progression involving a single frequency. The exwave number unifs or to a Whitten—Rabinowitch function
cited vibrational normal mode is the, bending moder,  fulfilling condition (3.19 [D(E)~1.5x10 (E+ 750)".
which produces the inversion of ammonia. Sixteen vibra-Averaging the values provided by the two results, one finds
tional levels(from v =0 to v=15) are detected in the pro- for a thermal system, a fractioR* approximately equal to
gression. This indicates a large amplitude vibrational motiorD.1. For a spectroscopic excitation, this number should be
of the wave packet, but along a single degree of freedonmodified mainly by symmetry considerations. The fraction of
only. Values for the vibrational frequencies of the Nibn  states that belong to the totally symmetric representation of
have been report&8land can be used to calculate the densitythe D, point group is about 0.4. Henc&** ~0.25. These
of states. The functio® (E) can be fitted either to an expo- numbers measure the sampling of phase space by time
nential [D(E)~0.0056 ex(3.1x10 “E), with E in wave Tg=1.6x10"1s.

A. The X2A, state of NH &
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