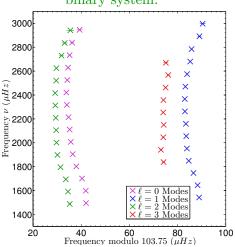
CONSTRAINING MIXING PROCESSES IN 16CYGA USING KEPLER DATA AND SEISMIC INVERSION TECHNIQUES

Gaël Buldgen Pr. Marc-Antoine Dupret Dr. Daniel R. Reese

University of Liège


June 2015

Kepler

- State of the art;
- Source Forward modelling of 16CygA (Seismic, spectro, interfero);
- Inversions to further constrain 16CygA? (Mass and age);
- Conclusions and perspectives.

Kepler's best in class! Solar-like binary system.

16CygA properties

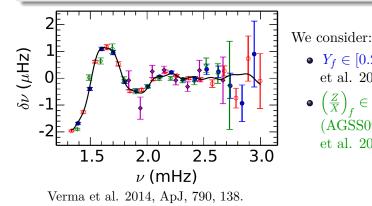
$<\Delta\nu>(\mu Hz)$	103.78
T_{eff} (K)	5830 ± 50
$Y_f(dex)$	0.24 ± 0.01
$\frac{Fe}{H}$ (dex)	0.096 ± 0.026
$\log g \ (dex)$	4.33 ± 0.07
$R~(R_{\odot})$	1.22 ± 0.02

Extensively studied: Metcalfe et al. 2012, Ramirez et al. 2009, Verma et al. 2014, Tucci-Maia et al. 2014, White et al. 2013, Davies et al. 2015, ...

Chemical composition problem:

• Metcalfe et al. 2012 (AMP): $Y_0 = 0.25 \pm 0.01$ ($Y_f \approx 0.20$);

• $Y_f \in [0.23, 0.25]$ (Verma


(AGSS09 with Ramirez

 $\in [0.0209, 0.0235]$

et al. 2014)

et al. 2009)

• Verma et al. 2014 (Glitches): $Y_f = 0.24 \pm 0.01$ $\Rightarrow Y_0 \approx 0.28 - 0.30.$

MODELLING STRATEGY

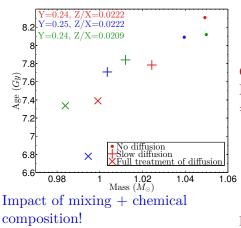
Five-step process

- Compute reference models (Levenberg-Marquardt algorithm);
- ² Carry out inversions of acoustic radius and mean density;
- Improve the models compute new reference models;
- Carry out inversions for core conditions;
- Build models fitting this additional constraint.

A few comments...

- Local minimization algorithm;
- Dependency on solar mixture (here AGSS09) for $\frac{Z}{X}$;
- Dependency of mass and age on the physical ingredients of the models.

Local behaviour assessed by starting from various initial conditions...

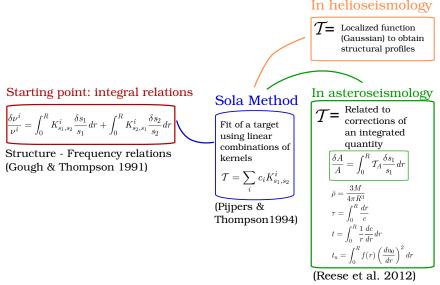

Free parameters

• M, age, α_{MLT} , X_0 , Z_0 . Diffusion treatment (Thoul et al. 1994)

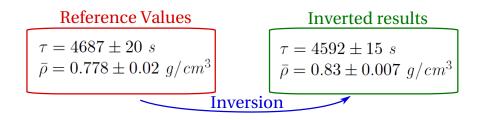
Constraints

•
$$<\Delta\nu>, \, \tilde{\delta}\nu_{n,l}, \, T_{eff}, \, Y_f, \, \left(\frac{Z}{X}\right)_f.$$

+ check the values of R, log g and L after the fit.


Results:

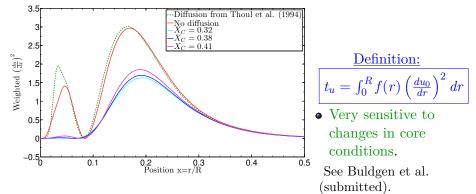
- M between 0.97 and 1.07 M_{\odot} ;
- Age between 6.8 and 8.3 Gy;
- α_{MLT} around $1.6 \approx 1.7$ (solar). Origin of the difference with Metcalfe et al. 2012? $\Rightarrow Y_f$


	Metcalfe	Us
	et al. 2012	
$M (M_{\odot})$	1.11	1.09
Age (Gy)	6.9	7.1

Impact of Y_f on mass and age!

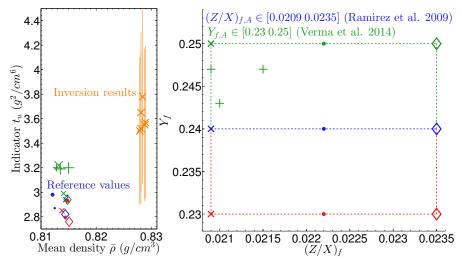
SEISMIC INVERSIONS - A BRIEF INTRODUCTION

(Buldgen et al. 2015)

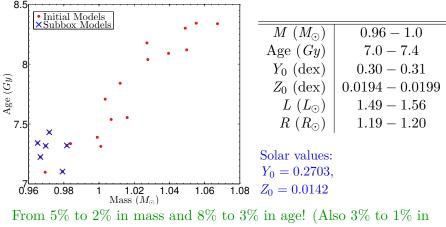

Inversion for the acoustic radius, τ and the mean density $\bar{\rho}$

- Good kernel fit;
- Small Dispersion of the results;
- Unable to reduce the dispersion of mass and age.

But: \Rightarrow Can be used as supplementary constraints!


Result: Improved reference models by also fitting τ and $\bar{\rho}$.

Goal: probing the core by probing the $u_0 = \frac{P_0}{\rho_0} \propto \frac{T}{\mu}$ gradient.



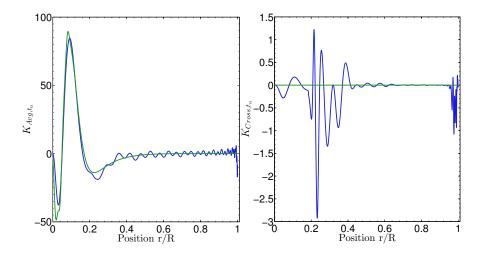
Improving models \Rightarrow Improving fundamental parameters!

The sensitivity of the indicator allows us to constrain chemical composition and diffusion!

How does it constrain **mass** and **age**?

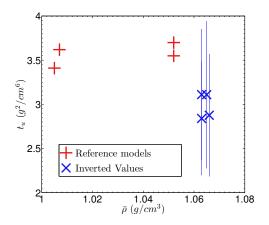
radius, between 1.19 and 1.20 R_{\odot}).

In conclusion:


- Strong constraints on chemical mixing and composition;
- Reduction of mass and age dispersion \Rightarrow crucial for PLATO;
- Importance of Y constraints and incompatibility with GN93;
- Consistent independent modelling of 16CygB.

But let us not be mistaken:

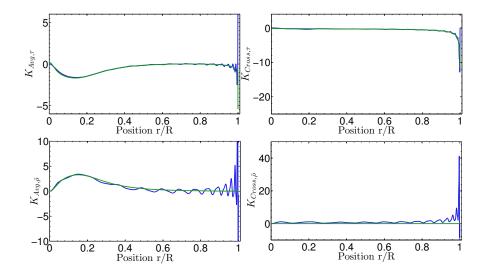
- Age is model-dependent $(3\% \Rightarrow \text{Internal error!});$
- We need additional indicators (Convection, Opacity,...).

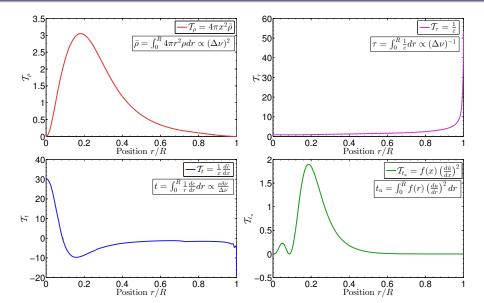

Philosophy: Inversions are a tool using seismic information that will, through synergies with stellar modellers, help us build more physically accurate descriptions of stellar structure.

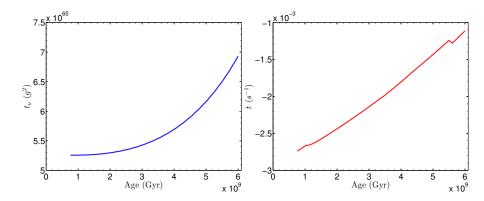
Thank you for your attention!

- With $Y_f = 0.24$, $(Z/X)_f = 0.0204$
 - $M = 0.96 M_{\odot}$
 - Age = 7.23Gy

Depending on the assumed chemical composition, always less massive than 16CygA. t_u serves as a consistency check but no gain in accuracy.




If one considers GN93, we obtain $\left(\frac{Z}{X}\right)_f \in [0.0287, 0.0316]$, the box is simply around different Z/X values.


- slightly higher masses $(1.03M_{\odot})$, slightly higher radii;
- slightly lower ages (around 6.8 Gy);

Using t_u :

The models reach values of $t_u = 3.01g^2/cm^6$ if one considers the lowest metallicity with the higher helium content and diffusion.

