ASTEROSEISMIC INVERSIONS IN THE CONTEXT OF PLATO

Gaël Buldgen Pr. Marc-Antoine Dupret Dr. Daniel R. Reese

University of Liège

December 2014

Definition:

Using seismic (and non-seismic) constraints to determine the optimal set of parameters describing the **theoretical model** of a **real star**.

Typically: Mass, age, Y, Z, α_{MLT} , α_{ov} , ... with a given physics (opacities, convection treatment, extra-mixing, ...)

- Limitations?
- Physically representative?

Bias on determinations of fundamental parameters (Mass, Age, Radius)

Improving the use of seismic information:

- By using **seismic indicators** (glitches, fine analysis of frequency combinations,...).
- By relating seismic information to structural corrections using a less model-dependent approach.

- Not subject to the limitations of forward modelling
- Sufficient number of frequencies required

Using the SOLA method (Pijpers & Thompson 1994), we determine integrated quantities.

Illustration for the mean density (Reese et al. 2012):

$$\bar{\rho} = \int_0^R 4\pi \frac{\rho}{R^3} r^2 dr \tag{1}$$

$$\frac{\delta\nu_i}{\nu_i} = \int_0^R K^i_{\rho,\Gamma_1} \frac{\delta\rho}{\rho} dr + \int_0^R K^i_{\Gamma_1,\rho} \frac{\delta\Gamma_1}{\Gamma_1} dr$$
(2)

$$\frac{\delta\bar{\rho}_{inv}}{\bar{\rho}} = \sum_{i} c_i \frac{\delta\nu_i}{\nu_i} \approx \int_0^R 4\pi \frac{\rho}{R^3\bar{\rho}} r^2 \frac{\delta\rho}{\rho} dr \tag{3}$$

Provided accurate results up to 0.5% and a way to assess its errors.

But we are not limited in the choice of the integrated quantity:

$$A = \int_0^R f(s_1, s_2, r) dr$$
$$\frac{\delta A}{A} = \int_0^R \mathcal{T}_A \frac{\delta s_1}{s_1} dr + \int_0^R \mathcal{T}_{A, \text{cross}} \frac{\delta s_2}{s_2} dr$$

With s_1, s_2 being ρ , c^2 , Γ_1 , $u = \frac{P}{\rho}$, Y, ... defining custom-made targets functions \mathcal{T}_A and $\mathcal{T}_{A, cross}$.

Combining approaches:

Test strategy (see Buldgen et al. 2014, arXiv:1411.2416)

- Build target including complex physics
- Seismic modelling using simple physics
- Carry out inversions for indicators

CONCLUSIONS AND UPCOMING WORK

Objectives:

• Offer **new constraints** on stellar models and **overcome the current accuracy limitations** in ages, mass and radii determinations.

What we have:

- accurate (usually < 1%) determinations of τ , t, t_u and $\bar{\rho}$
- **2** method tested for various sets of modes (50 freq, $\ell = 0, 1, 2, (3)$)
- **③** method tested for various constraints on forward modelling

Prospects:

- **0** new indicators (helium, surface temperature gradient,...)
- **2** test on new generation of models
- **(3)** apply to observations (Plato data is crucial)

Thank you for your attention!

General expression for any A:

$$\frac{\delta A}{A} = \int_0^R \mathcal{T}_A \frac{\delta s_1}{s_1} dr + \int_0^R \mathcal{T}_{A, \text{cross}} \frac{\delta s_2}{s_2} dr \tag{4}$$

(5)

Target functions:

Obtaining new kernels: From Masters et al. 1979:

$$\int_{0}^{R} K_{s_{1},s_{2}}^{n,l} \frac{\delta s_{1}}{s_{1}} dr + \int_{0}^{R} K_{s_{2},s_{1}}^{n,l} \frac{\delta s_{2}}{s_{2}} dr = \int_{0}^{R} K_{s_{3},s_{4}}^{n,l} \frac{\delta s_{3}}{s_{3}} dr + \int_{0}^{R} K_{s_{4},s_{3}}^{n,l} \frac{\delta s_{4}}{s_{4}} dr$$
Relate (s_{1}, s_{2}) to (s_{3}, s_{4}) (e.g. (ρ, Γ_{1}) to (u_{0}, Γ_{1}) in the simplest cases)
 \Rightarrow new kernels by solving a differential equation.
Ex: $(u_{0}, \Gamma_{1}), (u_{0}, Y), (c^{2}, \Gamma_{1}), (c_{2}, Y), (\Gamma_{1}, Y), (P_{0}, \Gamma_{1}), (P_{0}, Y), (N_{2}, c^{2}),...$

Table : Set of modes used in the accuracy tests

	Set 1	Set 2	Set 3	Set 4
$\ell = 0$	n = 5 - 24	n = 9 - 28	n = 5 - 27	n = 9 - 34
$\ell = 1$	n = 5 - 24	n = 9 - 28	n = 5 - 27	n = 9 - 34
$\ell = 2$	n = 5 - 24	n = 9 - 28	n = 5 - 27	n = 9 - 34
	Set 5	Set 6	Set 7	Cyg 16A
$\ell = 0$	n = 11 - 24	n = 11 - 26	n = 9 - 23	n = 12 - 27
$\ell = 1$	n = 11 - 24	n = 11 - 26	n = 9 - 23	n = 11 - 27
$\ell = 2$	n = 11 - 24	n = 11 - 26	n = 9 - 23	n = 11 - 24
$\ell = 3$	n = 9 - 20	n = 12 - 22	n = 15 - 24	n = 15 - 21
	$Cyg \ 16B$	Set 33		
$\ell = 0$	n = 13 - 26	15 - 25		
$\ell = 1$	n = 13 - 26	15 - 25		
$\ell = 2$	n = 12 - 25	15 - 25		
$\ell = 3$	n = 17 - 24	_		1

Target properties:

- Total number: 57
- Mass range: $0.9 1.1 \ M_{\odot}$
- Age range: 1.1 8.1 Gyr
- Z_0 range: 0.01 0.02
- X_0 range: 0.73 0.68
- No convective cores!
- Including various mismatches: Y_0 , Z_0 , diffusion, heavy elements mixing.

Observational constraints:

 $\begin{array}{l} \Delta\nu(\nu),\,\delta\nu(\nu),\,r_{02}(\nu),\,r_{01}(\nu),\,<\Delta\nu>,\,<\delta\nu>.\\ \textbf{Free parameters:}\\ \alpha_{MLT},\,Z_0,\,Y_0,\,\text{Age, Mass.} \end{array}$

