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Abstract

This paper presents a formulation for the topologyimization of continuum
structures including orthotropic materials. 2D meanes are considered. As for
isotropic materials, the density is considered fipers orientations are also
included in the problem in a simple extension ok tiSIMP material
parameterization. Only weight and stiffness criteare taken into account. The
optimization problem is solved with sequential cexnapproximation methods.
Optimal topologies are obtained for several appnations in order to illustrate
their ability in solving such a problem.
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1 Introduction

With their high stiffness to weight ratio and thaiteresting strength properties,
fibers reinforced composite materials are widelyedusn automotive and
aerospace industries. The composite structureshade of laminates that include
several unidirectional plies. Those plies are stddogether (Figure 1) in a way
that tends to maximize the efficiency of a matetiat can be customized to the
application.

Given that a huge number of parameters are negeseadefine such
materials, the design of composite structures alyurccalls for optimization
methods. Although the optimal sizing problem of pasite structures has been
addressed for some years in an industrial conteste advanced techniques such
as topology optimization are still under research.

Topology optimization aims at finding the optimastdbution of a material
inside a prescribed design domain for a given amotimaterial. Amongst all



the possible solutions, one looks for the one leath the stiffest structure [2]. In
the frame of FEM, a pseudo-densgyvarying between 0 and 1 is assigned to
each finite element, defining void or material, Wiheads to the definition of
holes in the optimized structure. Usually, isotoopiaterials are distributed in the
structure. Initially, some specific rank 2 lamirchtenaterials (including two
densities and one orientation design variablesewsed to solve the optimal
topology problem. They were a mathematical toobwalhg to determine
theoretically optimal solutions, and the relatectmtation design variables were
determined with a slow converging optimality crigelonly dedicated to 2D
membrane problems [13,10].
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Figure 1: Plies stacked together to form a laminate

For more than 20 years, the Sequential Convex Bnoging approach, also
called Approximation Concepts approach, proved ¢oelfficient for solving
structural optimization problems [15]. This techmeqhas been successfully
applied to optimal sizing problems [12], shape mptation [18], topology
optimization [10], structural optimization with di®ete variables [1] and
composite structures optimal design [4]. For coasidy simultaneously
thickness and orientation design variables in caitecstructures optimization,
the initially monotonous approximation schemes wesdended to mixed
monotonous-non monotonous ones in the GBMMA-MMA ragpnation [5].
This scheme, called GCM in the Boss/Quattravyv.samcef.cor optimization
tool box, allowed to solve industrial problems [8]he dual solver of this
approximation makes it efficient for treating topgy optimization problems
including a very large amount of design variablesthie order of 19 and a
small number of design functions (about 20). RdgeBCM was found reliable
in solving composite wing structures optimizatiaolgems including more than
300000 constraints and 1000 design variables.

This optimization method and some of its variaméstasted here for topology
optimization including orthotropic materials. In ¢den 2, the topology



optimization problem for structures made of anrigot material is reminded.
The topology optimization problem for compositespresented in Section 3,
together with the limitations of the present stutlige SIMP law and a proposed
extension to composite materials are explaineddatiG 4. In Section 5, the
optimization method is described. Finally, Sect®rmprovides some numerical
results on classical benchmarks.

2 Thetopology optimization problem

Topology optimization is a very general tool fronrustural optimization
techniques. It allows to determine automatically ldoyout of the structure, that is
the optimal distribution of the mechanical propestin a prescribed design
domain for a given amount of material, as illugtdain Figure 2.
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Figure 2. The topology optimization problem (afi})
Compliance minimization, that results in the ssffestructure that can be

exhibited for a given volume fraction of material the solution, has been
intensively studied in the literature [2]. The plerb writes:

mingTq st. VsV

whereg and g are the nodal forces and displacements, resplctive is the
available amount of material to be distributedhia tlesign area.

Local stress constraints were also taken into adcfill]. Since the related
optimization problem is huge in terms of designialales and restrictions, those



local (that is at the element level) restrictionsrevonly considered in solving
academic applications of limited sizes. Specifiogbems including body loads
were investigated, as well [7]. This technologyplégd to isotropic materials, has
reached maturity and is now used in the aerospadesiry (e.g. the TOPOL
software -www.samcef.con).

3 Topology optimization with orthotropic materials

In the frame of composite structures, two topologimization problems can
be addressed. The first one is the transversedgpaptimization. In this case,
one looks for the optimal stacking sequence atragVecations in the structure
(Figure 3). In the second problem, the optimal togy at a given height of the
non homogenous laminate is to be found. This is irplane topology
optimization (Figure 4). A comprehensive topologytimization problem
includes those two aspects, as well as inter-redjiand ply drop-off constraints
related to ply continuity and manufacturability eaterations. This is a very
difficult problem to be solved, and efficient fortations should first be derived

separately for each of those two problems.
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Figure 3. Optimal stacking sequence as a transtepséogy optimization
problem (after [4])

In this paper, we propose a simple solution forghablem of Figure 4, that is
the in-plane topology optimization formulation.idtbased on a direct extension
of the SIMP parameterization used for isotropicenats, and is illustrated here
in the frame of the 2D membrane structures. Evaugh 2D problems are
considered, the method is directly applicable toaBid shell problems.



Figure 4. In-plane topology optimization problerft€a[4])

4 TheSIMP law for topology optimization
4.1 Thecaseof isotropic materials
The design variable is the pseudo-dengitihat varies between 0 and 1. Such

a variable is defined for each finite elemenThe SIMP material law takes the
following form:

E = uPE° o = i p° (1)

whereE? and ¢’ are the Young modulus and the density of the basterial (e.g.

steel),E and p are the effective material properties, gni$ the exponent of the
SIMP law, chosen by the usdxp<4).

In the case of plane stress, the stresses aredlittkéhe deformations via the
following relation:
6 =Csg

With the SIMP parameterization, it comes that:
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and the material stiffness matxdepends on the density design variable

o= C(,u)s 2)

4.2 Extension of the SIMP law to orthotropic materials

For orthotropic materials in a plane stress stidwe,stiffness in the material
axes is given by the following expression:

mE, mvaEX 0 Qux Qxy O 1
C= mVXyEy mEy 0 |= ny ny 0 m:m
0 0 Gyl |0 0 Q

where 4 material propertids, E,, 1k andG,y must be provided. For a material
with orthotropic axes oriented at an andlevith respect to the reference axes
(Figure 5), the material stiffness is given by:
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Q22 s ¢t 2c2s? 4¢2s? Qxx
Q23 = o = Czsz Czsz e +zsi _2402222 2w
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with ¢ =cosf ands=sing.

As for isotropic materials, the SIMP parameterimatcan be used here, and the
material law for topology optimization is now weitt as:
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6=C(u, 0k (3)

The material stiffness now depends on both kindslesfign variables, i.e. the
material density and the fibers orientation.
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Figure 5. Material and structural axes

5 Theoptimization method

The optimization method used to solve topology rafation of membranes
made of an orthotropic material is described in 8] the Sequential Convex
Programming, the primary optimization problem @Jeplaced by the solution of
successive convex approximated optimization problé&h

min go(X)
gj(X)< g™ j=1...m (4)
X €% < Xi i=1...,n

min g (X)
G} (x)= g™ j=l.m ()

59 23 <3

i=1...,n

The approach used here includes the monotonous Mppkoximation [16] and
the non-monotonous GBMMA approximations [3]. Théeston of the kind of
approximation, either monotonous or not, is don@matically for each design



variable in each design function based on the dBvies at two successive
iterations:

09; x99 x*P)
aXi aXi

=> monotonous approximation

09; XM 0g;x*P)
aXi aXi

=> non monotonous approximation

The mixed monotonous — non monotonous approximasocalled GBMMA-
MMA. The GCMMA approximation is only non monotonoasd doesn’'t use
information from the previous design point [17].eTEBBMMAL approximation
is built by fetching the derivatives at two succtessterations, while GBMMA2
is a second order approximation using a finiteedéhce of the derivatives to
compute the second order information. Local lingaproximations can also be
built. More details can be found in [6].

6 Numerical applications

The results presented in the sequel were obtamgd].

6.1 First application

The problem is illustrated in Figure 6. It includB800 design variables (900
densities and 900 orientations). The optimal togiel® obtained for several
starting points are provided in Figures 7 and 8pddeling on the initial values
for the orientations, different optimal topologiase obtained. This is explained
by the non convex behavior of compliance with resp® the orientation
variables, as depicted in Figure 9. Since the dp#tion method builds local
approximations of the structural responses, thédajloptimum can not be
reached.

The compliance (Figure 9) is calculated for an @eirlocated on the top of the
structure. A local optimum can be reached arountl Wwhereas the global
optimum is about 140° for the considered elemehis Tonclusion is inverted if
a bottom element is considered.
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Figure 6. Definition of problem 1
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Figure 7. Solution for initial fibers oriented &4
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Figure 8. Solution for initial fibers oriented d5°
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Don't lose sight that the solution provided by timizer corresponds to a local
optimum which could be the global one. This is waljhlighted in this first
application, where a symmetrical solution is expdcbut the optimizer reaches
first a local optimum.

Compliance vs orientation in degrees
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Figure 9. Evolution of the compliance with respiecthe orientation in one
element

6.2 Second application

The problem is defined in Figure 10. It include$@®esign variables. The
optimal topology and orientations obtained for aff lof the structure are given
in Figure 11. A comparison of the convergence sgeedeveral approximations
is provided in Figure 12.
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Figure 10. Definition of problem 2
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Figure 11. Optimal topology for problem 2
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Figure 12. Comparison of the convergence speedvaral approximations

6.3 Third application
The problem is defined in Figure 13. It include®Q2iesign variables. Results

are provided in Figures 14 and 15. The size andbthendary conditions are
different from problem 2.
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Figure 13. Definition of problem 3
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Figure 14. Optimal topology for problem 3
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Figure 15. Comparison of the convergence speedvaral approximations

7 Conclusions

The optimization procedure proved to be reliable solving topology
optimization problems including orthotropic maté&iaThe mixed GBMMA-
MMA approximation seems to be the most efficierttesne mainly due to the
switch between monotonous and non-monotonous appabons. Truss-like
structures are sometimes observed in the solutibesuse of a lower value for
the exponent of the power law material should pmevkis effect and lead to
structures including intermediate densities.

Future work will study the influence of strengtinstraints (envelop of Tsai-Wu,

Tsai-Hill,... criteria) on the optimal topology of egposite structures. The related
optimization problem will then include a lot of ags function together with a

high number of design variables. Finally, being ealib consider fibers

orientations as design variables will avoid thegalarity of strength constraints
in the optimization problem [9].
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