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Abstract 
 
This paper presents a formulation for the topology optimization of continuum 
structures including orthotropic materials. 2D membranes are considered. As for 
isotropic materials, the density is considered but fibers orientations are also 
included in the problem in a simple extension of the SIMP material 
parameterization. Only weight and stiffness criteria are taken into account. The 
optimization problem is solved with sequential convex approximation methods. 
Optimal topologies are obtained for several approximations in order to illustrate 
their ability in solving such a problem. 
 
Keywords: topology optimization, composite material. 
 

1  Introduction 
 
With their high stiffness to weight ratio and their interesting strength properties, 
fibers reinforced composite materials are widely used in automotive and 
aerospace industries. The composite structures are made of laminates that include 
several unidirectional plies. Those plies are stacked together (Figure 1) in a way 
that tends to maximize the efficiency of a material that can be customized to the 
application.  

 
Given that a huge number of parameters are necessary to define such 

materials, the design of composite structures naturally calls for optimization 
methods. Although the optimal sizing problem of composite structures has been 
addressed for some years in an industrial context, more advanced techniques such 
as topology optimization are still under research.  

 
Topology optimization aims at finding the optimal distribution of a material 

inside a prescribed design domain for a given amount of material. Amongst all 
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the possible solutions, one looks for the one leading to the stiffest structure [2]. In 
the frame of FEM, a pseudo-density µ varying between 0 and 1 is assigned to 
each finite element, defining void or material, what leads to the definition of 
holes in the optimized structure. Usually, isotropic materials are distributed in the 
structure. Initially, some specific rank 2 laminated materials (including two 
densities and one orientation design variables) were used to solve the optimal 
topology problem. They were a mathematical tool allowing to determine 
theoretically optimal solutions, and the related orientation design variables were 
determined with a slow converging optimality criteria only dedicated to 2D 
membrane problems [13,10]. 
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Figure 1: Plies stacked together to form a laminate 
 
For more than 20 years, the Sequential Convex Programming approach, also 

called Approximation Concepts approach, proved to be efficient for solving 
structural optimization problems [15]. This technique has been successfully 
applied to optimal sizing problems [12], shape optimization [18], topology 
optimization [10], structural optimization with discrete variables [1] and 
composite structures optimal design [4]. For considering simultaneously 
thickness and orientation design variables in composite structures optimization, 
the initially monotonous approximation schemes were extended to mixed 
monotonous-non monotonous ones in the GBMMA-MMA approximation [5]. 
This scheme, called GCM in the Boss/Quattro (www.samcef.com) optimization 
tool box, allowed to solve industrial problems [8]. The dual solver of this 
approximation makes it efficient for treating topology optimization problems 
including a very large amount of design variables (of the order of 106) and a 
small number of design functions (about 20). Recently GCM was found reliable 
in solving composite wing structures optimization problems including more than 
300000 constraints and 1000 design variables.  

 
This optimization method and some of its variants are tested here for topology 

optimization including orthotropic materials. In Section 2, the topology 



3 

optimization problem for structures made of an isotropic material is reminded. 
The topology optimization problem for composites is presented in Section 3, 
together with the limitations of the present study. The SIMP law and a proposed 
extension to composite materials are explained in Section 4. In Section 5, the 
optimization method is described. Finally, Section 6 provides some numerical 
results on classical benchmarks. 

2  The topology optimization problem 
 
Topology optimization is a very general tool from structural optimization 
techniques. It allows to determine automatically the layout of the structure, that is 
the optimal distribution of the mechanical properties in a prescribed design 
domain for a given amount of material, as illustrated in Figure 2. 
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 ρi = ρ0 
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Domain where the 
material is 
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Figure 2. The topology optimization problem (after [4]) 
 

Compliance minimization, that results in the stiffest structure that can be 
exhibited for a given volume fraction of material at the solution, has been 
intensively studied in the literature [2]. The problem writes: 

 

 qgTmin      s.t.     VV ≤   
 

where g and q are the nodal forces and displacements, respectively. V  is the 
available amount of material to be distributed in the design area.  

 
Local stress constraints were also taken into account [11]. Since the related 

optimization problem is huge in terms of design variables and restrictions, those 
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local (that is at the element level) restrictions were only considered in solving 
academic applications of limited sizes. Specific problems including body loads 
were investigated, as well [7]. This technology, applied to isotropic materials, has 
reached maturity and is now used in the aerospace industry (e.g. the TOPOL 
software – www.samcef.com ). 
 

3  Topology optimization with orthotropic materials 
 
In the frame of composite structures, two topology optimization problems can 

be addressed. The first one is the transverse topology optimization. In this case, 
one looks for the optimal stacking sequence at several locations in the structure 
(Figure 3). In the second problem, the optimal topology at a given height of the 
non homogenous laminate is to be found. This is an in-plane topology 
optimization (Figure 4). A comprehensive topology optimization problem 
includes those two aspects, as well as inter-regional and ply drop-off constraints 
related to ply continuity and manufacturability considerations. This is a very 
difficult problem to be solved, and efficient formulations should first be derived 
separately for each of those two problems.  

 
 

 
Figure 3. Optimal stacking sequence as a transverse topology optimization 

problem (after [4]) 
 
 
In this paper, we propose a simple solution for the problem of Figure 4, that is 

the in-plane topology optimization formulation. It is based on a direct extension 
of the SIMP parameterization used for isotropic materials, and is illustrated here 
in the frame of the 2D membrane structures. Even though 2D problems are 
considered, the method is directly applicable to 3D and shell problems. 
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Figure 4. In-plane topology optimization problem (after [4]) 

 

4  The SIMP law for topology optimization 
4.1 The case of isotropic materials 
 

The design variable is the pseudo-density µi that varies between 0 and 1. Such 
a variable is defined for each finite element i. The SIMP material law takes the 
following form: 

 

 0EE p
ii µ=  0ρµρ ii =  (1) 

 
where E0 and ρ0 are the Young modulus and the density of the base material (e.g. 
steel), E and ρ are the effective material properties, and p is the exponent of the 
SIMP law, chosen by the user (1<p<4).  
 
 
In the case of plane stress, the stresses are linked to the deformations via the 
following relation: 

Cεσ =  
 

With the SIMP parameterization, it comes that: 
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and the material stiffness matrix C depends on the density design variable µ : 

 
 ( )εCσ µ=  (2) 

 

4.2 Extension of the SIMP law to orthotropic materials 
 

For orthotropic materials in a plane stress state, the stiffness in the material 
axes is given by the following expression: 
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where 4 material properties Ex, Ey, νxy and Gxy must be provided. For a material 
with orthotropic axes oriented at an angle θ with respect to the reference axes 
(Figure 5), the material stiffness is given by: 
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with θcos=c  and θsin=s .  
 
As for isotropic materials, the SIMP parameterization can be used here, and the 
material law for topology optimization is now written as: 
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 ( )εCσ θµ,=  (3) 
 

The material stiffness now depends on both kinds of design variables, i.e. the 
material density and the fibers orientation.  
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Figure 5. Material and structural axes 

 

5  The optimization method 
 

The optimization method used to solve topology optimization of membranes 
made of an orthotropic material is described in [8]. In the Sequential Convex 
Programming, the primary optimization problem (4) is replaced by the solution of 
successive convex approximated optimization problems (5).  

 
)(g X0min  

 max
jj g)(g ≤X  mj ,...,1=  (4) 

 iii xxx ≤≤  ni ,...,1=  
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j g)(g ≤X  mj ,...,1=  (5) 
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The approach used here includes the monotonous MMA approximation [16] and 
the non-monotonous GBMMA approximations [3]. The selection of the kind of 
approximation, either monotonous or not, is done automatically for each design 
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variable in each design function based on the derivatives at two successive 
iterations: 
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The mixed monotonous – non monotonous approximation is called GBMMA-
MMA. The GCMMA approximation is only non monotonous and doesn’t use 
information from the previous design point [17]. The GBMMA1 approximation 
is built by fetching the derivatives at two successive iterations, while GBMMA2 
is a second order approximation using a finite difference of the derivatives to 
compute the second order information. Local linear approximations can also be 
built. More details can be found in [6]. 
 

6  Numerical applications 
 

The results presented in the sequel were obtained in [14]. 
 
6.1 First application 
 

The problem is illustrated in Figure 6. It includes 1800 design variables (900 
densities and 900 orientations). The optimal topologies obtained for several 
starting points are provided in Figures 7 and 8. Depending on the initial values 
for the orientations, different optimal topologies are obtained. This is explained 
by the non convex behavior of compliance with respect to the orientation 
variables, as depicted in Figure 9. Since the optimization method builds local 
approximations of the structural responses, the global optimum can not be 
reached.  
 
The compliance (Figure 9) is calculated for an element located on the top of the 
structure. A local optimum can be reached around 50° whereas the global 
optimum is about 140° for the considered element. This conclusion is inverted if 
a bottom element is considered. 
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Figure 6. Definition of problem 1 

 

 
Figure 7. Solution for initial fibers oriented at 45° 

 

 
Figure 8. Solution for initial fibers oriented at -45° 
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Don’t lose sight that the solution provided by the optimizer corresponds to a local 
optimum which could be the global one. This is well highlighted in this first 
application, where a symmetrical solution is expected, but the optimizer reaches 
first a local optimum. 
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Figure 9. Evolution of the compliance with respect to the orientation in one 
element 

 
6.2 Second application 
 

The problem is defined in Figure 10. It includes 3750 design variables. The 
optimal topology and orientations obtained for an half of the structure are given 
in Figure 11. A comparison of the convergence speed for several approximations 
is provided in Figure 12.  

 
 

? 
 

Figure 10. Definition of problem 2 
 



11 

 
 

Figure 11. Optimal topology for problem 2 
 

 
Figure 12. Comparison of the convergence speed of several approximations 

 
6.3 Third application 
 

The problem is defined in Figure 13. It includes 1200 design variables. Results 
are provided in Figures 14 and 15. The size and the boundary conditions are 
different from problem 2.  
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Figure 13. Definition of problem 3 
 
 

 
Figure 14. Optimal topology for problem 3 
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Figure 15. Comparison of the convergence speed of several approximations 

 
 

7 Conclusions 
 

The optimization procedure proved to be reliable in solving topology 
optimization problems including orthotropic materials. The mixed GBMMA-
MMA approximation seems to be the most efficient scheme mainly due to the 
switch between monotonous and non-monotonous approximations. Truss-like 
structures are sometimes observed in the solutions: the use of a lower value for 
the exponent of the power law material should prevent this effect and lead to 
structures including intermediate densities.  

 
Future work will study the influence of strength constraints (envelop of Tsai-Wu, 
Tsai-Hill,… criteria) on the optimal topology of composite structures. The related 
optimization problem will then include a lot of design function together with a 
high number of design variables. Finally, being able to consider fibers 
orientations as design variables will avoid the singularity of strength constraints 
in the optimization problem [9]. 
 

Acknowledgments 
Professor Claude Fleury (University of Liège) is gratefully acknowledged for 

making the dual solver of the CONLIN optimizer available.  
 



14 

References 
 
[1] Beckers M. (1997). “Optimisation de structures en variables discrètes”, Thèse de Doctorat, 

Collection des Publications de la Faculté des Sciences Appliquées N° 181, Université de 
Liège, Belgium. 

[2] Bendsoe M.P. and Sigmund O. (2003). “Topology Optimization: Theory, Methods and 
Applications”, Springer. 

[3] Bruyneel M., Vermaut O. and Fleury C. (1999). “Two-point based approximation schemes 
for optimal orientation in laminates”, Third World Congress of Structural and 
Multidisciplinary Optimization – WCSMO3, Amherst, NY, May 1999 (CD Proceedings).  

[4] Bruyneel M. (2002). “Schémas d’approximation pour la conception optimale de structures 
en matériaux composites”, Collection des Publications de la Faculté des Sciences 
Appliquées N° 219, Université de Liège, Belgium. 

[5] Bruyneel M. et Fleury C. (2002). “Composite structures optimization using sequential 
convex programming”, Advances in Engineering Software, 33, pp. 697-711. 

[6] Bruyneel M., Duysinx P. and Fleury C. (2002). “A family of MMA approximations for 
structural optimization”, Structural & Multidisciplinary Optimization, 24, pp. 263-276.  

[7] Bruyneel M. and Duysinx P. (2005). “Note on topology optimization of continuum 
structures including self-weight”, Structural & Multidisciplinary Optimization, 29, pp. 245-
256. 

[8] Bruyneel M. (2006). “A general and effective approach for the optimal design of fiber 
reinforced composite structures”, Composite Science & Technology, 66, pp. 1303-1314. 

[9] Bruyneel M. and Duysinx P. (2006). “Note on singular optima in laminate design 
problems”, Structural & Multidisciplinary Optimization, 31, pp. 156-159. 

[10] Duysinx P. (1996). “Optimisation topologique : du milieu continu à la structure élastique”, 
PhD Thesis, Faculté des Sciences Appliquées, Université de Liège, Belgium. 

[11] Duysinx P. and Bendsoe M.P. (1998). “Topology optimisation of continuum structures 
with local stress constraints”, International Journal of Numerical Methods in Engineering, 
43, pp. 1453-1478.  

[12] Fleury C. (1978). “Dimensionnement automatique des structures”, PhD Thesis, Faculté des 
Sciences Appliquées, Université de Liège, Belgium. 

[13] Pedersen P. (1989). “On optimal orientation of orthotropic materials”, Structural 
Optimization, 1, pp. 101-106.  

[14] Rion V. (2002). “Optimisation topologique de structures en matériaux orthotropes”, Master 
Thesis, Faculté des Sciences Appliquées, Université de Liège. 

[15] Schmit L.A. and Fleury C. (1980). “Structural synthesis by combining approximation 
concepts and dual methods”, AIAA Journal, 18, pp. 1252-1260. 

[16] Svanberg K. (1987). “The Method of Moving Asymptotes: a new method for structural 
optimization”, International Journal of Numerical Methods in Engineering, 24, pp. 359-
373. 

[17] Svanberg K. (1995). “A globally convergent vesrion of MMA without linesearch”, First 
World Congress of Structural and Multidisciplinary Optimization – WCSMO1, Goslar, 
Germany, May 28- June 2, 1995. 

[18] Zhang W.H. (1991). “Calcul de sensibilité et optimisation de forme par la méthode des 
éléments finis“, PhD Thesis, Faculté des Sciences Appliquées, University of Liège, 
Belgium.  

 


