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Multi-degree-of-freedom nonlinear energy sinks (MDOF NESs) are utilized to improve
robustness of suppression of limit cycle oscillations (LCOs) due to aeroelastic instability.
Bifurcation analysis by a numerical continuation technique shows that controlling occur-
rence of a limit point cycle (LPC or saddle-node) bifurcation point above a Hopf bifurcation
point is crucial to enhancing robustness. Not only greatly can MDOF NESs enhance the
robustness of suppression against even strong external disturbances, but they can also yield
a similar efficiency even with a smaller mass, compared to the SDOF NESs with the same
parameter conditions. Nonlinear modal interactions between the aeroelastic modes and
the MDOF NES are examined to demonstrate efficiency of the MDOF NES.

Nomenclature

b = semichord length, c/2, where c is a chord-length
C; C1 = nondimensional coefficients for essentially nonlinear coupling stiffness, b2ks/mω2

α;
linear coupling stiffness, k/mω2

α

CL,α = lift curve slope, ∂CL/∂α|α=0 where CL is the lift coefficient
c1, c2 = nonlinear heave and pitch stiffness factors
d; δ = offset attachment of the NES to the wing, measured from and positive ahead of the elastic

axis (e.a.); nondimensional offset, d/b
EInput = instantaneous input energy given to the aeroelastic system
ETotal = instantaneous total energy of the aeroelastic system coupled with an NES
ENES

d = instantaneous energy dissipation by an NES
Ey,α,v = instantaneous modal energies in heave, pitch, and NES modes, respectively
e; γ = location of the aerodynamic center (a.c.) measured from the e.a. (positive ahead of e.a.);

nondimensional parameter, e/b
h, α, z = heave (positive downward), pitch (positive clockwise), NES (positive downward)

degrees of freedom
Kh, Kα = coefficients of linear heave and pitch stiffnesses
k = coefficient of linear coupling stiffness
L, M = lift and aerodynamic moment acting at the a.c., respectively; the equivalent

aerodynamic forces at the e.a. are Lea = L and Mea = M + eL ≈ eL for small angles
m, Iα = mass of the airfoil and its mass moment of inertia with respect to the e.a.
ms, ks, cs = mass, essentially nonlinear stiffness coefficient, and damping in the NES
q = dynamic pressure, 1

2ρ∞U2, where ρ∞ is the density of the flow
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rα = radius of gyration of the cross section of the wing,
√

Iα/(mb2)
S = planform area of the wing
Sα; xα = mass unbalance in the airfoil, mxcg; its nondimensional parameter, Sα/mb, or, xcg/b
T̄ , V̄ = instantaneous kinetic and potential energies of the aeroelastic system coupled with an NES
t, τ = physical and nondimensional times (τ = ωαt)
U = constant and uniform flow speed around the wing
W y,α

nc = instantaneous nonconservative work done by heave and pitch modes, respectively
xcg = location of the center of gravity (c.g.) measured from the e.a. (positive aft of the e.a.)
y, v = nondimensional heave (y = h/b) and NES (v = z/b) modes
ε = mass ratio between the NES and the wing, ms/m
Θ = reduced speed of the flow, U/bωα

λ = nondimensional linear viscous damping in the NES, cs/(msωα)
µ = density ratio, ρ∞bS/2m
ξy, ξα = nondimensional nonlinear heave and pitch stiffness factors (ξy = c1b

2Ω2, ξα = c2r
2
α)

Ω = frequency ratio, ωh/ωα where ωh =
√

Kh/m and ωα =
√

Kα/Iα

Subscripts
ac = aerodynamic center
BPC = branch point cycle bifurcation
cg = center of gravity
d = dissipation
ea = elastic axis
F = flutter
H = Hopf bifurcation
LPC = limit point cycle bifurcation
NS = Neimark-Sacker bifurcation
nc = nonconservative
RE = robustness enhancement

Superscripts
˙ = d/dt
´ = d/dτ

I. Introduction

THEORETICAL and experimental suppression of aeroelastic instabilities by means of broadband passive
targeted energy transfers was recently studied.1,2 A single degree-of-freedom (DOF) nonlinear energy

sink (NES) was coupled to a 2-DOF rigid wing in low-speed subsonic regime with quasi-steady aerodynamic
theory (Fig. 1). This nonlinear attachment due to the triggering mechanism of instability3 was designed to
prevent further energy transfers to the pitch mode from the heave mode at the initial transients.

Lee et al.1 also demonstrated that there exist three different types of suppression mechanisms with
an SDOF NES; that is, recurring burst-outs and suppression, intermediate, and complete suppression of
instability. The recurrent burst-outs of instability was proved to be a critical mechanism for aeroelastic
instability caused by a Neimark-Sacker bifurcation of a limit cycle oscillation (LCO).

On the other hand, by performing numerical parametric bifurcation analysis, robustness behavior of each
instability suppression was examined. Unless the NES attachment is at the elastic axis, most of all LCO
branches tend to possess two limit point cycle (LPC) bifurcation points – one (named, ΘLPC1) is found at the
higher reduced velocity than the Hopf bifurcation point (ΘH), and the other (named, ΘLPC2), at the lower
reduced velocity. It turned out that the relative location of ΘLPC2 to ΘH is crucial to achieve robustness
of instability suppression; that is, if the higher ΘLPC2 is than ΘH , the better robustness of suppression
(regardless of its mechanisms) can be guaranteed.

Figure 2 (a) shows a typical bifurcation diagram when an SDOF NES is attached to a wing. One can
first see that the NES makes occurrence of an LCO be shifted to the higher reduced velocity than the linear
flutter speed, ΘF. Attaching the NES close to the leading (trailing) edge of the wing tends to locate ΘLPC2

at the reduced velocity lower (higher) than ΘH (or even lower than ΘF). This proves that applying the
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Figure 1. 2-DOF rigid wing model coupled to an SDOF NES.

NES with negative offset (i.e., close to the trailing edge of a wing) generally provides better robustness of
instability suppression.

In Fig. 2 (b), one numerical simulation is presented at the reduced speed slightly higher than the
Neimark-Sacker bifurcation point (Θ = 0.915) where there can exist one unstable trivial equilibrium, one
unstable quasiperiodic LCO responsible for the burst-outing instability, one unstable LCO, and one stable
LCO possessing a smaller amplitude than the original LCO. For small initial conditions, the steady state
exhibits recurring burst-outs and suppression of instability; however, if a strong disturbance is imposed,
then the steady state will be attracted to another stable position, involving a jump to a higher (stable) LCO
branch.

In spite of the possibility to obtain robust instability suppression with the SDOF NES, one can still raise
an issue about enhancing robustness. In order to address this problem, we introduce a multi-DOF NES
configuration instead of the SDOF NES in the next section. Then, comparing changes in the bifurcation
diagram, we explain how robustness can be enhanced by using the MDOF NES. Furthermore, we provide
numerical simulations to demonstrate robustness enhancement by computing wavelet transforms and modal
energy exchanges. Finally, conclusions will be addressed.

II. Enhancing Robustness of Suppression with MDOF NESs

In order to improve robustness of instability suppression compared to an SDOF NES, we consider an
MDOF NES configuration, shown in Fig. 3. This kind of MDOF NESs in series coupling was studied in
Tsakirtzis et al.,4 basically showing that application of the MDOF NESs can induce even richer dynamics on
the frequency-energy plot (FEP).5 This means, in turn, that there exists higher possibility for a system to
possess more ‘baits’ to seize the dynamics caused by any disturbances onto a branch in the FEP, making it
stick to (or, at least, very close to) the branch until a significant amount of energy is dissipated by a damper
in the process of resonance captures.

The MDOF NES is composed of the three equal masses, which in total make the same mass ratio as the
SDOF NES. The first mass of the MDOF NES is coupled to a wing only through a linear stiffness, and its
main role is a ‘bridge’ for efficient energy transfers from the wing to the other nonlinear attachments. The
second and third ones coupled through essentially nonlinear stiffnesses. The best performance is achieved
when the order of the essential nonlinearity between the second and third masses is much smaller than than
between the first and second masses; the former is set 50 times less than the latter.
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Figure 2. (a)Bifurcation diagram (incomplete) with respect to Θ for the SDOF NES (ε = 0.02, λ = 0.4, C = 10).
Dashed lines indicate unstable LCO branches. Squares (circles, triangles, asterisks) indicate Hopf (Neimark-
Sacker, limit point of cycles or saddle-node, branch point of cycles) bifurcation points; (b) demonstration of
jump phenomenon due to the presence of an impulsive disturbance at Θ = 0.915 (i.e., non-robust suppression
of instability) between LCO branches due to an impulsive disturbance. All zero initial conditions but for y′(0),
and then 20× y′(0) was imposed at τ = 200.
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Figure 3. Application of an MDOF NES in series coupling for the 2-DOF rigid wing.

The nondimensional equations of motion can be written:

y′′ + xαα′′ + Ω2y + ξyy3 + µCL,αΘ(y′ + Θα) + C1 (y − δα− v1) = 0
r2
αα′′ + xαy′′ + r2

αα + ξαα3 − γµCL,αΘ(y′ + Θα) + δC1 (δα + v1 − y) = 0
1
3εv′′1 + ελ (v′1 − v′2) + C1 (v1 + δα− y) + C (v1 − v2)

3 = 0
1
3εv′′2 + ελ (v′2 − v′1) + ελ (v′2 − v′3) + C (v2 − v1)

3 + 1
50C (v2 − v3)

3 = 0
1
3εv′′3 + ελ (v′3 − v′2) + 1

50C (v3 − v2)
3 = 0

(1)

Then, numerical bifurcation analysis by means of MatCont6 is performed to examine changes in LCO
branches. A typical result is depicted in Fig. 4. For the purpose of comparison, the LCO branches without an
NES and with an SDOF NES are superimposed. The coefficients of the damping and essential nonlinearity
are the same for both NES configurations; the mass ratios (ε) for the SDOF and MDOF NESs are 0.02 and
0.014, respectively. The offset attachments (δ) for both are selected as ±1.

It can easily be noted that better suppression, as well as its robustness, can be achieved with the MDOF
NES of even a smaller mass ratio. Compared to the location of ΘLPC2 in Fig. 2 (a) which is slightly above
0.91, the MDOF NES can shift this point near or above 1.0. That is, not only does the MDOF NES enhance
robustness of instability suppression, but it can also resist the occurrence of LCOs up to a higher flow speed
regime. Robustness enhancement at a relatively high reduced velocity is demonstrated in Fig. 5, where the
mass ratio of 2% (1.4%) is considered for the SDOF (MDOF) NES. The aeroelastic system controlled by the
MDOF NES exhibits robustness against the impulsive disturbance to the heave mode at the steady state
(Fig. 5 (b)), whereas there exists a transition from lower-amplitude unstable quasi-periodic LCO branch to
higher-amplitude stable stable LCO branch for the control only with the SDOF NES (Fig. 5 (a)).

III. Targeted Energy Transfers (TETs)

We now investigate the TET mechanisms in the case of MDOF NESs. As a first step, wavelet transforms
(WTs) are performed to examine the instantaneous frequency behaviors (i.e., transient resonant interactions
between the aeroelastic and NES modes), as are summarize in the following.

The WT involves a windowing technique with variable-sized regions so that it performs a multi-resolution
analysis, in contrast to the (fast) Fourier transform (FFT) which assumes signal stationarity. Small time
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Figure 4. Comparison of bifurcation diagrams: SDOF versus MDOF NESs (λ = 0.4, C = 10, C1 = 0.01). The
SDOF NES is considered with the mass ratio ε = 0.02 and the offset δ = −1. The MDOF NES is equipped with
ε = 0.014, δ = ±1. Dashed lines indicate unstable LCO branches. Squares (circles, triangles, diamond, asterisks)
indicate Hopf (Neimark-Sacker, limit point of cycles or saddle-node, branch point of cycles, neutral-saddle)
bifurcation points. ΘRE denotes the amount of the enhanced reduced speed for robustness.

intervals are considered for high-frequency components whereas the size of the interval is increased for lower-
frequency components, thereby giving better time and frequency resolutions than the FFT. The Matlabr

codes used for the WT computations in this work were developed at the Université de Liège (Liège, Belgium)
by Dr. V. Lenaerts in collaboration with Dr. P. Argoul from the Ecole Nationale des Ponts et Chaussées
(Paris, France). The Morlet wavelet, ψM (τ) = e−τ2/2ejω0τ , which is a Gaussian-windowed complex sinusoid
of frequency ω0, is considered as a mother wavelet in this study. The frequency ω0 for the Morlet WT is
a user-specified parameter which allows one to tune the frequency and time resolutions of the results. The
plots represent the amplitude of the WT as a function of frequency (vertical axis) and time (horizontal
axis). Heavily shaded areas correspond to regions where the amplitude of the WT is high, whereas lightly
shaded regions correspond to low amplitudes. Such plots enable one to deduce the temporal evolution of the
dominant frequency components of the signals analyzed. Comparing the instantaneous frequency contents
of the aeroelastic and NES modes provides an additional (direct) way to verify the occurrence of resonance
captures, or frequency locking in the transient dynamics.

The instantaneous kinetic and potential energies, which are stored in the masses and springs, respectively,
can be written:

T̄ (τ) = 1
2y′(τ)2 + xαy′(τ)α′(τ) + 1

2α′(τ)2 + 1
3ε

[
v′1(τ)2 + v′2(τ)2 + v′3(τ)2

]

V̄ (τ) = 1
2Ω2y(τ)2 + 1

2r2
αα(τ)2 + 1

4ξyy(τ)4 + 1
4ξαα(τ)4

+ 1
4C [v1(τ)− v2(τ)]4 + 1

200C [v2(τ)− v3(τ)]4 + 1
2C1 [y(τ)− δα(τ)− v1(τ)]2

(2)

so that the total energy can be computed:

ETotal(τ) = T̄ (τ) + V̄ (τ) (3)

The energy input from the flow, which is a sum of the initial energy provided by the initial conditions
and the nonconservative work done by the flow, can be expressed in the following.

EInput(τ) = ETotal(0) + W y
nc(τ) + Wα

nc(τ) (4)
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Figure 5. Demonstration of enhancing robust suppression of instability under the impulsive disturbance of
20× y′(0) at τ = 200 when Θ = 0.98, δ = −1, λ = 0.4, C = 10, C1 = 0.01 (a) with an SDOF NES (ε = 0.02), and (b)
with an MDOF NES (ε = 0.014). The thick lines indicate the controlled responses.

where

W y
nc(τ) = µCL,αΘ

∫ τ

0

{y′(s) + Θα(s)} y′(s)ds

Wα
nc(τ) = −γµCL,αΘ

∫ τ

0

{y′(s) + Θα(s)}α′(s)ds

The total energy dissipation by the MDOF NES can be written:

ENES
d (τ) = ENES1

d (τ) + ENES2
d (τ) (5)

where
ENES1

d (τ) = ελ

∫ τ

0

[v′1(s)− v′2(s)]
2
ds, ENES2

d (τ) = ελ

∫ τ

0

[v′2(s)− v′3(s)]
2
ds (6)

As a result, the following instantaneous energy balance should hold:

ETotal(τ) = EInput(τ)− ENES
d (τ) (7)

We set the flow speed as Θ = 0.92, for which a complete elimination of aeroelastic instability can be
realized (see Fig. 4). For all zero initial conditions except for y′(0) = 0.1, one obtains the responses shown in
Fig. 6 (a). Initial transients exhibits beating-like interactions between the aeroelastic and NES modes. One
can see, from Fig. 6 (c), that a significant amount of energy is extracted to the MDOF NES masses in the first
two big interactions (i.e., τ ∈ [0, 100]; Ey, Eα, Eu, Ev and Ew respectively denote the energies contained
the heave and pitch modes, the first, second, and the third of the MDOF NES). Moreover, a balance between
the energy input and the energy dissipation by the NES is reached in this period. It should be desirable
that more energy dissipation occurs in the second damper (i.e., ENES1

d < ENES2
d ), which demonstrates more

energy is transferred to the third mass than the second mass. Also, WTs in Fig. 6 (b) proves that there
exist strong nonlinear modal interactions involving transient resonance captures3 in this period.

Another interesting observation, which is not included in this paper, is that, for a smaller y′(0), it takes
longer time to reach a steady state (i.e., a balance between the input energy and energy dissipation). Also,
the smaller disturbances yield energy transfer mechanism which make the second mass possess the more
energy than the third one. Different from the case with a strong y′(0), more energy dissipation occurs in
the first damper (i.e., ENES1

d > ENES2
d ). This observation again proves that more efficient nonlinear energy

pumping can be realized for sufficiently large input energy (see, for example, Vakakis and Gendelman7). The
MDOF NESs with a positive offset tend to exhibit less number of initial transient interactions.
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Figure 6. Wing responses when the MDOF NES is applied (Θ = 0.92, ε = 0.014, λ = 0.4, C = 10, C1 = 0.01, δ =
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IV. Conclusions

In order to improve robustness of aeroelastic instability suppression in a rigid wing with structural
nonlinearities, we considered a MDOF NES configuration. From the bifurcation analysis of the dynamics of
the integrated wing-NES system by means of a numerical continuation technique, we showed that the control
of the occurrence of the lower LPC bifurcation point above a Hopf bifurcation point is crucial to enhancing
robustness. Moreover, we demonstrated that the proposed MDOF NES design (composed of multiple masses
coupled in series by means of essentially nonlinear springs and viscous dampers) does not only greatly enhance
the robustness of LCO suppression against even strong impulsive disturbances, but also achieve better or at
least comparable suppression performance for smaller total masses compared to SDOF NESs under identical
disturbances. Nonlinear modal interactions between the wing and the attached MDOF NES were studied by
means of WTs, as well as the resulting modal energy exchanges. The results suggest that an appropriately
designed MDOF NES can greatly improve robustness of instability suppression. The results reported in this
work, which should be viewed in conjunction with earlier theoretical and experimental results,1,2 indicate
that appropriately designed lightweight passive nonlinear absorbers with essential stiffness nonlinearities can
suppress, effectively and robustly, LCO instabilities. As shown in other work,4 the dynamical mechanism
governing this suppression is a series of resonance captures that occur between the wing modes and multiple
modes of the NES, which result in broadband passive targeted transfer of unwanted vibration energy from
the wing to the NES, where this energy is localized and passively dissipated. Additional work is needed to
study the complex and highly degenerate structure of the dynamics of the integrated structure-MDOF NES
system.
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