August 5, 2015

Using seismic inversions to obtain an indicator of internal mixing
processes in main-sequence solar-like stars

G. Buldgert, D. R. Reesg and M. A. Dupret

1 Institut d’Astrophysique et Géophysique de I'Universitéldége, Allée du 6 aolt 17, 4000 Liége, Belgium
2 School of Physics and Astronomy, University of Birminghddgbaston, Birmingham, B15 2TT, UK.

April, 2015

ABSTRACT

Context. Currently, seismic modelling is one of the best ways of badcaccurate stellar models, thereby providing accuraés.ag
However, current methods ar@ected by simplifying assumptions concerning stellar ngqmocesses. In this context, providing
new structural indicators that are less model-dependeahiranme sensitive to mixing processes is crucial.

Aims. We wish to build a new indicator for core conditions (i.e. mgxprocesses and evolutionary stage) on the main sequEiise.
indicatort, should be more sensitive to structurafeiences and applicable to older stars than the indi¢gu@sented in a previous
paper. We also wish to analyse the importance of the numtzbtygee of modes for the inversion, as well as the impact ofousi
constraints and levels of accuracy in the forward modelfirmcess that is used to obtain reference models for thesiorer

Methods. First, we present a method of obtaining new structural Herimethe context of asteroseismology. We then use these new
kernels to build a new indicator of central conditions inrstalenoted,, and test it for variousfeects including atomic diusion,
various initial helium abundances, and various metaidisjtfollowing the seismic inversion method presented inpwavious paper.
We then study the indicator’s accuracy for seveffedent pulsation spectra including those of 16CygA and 18 ygd analyse how

it depends on the reference model by usinfedent constraints and levels of accuracy for its selection

Results. We observe that the inversion of the new indicatousing the SOLA method provides a good diagnostic for aduktio
mixing processes in central regions of stars. Its sensitaliows us to test for diusive processes and chemical composition mismatch.
We also observe that using modes of degree 3 can improve thesay of the results, as well as using modes of low radiatord
Moreover, we note that individual frequency combinatioingudd be considered to optimise the accuracy of the results.

Key words. Stars: interiors — Stars: oscillations — Stars: fundanigrateameters — Asteroseismology

1. Introduction tionary sequence of the model. A general review of the impact
of the hypotheses of stellar modelling and of asteroseismic

Determining accurate and precise stellar ages is a majdr prﬁggfgt%':t; 21? Egg&e;g:énfgg?egnsgﬁr (3%61545 presieint
lem in astrophysics. These determinations are either roddai : ' '

through empirical relations or model-dependent apprcmchﬁh

: Ih the sense of this age determination problematic, the
Moreover rate stellar re crucial when studyi . o o . '
oreover, accurate sieflar ages are crucla en study estion of additional mixing processes is central (Dupe&is)

stellar evolution, when determining properties of exoplarqnd can onlv be solved by using less model dependent seismic
etary systems or when characterising stellar populatitnnsa} : Y DS y 9 ) P
rally3|s techniqgues and new generations of stellar models.

the galaxy. However, the absence of a direct observatioﬁ'%ese new seismic methods should be able to provide relevant
method for measuring this quantity makes such determingtio P

rather complicated. Age is usually related empirically e t cONSt@ints on the physical conditions in the central negio
evolutionary stage or determined through model depend&fif N€lP with the inclusion of additional mixing in the maslel
techniques like the forward asteroseismic modelling ofssta n'this context, seismic inversion techniques are an Islgrg
However, this model-dependence is problematic because, jjray to relate structu(al ﬁ’ere'nces to frequ.encyfmrgr'lces .anq
physical process is not taken into account during the mindell therefore dfer a new insight into the physical conditions inside

it will introduce a bias when determining the age, as wellras Pbserved stars. From the observational point of view, tiga hi
the determination of other fundamental characteristios the quality of the Kepler and CoRoT data as well as the selection o

mass or the radius (see, for example, Eggenberger et aIOXZOt € Plato'mission (Rauer et al. 2(.)14) a[lows us to expectgmou
for the impact of rotation on asteroseismic properties, ad servational data to carry out inversions of global chierac

Miglio et al. (2015), for a discussion in the context of enséen '>ucs: In the context of helioseismology, structural irsren
asteroseismology, and Brown et al. (1994), for a compretendchniques have already led to noteworthy successes. They
study of the relation between seismic constraints andasteTEave provided strong constraints on solar atomffudion (see
model parameters). It is also clear that asteroseismolagyes S2sd €t @l 1996b), thus confirming the work of Elsworth et al.
the evolutionary stage of stars and not the age directlythero (1990). However, application of structural inversion teigies

words, we are able to analyse the stellar physical congitiofi aSteroseismology is still limited. Inversions for ratat
but relating these properties to an age will, ultimatelyaals profiles have been carried out (see for example Deheuvels et a

depend on assumptions made during the building of the evo?L?—M’ for an application to Kepler subgiants), but as fatms:s
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tural inversions are concerned, one can use either noarlin® each other. If one is working with the structural pait, p),
(see Roxburgh 2010, 2015, for an example of th@edential wherec? is the adiabatic squared sound velocity anithe den-
response technique), or linear inversion techniques eggb sity, this relation takes on the form:

integrated quantities as in Reese et al. (2012) and Buldgan e

' 1 1
(2015). i _ f K Cz%pdx+f K! 6C2dx+ g0 +0(2), (1)
0 0

Vi o e 2 Qi
In our previous paper (see Buldgenetal. 2015), we ex- ) ) .
tended mean density inversions based on the SOLA technigiRerex = ¢ with R the stellar radius, and where the classi-
(Reese et al. 2012) to inversions of the acoustic radius ef %@l definition of the relative dierences between the target and
star and an indicator of core conditions, denotedVe also Model for any structural quantityhas been used:
developed a general approach to determining custom-m %) SopedX) — Sei(¥)
global characteristics for an observed star. We showed t = SobsX ~ Setl9 (2)
applying the SOLA inversion technique (Pijpers & Thompson S Sef

1994) to a carefully selected reference model, obtained Vi \yhat follows, we always use the subscript or superscript
the forward-modelling technique, could lead to very ac®iragpg» when referring to the observed star, “ref” for the refece
results. However, it was then clear that the first age indio@s o de| variables in perturbation definitions, and inv forerted
limited to rather young stars and that other indicators khba |o5yits. Other variables. like the kernel functions. whare
developed. Moreover, the model dependence of these te@®iqyenoted without subscripts or superscripts, are of coelaged
should be carefully studied and there is a need to defingae reference model and are known in practice. Finallg, on
more extended theoretical background for these methods. Thouid also note that the &ix i is only meant to be an index
influence of the number but also the type of modes used fofA|assify the modes. Moreover, since it is clear that some
specific inversion should be investigated. In the end, ooelsh hypotheses are not suitable for surface regions, a supptanye
be able to define whether the inversion should be carried ‘?Hl‘f)ction G(v) was added to model these so-called surface
or not, knowing the number of observed frequencies and Hfects. It is defined as a linear combination of Legendre
quality of the reference model according to its selectidtera. polynomials, normalised by the fact@, which is the mode

) , inertia normalised by the inertia of a radial mode interpeda
In this study, we @er an answer to these questions ang the same frequency. We emphasise here that neither this
provide a new indicator for the mixing processes and thgmalisation cofiicient nor the treatment of surfacfiects are
evolutionary stage of an observed star. We structure oalysty,niquely defined and that other techniques have also beeh use

as follows: Section 2 introdgces a technique to obtain g’equat (see for example Dziembowski et al. 1990; Dappen et al. 1991
for new structural kernels in the context of asteroseisgwloggg, et al. 19964a).

and applies it to theu I";) and the ¢, Y) kernels, wherai is the

squared isothermal sound speEpIthe adiabgtic g'radient and  The kernels of the couplep('y) have already been pre-
the current helium abundance profile. Section 3 introduc®sa gented in Gough & Thompson (1991) who also mentionned the
indicator of mixing processes and evolutionary stagescWis ;s of another method, defined in Masters (1979) to modify
not restricted to young stars, as was the case for the irtmlica\gq_ 1 and obtain such relations for the?,("1) couple and
pre_sented in Buldgen etal. (2015).. Hav_ing introdyced teis N 5150 the N2,c?) couple. Other approaches to obtaining new
indicator, we test its accuracy usingfférent physical #ects gy cyural kernels were presented (see for example ELRS6:;
such as including atomic fiiusion processes with high velocitiesc,sovichev 1999, for the application of the adjoint equasio
(up to 20 times the solar microscopicftlision velocities) in the \athod to this problem). The latter approach has been used
target, changing the helium abundance, changing the noiall i, hejioseismology where it was assumed that the mass of the
and changing the solar mixture of heavy elements. Sectionyfseryed star is known to affigient level of accuracy to impose
analyses the impact of the type and number of modes on figface boundary conditions. In the context of asterossisgy,
inversion results whereas Section 5 studies how the acCurgg cannot make this assumption. Nevertheless, the approach
depends on the reference model. We also tested our metho'qjgﬁhed in Masters (1979) allows us to find ordinar§etiential

targets similar to the binary system 16CygA and 16CygB usigations for a large number of supplementary structural
the same modes as those observed in Vermaetal. (2014)dehels without assuming a fixed mdss

show that our method is indeed applicable to current observa

tional data. Section 6 summarises our results and presemis Sanother question arises in the context of asteroseismol-
prospects on future research for global quantities thaldche oy what about the radius? We implicitly define our integral
obtained with the SOLA inversion technique. equation in non-dimensional variables but how do we relage t
structural functions, for exampébs(r) defined for the observed
star andcrzef(r) defined for the reference model? What are the
implications of defining all functions in the same domain in

X = t varying from 0 to 1? It was shown by Basu (2003)

that an implicit scaling was applied by the inversion in the
asteroseismic context. The observed target is homologousl

rescaled to the radius of the reference model, while its mean
Gough & Thompson (1991) demonstrate that one could deduc 3eaed X o ;
linear integral relation between the perturbations of dietgies c?ensny is preserved. This means that the oscillation teqies

and the perturbation of structural variables from the Vel are the same, but other quantities such as the adiabatid soun

principle. This equation is obtained by assuming the adigba The method of adjoint equations previously described caldd be
approximation and spherical symmetry, and by neglectirtg sused but would require an additional hypothesis to replaeartissing
face integral terms. It is only valid if the stellar models atose boundary condition.

2. (u,I'1) and (u, Y) structural kernels

2.1. Integral equations for structural couples in the
asteroseismic context

Article number, page 2 of 15



speed, and the squared isothermal sound speedg, will be From that point, we use the definition afto express the first

rescaled. Therefore, when inverted, they are not relatatieo integralin terms of a density perturbation. This is donegshe

real target but to a scaled one. definition of the pressurd?, and the cumulative mass up to a
radial positiony:

This can be demonstrated with the following simple test.

We can take two models a few time steps from one another on "R Gy
the same evolutionary sequence knowing that they shouldenot® = f —5—dF + Payrt (6)
that diterent. (Here, we consideiM,, main-sequence models.) ' .
We then test the verification of Eq. 1 by plotting the follogin m = f Arf2pdF 7)
relative diterence 0
i o Qi

g = i 3) where we neglect the pressure perturbation at the surface. |

(X Vi PR

what follows, we use the non-dimensional forms= vz
whereM is the stellar mas$} the stellar radius an@ the grav-

itational constantn™= {1 andg = %. To avoid any confusion
- o . 6c? in already rather intricate equations, we drop the hat iostam
S = K' ,—+K', —]dx 4) ) r :
“Jo e 2p 2 | what follows and denote these non-dimensional variaBle®

, , , andp. Using Eqgs. 6 and 7, one can relatg@erturbations td®
The results are plotted in blue in the left panel of Fig. 1, ®heand, perturbations as

we can see that this equation is not satisfied. However, ogletmi
think that this inaccuracy is related to the neglected serfarms 5, sp 5
: 4
or to non-linear &ects. Therefore we carry out the same test us— = — — —. (8)
ing the p, 1) kernels, plotted in red in the right-hand panel of P »p
Fig. 1. We see that for these kernels, the equation is satisfie ) )
Moreover, when separating the contributions of each stratt However, using Eq. 6, one can also rel&gperturbations te
term, we see that the errors arise from the term related to ~ Perturbations. Doing this, one should note that the surfaes-
the first case. Using the scaled adiabatic sound speed, koweiH"® perturbation is usually neglected and considered as a s
leads to the blue symbols in the right-hand panel of Fig. 1 af@lléd surfaceféect. Using non-dimensional variables and com-
we directly see that in this case, the integral equationtisfead. Pining Eqs. 6 and 7 in Eq. 8, one obtains an expression rglatin
This leads to the conclusion that inversion results basedten U Perturbations solely tp perturbations. (Of course, this is an
gral equations are always related to the scaled target arttio integral relation due to the definition of the hydrostatiegsure,
target itself, as concluded by Basu (2003). We see in Sebat3 tP)- One can use this relation to replagein Eq. 5 and after
this has strong implications for the structural informatgiven the permutation of the integrals stemming from the definioé
by inversion techniques. the hydrostatic pressure perturbation, one obtains thevfolg
integral equation relatlngl')’rl toK!'
2.2. Differential equation for the (u,T'1) and the (u, Y) 1 1 1 x Kl
kernels f K;,rléﬁdx+f K'rlp&dx = f (&);)p f —u;rid)q
Ttp o I o\ X o P

U,Fl:
As mentioned in the previous section, the method described i 5 Yo ¥ K! r, . - ) ép
Masters (1979) allows us to derivefi@irential equations for +4rXp f @ fo P dx|dX| - K, r, ;dx
X

structural kernels. In what follows, we will apply this meth

to the (1, I'1) and the (,Y) kernels. However, this approach 1
can be applied to many other structural pairs such&sr’{), +fo K
(AY), (9,T4), (@.Y), ..., withc? = F;TP the squared adiabatic

sound speed g = f_;n the local gravity,I'; = (g:%)s the One should be careful when solving this equation since one is

adiabatic gradient an¥ the local helium abundance. We dd@ced with multiple integrals, with certain equilibriumnables
not describe these kernels since they are straightfornard@ssociated tacdr x. Therefore care should be taken when inte-
obtain using the same technigue as that which will be useel h8Fating to check the quality of the result. To obtain fiefential
for the U, 1) kernels. One should also note that &efiential equation, we note that it is clear that the equation is setidgfi

equation cannot be obtained for the coupl, ), with N2 the the integrands are equal, meaning that the kernels arededat

Brunt-Véisald frequency, defined ds? = 1 (L 42 - daz), follows:

without neglecting a supplementary surface term.

RLEN (9)

T1,u Fl

i _ m(X)p f *Kir, R
The first step is to assume that if these kernels exist, the§"* X2 o P
should satisfy an integral equation of the type given in Eq. 1

. L] RK .
thereby leading to: + 408p f % f ;nd)# dy‘}‘KL,rp (10)
X 0
5vi Lo 6 ST Y . .
T fo K,'o,n;d“ fo Kr, oy d% Kryp = Ky (11)

1 1
= K @dXJ, K! @dx (5) Given this integral expression, one can simply derive and si
u,l'y u 0 T1,u Fl g

plify the expression to obtain a second-order ordinaffeden-
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Fig. 1: Verification of Eq. 1 for a set of 120 modes with tHeeing the 40 radial modes, thebeing the 40 dipolar modes and the
being the 40 quadrupolar modes. The left plot illustratés\rification for the 4, ¢2) couple when no scaling is appliedd®é
whereas the right plot illustrates the same verificatiorttier(p, c?) couple when scaling is applied 63, as well as thed|, I'y)

couple where no scaling is needed.

tial equation inx as follows: meaning that Eq. 12 can simply be transposed using the defini-
. 2= , ) tions:k = %Y andx = % One could also start from Eqg. 5, use
Ly Fe (2 glde | d the definition:
@t m v (A ol P (ol ol
[ 27y%/%5 3 mo | dk of _ ( n(rl)) oP +( n(rl)) op +( n(rl)) sY
- —— 3+ 2P dy Iy oIn(P) )7y, P aIn(p) Jzyp P N Jzp,
e w8 P Wy (M), 7 @)
|4yP2 dx  4yPdx 4yl2pdx  2y3/2p | YPp

K K and neglect théZ contribution. This assumption is particularly
wherex = XTH K = sz-rl andy = x°. The central boundary justified if one places spectroscopic constraints on thelfiet
o " ity. Nevertheless, the term associated with is smaller than

condition in terms ofk and«” is obtained by taking the limit ; ) . X
of Eg. 12 asy goes to 0. The additional boundary condition§'® three other terms and if one is probing the core regities, t

are obtained from Eq. 10. Namely, we impose that the solutigig contribution is already very small. Consequently, all o th

satisfies Eq. 10 at some point of the domain. This systemt@ms of Eq. 14 are small compared to the integral contaiuti

then discretised using a finitefiirence scheme based on Rees#ill, this assumption is not completely sound if one wistes

(2013), and solved using a direct band-matrix solver. probe surface regions. When comparing (ﬁ'@g—”)wﬂ to the
aln(ry) : ; ; i o

Two quality checks can be made to validate our solutio ,6Y1 )z,P,de’ we notice that their amplitude is comparable

the first being that every kernel satisfies Eq. 10, the secomsy that(%)vpp is even often larger. However, we have

being that they satisfy a frequency-structqre relationirgasg. to consider that it will be multiplied byZ, which is much

5) within the Eame accuracy as the classical structuraleltxernsma”er thansY. Moreover, the functions are somewhat alike

(p.T'1) or (p,C°). We can carry out the same analysis as | conya| regions and, as a consequence, there will be an

section 2.1, keeping in mind that the squared |sothermaid;0l1|mp|icit partial damping of the'Z term when damping theY

speed will also be implicitly rescaled by the inversion sinc contribution if it is in the cross-term of the inversion. Wanc

is proportional tog;, as is the squared adiabatic sound speg ntrol the importance of this assumption by switcﬁing from

c?. The results of this test are plotted in Fig. 2 along with ape U, Y) kernels to the i, T;) kernels. Indeed, if the error is

example of th'e verification of the integral equation for teeriel large, the inversion result will be changed by the contidnt

associated with thé = 0, n = 15 mode. from the neglected term. In conclusion, in the case of the
. o . . inversion oft,, we present and use in the next sections, this

The equation for thelu(Y) kernels is identical when usingassumption is justified, but this is not certain for inversiof

the following relation: helium mass fraction in upper layers, for which only numeri-

cal tests for the chosen indicator will provide a definitinsaer.

% 1o 8p to
W =f0 K/ILY;dXJ’fO Ky, 0Ydx, Knowing these facts, we can search for theY) kernels
1 5 1 using the previous developments. It is in fact straightémav
= f KLY—udx + f K{(uéde. (13) When using thed, Y) kernels, which are directly obtained from
S o (0,T1) or (p,c?). However, one should also note that by using
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Fig. 2: (left) Plot illustrating the verification of Eq. 101fa = 15, ¢ = 0 kernelK1%%, whereT,r, is the right-hand side of this
equation an® is the residual. (right) Same test as in Fig. 1 for thd{) kernels.
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Fig. 3: Same as Fig. 2 for the,(Y) kernels.

Eq. 14, we assume that the equation of state is known favundance using them.

the target which might introduce small errgtsAgain, Fig. 3

illustrates the tests of our solutions by plotting the esron the Another approach would be to use the squared isothermal
integral equation (Eq. 13), and by seeing how well our sotuti sound speedy, to reach our goal. Indeed, we know that
for the¢ = 0,n = 15 mode verifies Eq. 10. The,1) and @, Y) u P % and that during the evolution along the main
kernels of this particular mode are illustrated in figure #eT sequence, the mean molecular weight will change. Moreover
kernels associated withare very similar, except for the surfacehe core contraction can also lead to changes in the variafio

regions where someftierences can be seen.

3. Indicator for internal mixing processes and
evolutionary stage based on the variations of
u

3.1. Definition of the target function and link to the
evolutionary effect

Knowing that it is possible to obtain the helium abundan
in the integral Eq.13, we could be tempted to use it to obt
corrections on the helium abundance in the core and ther
gain insights into the chemical evolution directly. Howe\rg.

4 reminds us of the hard reality associated with these heli
kernels. Their intensity is only non-negligible in surfaegions,

making it impossible to obtain information on the core heliu

theu profile. Using the same philosophy as for the definition of
the first age indicator (see Buldgen et al. 2015) and ultitpate
for the use of the small separation as an indicator of the core
conditions (see Tassoul 1980), we build our indicator usiireg
first radial derivative ofu. Using u instead ofc? allows us to
avoid the dependence I which is responsible for the surface
dependence og—f To build our indicator, we analyse th&ect

of the evolution on the profile o%. This dfect is illustrated

in Fig. 5. As can be seen, two lobes tend to develop as the star
ages. The first problem is that these variations have opmposit

signs, meaning that if we integrate through both lobes, the

Cs%nsitivity will be greatly reduced. Therefore, we choaskbdse

aﬁéjr indicator on the squared first radial derivative:

eby

_—fRf(r) du 2dr
Gm— o dr ’
wheref(r) is an appropriate weight function. First, we consider
that the observed star and the reference model have the same

(15)

2 However, these can be neglected when compared to othettaineer radius. The target function for this indicator can easilyae

ties on the structural properties of observed stars.

tained. We perturb the equation fiarand use an integration by
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Fig. 4: Structural kernels for the= 15, ¢ = 0 mode associated with the, {"1) couple on the left hand side and with the Y)
couple on the right hand side.

parts to relate the perturbations of the indicator to stmattper-

turbations ofu: We define the weight function as:
6{] _ 2 R du dsu r—r 2
E = E j; f(r)aﬁdr, f(r) =r¢ (r - R)/l eXp(—y( Ropt) )’ (19)

R

(16) which means that we have four parameters to adjust. The case

_ R
= tfzf udE (f(r)%)@dr + [f(r)%éu
u o r ru o of ropt is quickly treated. Since we know that the changes will
be localised in the lobes developing in the core regions, we

The last term on the second line is not suitable for SOLA inveghose to Putop = 0, anda and.1 should be at least 1, so that
sions, given the neglect of surface terms in the kernels.\¥e t the integration by part is exact and the central limit for the
define the functiorf so thatf(0) = f(R) = 0, thereby cancelling target function and the structural kernels is the same. Gamm

this term. This leads to the following expression: depends on thefkects of the non-linearities. However, since
ST R 4 we have to perform a second derivativelwof more practical
cu_ f T —udr, (17) concern appears: we do not want to be influenced by fiieets
ty o u of the discontinuity at the boundary of the convective eopel

Ultimately, we use the following set of parametess:= 1,

A =2,y =7, androy = 0. One could argue that the optimal

choice forrqy would be either at the maximum of the second

lobe or between both lobes to obtain the maximal sensitinity

Tt = _TZUE (f(r)%)' (18) the structural variations. These values were also testécthb
oty dr dr results were a little less accurate than usigg = 0 and they

. . . involved higher inversion cdgcients and, hence, higher error
The weight functiorf (r) must be chosen according to a numbe,, o nification. We illustrate the weighted profile obtained f

of criteria: it has to t_)e sensitive to the core regions Whefﬁis optimal set of parameters in the right-hand side pahel o
the profile changes; it has to have a low amplitude at tlfg?

. : X ; . 9. 5. Furthermore, Eq. 17 is satisfied up to 5%, so we can try
boundaries of the domain, allowing us to do the integration k", v oyt inversions for this indicator. It is also impat to
parts necessary for obtainidg in the expression; and it ShOU|dnote that for the sake of simplicity, we do not choose to ckang
be possible to fit the target function associated with (9 the values of these parameters With the model, which would
using structural kernels from a restricted number of frewpiess. only bring additional complexity to the problem '

Moreover, Eqg. (18) being related to linear perturbationss i '

Clear.th'at non-linearfﬁects should not dominate'the Changeéecause of the target functiofi,, we can now carry out

of this indicato?. We also know that the amplitude of theyyersions for the integrated quantity using the linear SOLA
StFUCt“fa'. kernels is 0 in the centre, $(r) should also satisfy inversion technique (Pijpers & Thompson 1994). But first, we
this condition. should recall the purpose of inversions and our adaptation

3 Otherwise, using the SOLA technique, which is linear, whddm- Of the SOLA technique to integrated quantities. Histolical
possible. inversions have been used to obtain seismically consttaine

where
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structural profiles (Basuetal. 1996b) as well as rotationahere we have used the definition Wi, to express the mass
profiles (Schou et al. 1994) in helioseismology. Howevenerodependencies as radius dependencies. Therefore, we u2d Eq.
of these methods are suited for the inversions we wish tg/caas a criterion to determine whether the inversion was ssbaes
here. As discussed in Buldgen et al. (2015), the SOLA ingersior not.
technique, which uses a so-called kernel-matching apprisac
well suited to our purpose. Indeed, this approach allowsous t
define custom-made target functions that will be used tatil 3.2. Non-linear generalisation
cost function, here denotégg. In the case of thg, quantity, one
has the definition This section presents a general approach to the non-lirear g
X , X N ((azrglisé?t]icon presentedfinI F\E)eclasiet al. (20_12)hand Buldg?en eta
_ 2 o \2 or any type of global characteristic that can scatd w
T _fo [KA"Q - Ttu] dX+'8f0 KCrosglX + tan@) Z(C'(r') the mass of the star. It is obvious that we can say that the fre-
' quencies scale ad%/2. Of course, they scale as the mean density,

N
Z C - k}, (20) namely \/g. However, since the inversion works with a fixed
i

radius and implicitly scales the target to the same radiubas
reference model, the iterative process associated wishnib-
linear generalisation will never change the model radibere-
fore, we do not take this dependence into account and simply
work on the mass dependence. WeAdie a global characteris-

+7

whereKayg is the so-called averaging kernel aldoss is the
so-called cross-term kernel defined as follows for thel()
structural pair (for ¢, Y), repIaceK:m by K.y and K'FLu by

Kiy,u)i tic, related to the mass of the star. It is always possiblefind
a factork so that:
N
Kavg = Z GiKlp., (21) Aok (25)
,il And we directly obtain:
Kcross= Z CiKli“l,u' (22) % — k(s_V (26)
[ A v’

The symbolg) andg are free parameters of the inversion. Heréjowever, using the definition of the inverted correctiopbne
0 is related to the compromise between the amplification of thas:

observational error bargr() and the fit of the kernels, whereasgp 5vi

B is allowed to vary to give more weight to the elimination of— = ZCi—_, (27)
the cross-term kernel. In this expressidh,is the number of P

observed frequencies, tlzeare the inversion cdgcients, used
to determine the correction that will be applied on thealue.
Eta is a Lagrange multiplier and the last term appearing én t
expression of the cost-function is a supplementary coinstr
applied to the inversion that is presented in Sect. 3.2.

whereg; are the inversion cdicients. Using the same reasoning
sin Buldgen et al. (2015) and Reese et al. (2012), we de#ne th
version as “unbiased” (a term that should not be takenén th
tatistical sense.) if it satisfies the condition

@ C = k. (28)

If the observed target and the reference model have

same radius, the inversion will measure the valuetofor i . . )

the observed target. However, if this condition is not mie¢, t Now we can define an iterative process using the scale factor
inversion will produce a scaled value of this indicator. B = %. We scale the reference model (in other words, multi-
defining integral equations such as Eq. 15, or even Eq. 1, p its mass and density b, its pressure bg?, leavingI'; un-
have seen in Sect. 2.1 that we made the hypothesis that othdilanged), carry out a second inversion, then define a new scal
target and the reference model had the same radius. Howejgfior and so on until no further correction is made by theinv
because the frequencies scale V\(igé)l/z, the inversion will Sion process. In other words, we sgarch fqr the fixed pqir’ﬂe)ft
preserve the mean density of the observed target. Theref§@ation of the scale factor. At thé' iteration, we obtain the

we are implicitly carrying out the inversion for a scaledger following equation for the inversion value 8¢

homologous to the observed target, which has the radius of v

the reference model but the mean density of the observgg, = Arefs‘j@l S +Zcil +k(1-s)
target. Simple reasoning demonstrates that the mass of this Vi

I R . L .
scaled target isMir = M 5. Thus, because, scales as This can be written in terms of the scale factor alone, natiag

M2, there is a dference between the target vali§e® and the atthej™ iteration,,’ijg = §j‘+1:
measured valugy". Consequently, we can write the following

. (29)

equations: i

a S =5 s+ Z cf—‘f' +k(1- Sj):i. (30)
tinv tobs 7 Vi

u o v

M2, M2’ 23) Ihe fixed point is then obtained,

tiunv tgbs o

=4 24 2G5
Ry R e4) Sopt=—— *+1. (31)
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Fig. 5: Left panel: structural changes in the scﬁ%qﬁrofile with the evolution. The models are main sequen8®ld models.
. 2. . .
Right panel: the samdfects as seen Wheélgg) is weighted according to Eq. 19.

and can be used directly to obtain the optimal value of the i(AGSS09) abundances.
dicatorA. We can also carry out a general analysis of the error
bars treating the observed frequencies Apgdas stochastic vari- All targets and reference models were built using version

ables: 1815 of the Code Liégeois d’Evolution Stellaire (CLES) stella
_ evolution code (Scuflaire etal. 2008b) and their oscillaio

Vobsi = Vobsi(1 + 6), (32) frequencies were calculated using the Liége oscillatiodeco

Ay = ATmV(lJ, €a), (33) (LOSC, Scuflaire et al. (2008a)). Table 1 summarises the-prop

erties of the six targets presented in this paper. The sefect
with & andea being the stochastic contributions to the variablesf the reference model was based on the fit of the large and
Using the hypothesis that < 1 we obtain the following equa- small separation for 60 modes with= 7 — 26 andf{ = 0 - 2

tion for the error bars: using a Levenberg-Marquardt minimisation code. The use of
1 supplementary constraints will be discussed in Sect. 5 edter
1 V?bs ) the dfects of the selection of the modes will be discussed in
oA = Pref k Z Ci e (Z Gii)*. (34)  Sect. 4. The choice of 60 frequencies is motivated by the mamb
: : : of observed frequencies for the system 16Gyg 16Cyg B

by Kepler, which is between 50 and 60 (Vermaetal. 2014).
The inversions were carried out using theY) and the ¢,T’;)
structural kernels.

We note that in the particular case of the indicatgrk = 4.
Indeedt, « M2 whereas « MY/2,

If the inversion oft, shows that there are ftikrences be-
tween the target and the reference model, then we know that

. ) the core regions are not properly represented. Whethee thes
To test the accuracy of the SOLA technique applied to theferences arise from atomic filision or a helium abun-
t, indicator, we carried out the same test as in Buldgen etghnce mismatch, thg, indicator alone could not answer this
(2015) using stellar moo!els that would'play the role of obser questiofi. Therefore, the philosophy we adopt in this paper
targets. These models included physical phenomena nat takehe following: Is the inversion able to correct mistakes i
into account |n'the reference models. A total of 13 target®wgne reference models? If so, within what range of accuracy?.
constructed, with masses 00Mo, 1.0 Mo and 11 Mo butto - The capacity of disentangling fiérent dfects is partially
avoid redundancy, we only present six that are represeetati jjystrated in Sect. 5, but additional indicators are seljuired
the mass and age ranges and of the physi€etts considered {5 provide the best diagnostic possible given a set of fregies.
in our study. We tested varioudfects for each mass. These
effects fell into the following categories: those that comene results are given in Table 2 for the,[1) kernels and
from microscopic diusion using the approach presented iftaple 3 for the i, Y) kernels along with the respective error con-
Thoul et al. (1994) (multiplying the atomicfélision codficients rihytions given according to the developments of Reesk eta
by a factor given in the last line of Tablé)l those caused by a(2012) and Buldgen et al. (2015). We denote these errorieontr

hglium abundance mismatch, those that re;ult frorr_1 a matglli butions:sayg, £cross Eres These errors contributions are defined
mismatch, and those that stem from using &edént solar

heavy-element mixture. For the last case, the target wds bui
using the Grevesse & Noels (1993)(GN93) abundances and
the reference model was built using the Asplund et al. (2009)

3.3. Tests using various physical effects

4 These values might seem excessive regarding the reljabflithe
implementation of dfusion. We stress here that our goal was to wit-
ness the impact of significant changes on the results. Howetleer 5 To completely constrain the changes that are a consequénugto
processes or mismatches could altergfhgradient and thus be detectedple additional mixing processes with only one structurdidator is of
by the inversion. course impossible.
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Table 1: Characteristics of the 6 targets.
Target; | Target, | Target; | Target, | Targets | Targets

Mass(Mg) | 1.0 10 1.0 0.9 1.0 11
Radius(R,) | 1.076 | 1.159 | 114 0.89 1193 | 1.297
Age(Gyn | 8.05 7.55 7.06 6.0 5121 | 5.135

Ter (K) 5597 5884 5712 5329 6081 5967

Zy | 0.015 0.0122 | 0.0122 | 0.0122 | 0.0122 | 0.0122

Yo | 02457 | 0.2485 | 0.2485 | 0.2485 | 0.3078 | 0.2485

Abundances | AGSS09| GN93 | AGSS09| AGSS09| AGSS09| AGSS09
amLt 1522 1522 1522 1522 1522 1522
Diffusion factor 0 0 2 16 0 16

Note: Differences between target and reference model in bold.

as Analysing the residual contribution is slightly moreffdi
1 5 cult, since it includes each and every supplementdfgce
u X Y h 4

Ea = Kag — T3 | = dx, 35) surface terms, non-linear contributions, errors in theatiqn
A fo [ AV t“] u (35) of state (when using kernels related¥p etc. In this study, we

1 6Ty can see that the residual error is well constricted. Thisois n

ECross= f KCrossr_ldX, (36) the case, for example, if the parameteis chosen to be very
0

small, or if the scaling fect is not taken into accountin fact,
if the (u,I';1) couple is used. If one prefers the ¥), scrossbe- thed parameter is a regularizing parameter, in the sense that it
comes does not allow the inversion cfiients to take on extremely
high values. In that case, the inversion would be completely
unstable because a slight error in the fit would be amplified
and would lead to incorrect results. This is quickly undsost

. _ . _ . ~ knowing that the inversion cdiécients are used to recombine
Finally, eres is associated with the residual contribution, imhe frequencies as

the sense that it is what remains after one has taken into

account bothecross and eag. The target function and their gimv N 5,

fits are illustrated in Fig. 6 for TargetAs we can see from —" ZQ— (38)
Tables 2 and 3, we obtain accurate results for all caseé.‘ i Vi

This means that the inversion i ful and that th . : .
isat?on%?ogessis $I?1cienei f?)r(')th;vsatjlgggsj ilcfae adnd;: 1e(tra§guwnh N the total number of observed frequencies. Where this

equation is subject to the uncertainties in Egs. 17 and S¢er,
ectively Eq. 13), any error will be dramatically amplifieg

We see in the fifth column of Tables 2 and 3 that the av . . Theref h . ) < .
aging kernel fit is usually the dominant error contributibnthe 1€ inversion process. Therefore there is no gain in regutin

next sections, we see how this result changes with the moff}‘e at some point, the uncertainties behind the basidiequa

1
ECross = f Kcrosg YdX. (37)
0

used or with the quality of the reference model. If we analySs the inversion process will dominate and lead the method to
the cross-term error contribution, we see that it is geherajailure- In this case, the inversion problem is noffmiently reg-
much less important than the averaging kernel mismatch. erfg2rised. Such an example is presented and analysed inxhe ne
We also see that despite the high amplitude of the cross-tetfto"

kernels associated wilhy shown in Fig. 6, the real error is quite

small and often smaller than the error associated with therhe

cross-term kernel. This is due not only to the small variaim 4. Impact of the type and number of modes on the

I'; between target and reference model but also to the oscillato inversion results

behaviour of th@'; cross-term kernel. In contrast, the cross-term

kernel of the (., Y) kernel has a smaller amplitude, but nearlyyhen carrying out inversions on observed data, we are limite
no oscillatory behaviour and is larger in the surface regiong the observed modes. Therefore the question of how the
where the inversion is naturally less robust. Nonethe!ﬂfﬁs, inversion results depend on the type of modes is of utmost
results of the , Y) kernels also show some compensation. Wgnortance. The reason behind this dependence is tHatefit
also note that they tend to have larger residual errors. Mewe frequencies are associated withffeient eigenfunctions, in
there is no clear dierence in accuracy between thel(y) and other words dferent structural kernels, sensitive tofdient

the (U, Y) kernels. In the case of Targetve see that although yegions of the star. Therefore, the inverse problem wiliy\ar

the results are slightly improved, the reference value iwi oach set of modes because the physical information coutaine
the error bars of the inversion results. In an observed ¢a&e, the observational data changes. Hence, we studied foettarg
would mean that the reference model is already very close {ging seven sets of modes. As in Sect. 3.3, we wish to avoid
the target as far as the indicatigris concerned. However, Weredundancy and so present our results for one target, namely

wish to point out that it seems rather improbable that the O”fa[]geg, and five dfferent frequency sets. As a supplementary
difference between a static model and a real observed star woul

be in its heavy-element mixture. 6 In which case one would be searching for a result that is isiptes
to obtain.
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Table 2: Inversion results for the 6 targets using thé&'() kernels.

ref nv 0bs
r (@/on?) | g (@P/onf) (T | g (P/onf) e R £
Target 4.032 3.568+ 0.063 3.532 4.415x 10% | -1.684x 10* | 9.767x 1073
Targe} 3.434 3.24+ 0.075 3.428 -1.301x 1073 | -4.419x10* | 5951x 107*
Target 3.562 3.275+ 0.067 3.252 5789x 1073 | —1.178x 1073 | 2277x 1073
Target, 5.879 5.621+ 0.147 5.536 1.388x 1072 3.088x 104 | 8.062x 104
Target 2.845 2.669+ 0.088 2.630 -6.498x 104 | —-4.493x 1073 | 2.366x 107
Targe} 3.205 3.480+ 0.091 3.498 1.496x 102 | -1.11x10°3 | 7.824x 107
Table 3: Inversion results for the 6 targets using ther] kernels.
ref inv 0obs
& (@/onf) | g (@/onf) (uY) | & (¢/on) £y Ess Ehas
Target 4.032 3.575+ 0.063 3.532 8.34x 107 1.601x 1074 11x107?
Targes 3.434 3.423+ 0.075 3.428 -1.301x 103 | 1.338x 1077 2.127x 10°°
Targeg 3.562 3.283+ 0.067 3.252 5.748x 1073 8.296x 1073 | —4.794x 1073
Target, 5.879 5.624+0.148 5.536 1.386x 1072 1.337x 1072 5.448x 1074
Target 2.845 2.675+0.089 2.630 -5.421x10* | -8.184x 103 | 3.168x 10
Targe} 3.205 3.480+ 0.091 3.498 1.458x 1072 1.214x 1072 | -9.721x 1073
80 1 ;
_TAL’g _T(h'ass
— KN () — 1073 x K{poss(a)
60} — K@) | 0-5/\ — K@) ]
e 15 o /\ AV//\_A
< 0l 1 % _og \/ .
0 DA, VAMI1.4 -1t i
2% 0.2 0.4 0.6 0.8 1 1% 0.2 0.4 0.6 0.8 1

Position x=r/R Position x=r/R

Fig. 6: (left) Averaging kernels for both structural pairgaheir respective targets. The red and blue curves aréynédentical, so
that only the red curve is visible. (right) Cross-term késrfer both structural pairs, the target being O.

test case, we defined two target models with the properties of
16CygA and 16CygB found in the litterature (Metcalfe et allhe inversion results for all these targets and sets of mode
2012; White et al. 2013; Verma et al. 2014). Using these progre presented in Tables 6 and 7 for thely) kernels. A first
erties, we added strong atomididsion to the 16CygA model conclusion can be drawn from the results using Sets 1, 2 and
and used = 0.023 as well as the GN93 mixture for 16CygB3: low n are important for ensuring an accurate results. In fact,
In constrast, the reference models uged= 0.0122 and the Set 2 provides much better results than Set 1,. Even using Set
AGSS09 mixture. The characteristics of these models ae aBs(which is only Set 1 extended up b= 34 for each?) does
summarised in Table 4, where we used the set of observext improve the results any further. This means that mod#s wi
modes given by Verma et al. (2014) and ignored the isolated- 27 are barely used to fit the target.
¢ = 3 modes for which there was no possibility to define a large
separation. This first result can be interpreted in a variety of ways.
Firstly, using mathematical reasoning, we can say that the
All the sets for the test cases of this section are summaridetnels associated with higharhave high amplitudes in the
in Table 5. The reference model was chosen as in Sect. 3@tface regions and are therefore not well suited to probing
using the arithmetic average of the large and small frequereentral regions. Another way to interpret this problemdai:
separations as constraints for its mass and age. With teese \Vhen we use modes with high we come closer to the asymp-
cases, we first analyse whether the inversion results dependotic regime, and the eigenfunctions are described by th€BW
the values of the radial order of the modes, with the help of approximation, all of which have a similar form and do not
the frequency Sets 1, 2 and 3 (see Table 5). Then we analysetiieeefore provide useful additional information. Basedtlois,
importance of the = 3 modes for the inversion using Sets 4ve see a clear fierence between inverted structural quantities
and 5. and the information deduced from asymptotic relations,ciwhi
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Table 4: Characteristics of 16CygA and 16CygB clones.

16CygA-clone | 16CygB-clone
Mass (Mg) 111 1.06
Radius (Ry) 113 1.04
Age (Gyr) 6.9 6.7
Terr (K) 5696 57729
Z 0.024 0.023
Yo 0.241 0.242
Abundances AGSS09 GN93
aOMLT 2.0 2.0
Diffusion coefficient 2 0

requires highn values to be valid, thereby highlighting thequality of the fit with those changes). We emphasise again tha
usefulness of inversions. The question of the importandbef one should not choose values of the inversion parametenewhe
modes? = 3 is also quickly answered from the results obtaineghy small augmentation of the regularisation would dra#ific
with Set 4 and 5. For these test cases, we reach very gabadnge the result. In this particular case, we were cordgebnt
accuracy even without < 9 unlike the previous test case usingvith insufficient regularisation and choosiig= 10~ corrected
Set 2. Moreover, we use even fewer frequencies than for #te fthe problem.

three sets. In fact, this is crucial to determine whether care

apply an inversion in an observed case, since affen8 modes

can change the results and make the inversion successful. g Impact of the quality of the forward modelling

To further illustrate the importance of the octupole modes, process on the inversion results

we use the 16CygA and 16CygB clones to carry out inversions | . . . . . .
for their respective observed frequency sets. In a firstomse, !N this section we present various inversion results using
we use all frequencies and reach a reasonable accuracytfor erent criteria to select the reference model for the inversi
targets. In the second test case, we do not use the octugglg Previous results, only using the average large and small

modes and we can observe a drastic change in accurd@fUency separations as constraints for the mass and alge of
These results are illustrated in Table 7, where the notatiB}?del, are indeed a crude representation of the real cafeil

"Small" (for small frequency set) has been added to the kses
sociated with the results obtained without usingdke3 modes.

of seismic modelling. It is well known that other individual
frequency combinations can be used to obtain independent
information on the core mixing processes and that we should

Looking again at the results for 16CygA, we see that Sidjust more than two parameters to describe the physical

though the inversion improves the value f&f the reference Processes in stellar interiors.
value lies within the observational error bars of the ineért
result. The case of the truncated set of frequencies is evesew
since the inverted result is less accurate than the refenealue.
We therefore analysed the problem for the full frequency s
To do so we carried out a variety of inversions using high
values ofé. The results fo = 1CT4yare illustrated in Ta%le g =0n=12-25]=1n=11-251 = 2,n = 11- 26,

= 3,n = 14 — 24. The characteristics of the targets are sum-

In this case we have lower error bars, but what is reassurin : ) ‘ ,
is that the result did not change drastically when we chang rised in Tab!e 8 anng_ with those of the bQSt '.“Ode's qbﬂiame
ough seismic modelling. Table 9 contains information on

6. This means that the problem is properly regularised arou ; . '
9 = 105 andg = 10 and that we can trust the inversiod€ various constraints and free parameters used for tHa/dit.

results. Our advice is therefore to always look at the behayi US€d various seismic constraints such as the individuge land
of the solution with the inversion parameters to see if thiere SMall frequency separations, the individual andro,, defined

any sign of compensation or other undesirable behaviofmcin &S

To carry out these test cases, we built two target models
including microscopic dfusion. As before, we did not in-
glude this process in the reference models obtained bydfittin

e so-called 56 observed frequencies. We used the modes

there is no law to select the value@®énd applying fixed values Vn-12 — Vno
blindly for all asteroseismic observations is probably best 02 = Vol — Vi1’ (39)
way to obtain unreliable results. ’ '

_ Vno— 2Vn1+ Vni10 (40)

lo1
The case of the small frequency set is even more intrigu- 2(Vn+1.0 = Vo)
ing since the result improves greatly with = 104 The

question that arises is whether the problem is not prOpe‘ﬁge free parameters were chosen to match what is done when
ds

ing to fit observations, although the final quality of the fi
much higher than one expects from an observed case, as
illutrasted in Fig. 7 for Targef and Fig. 8 for Targgt Here one
should note that the arithmetic average of the large frecyen
parations were fitted to within 1% in addition to the indial
antities plotted in Fig. 8. In all these cases the inversio

regularised withd = 10°° or whether we are faced with som
fortuitous compensation fiect that leads to very accurat
results. If we are faced with fortuitous compensation,rigki
slightly larger than 16" or increasings will drastically reduce
the accuracy since any change in the linear combination wiff
affect the compensation. However, if we are faced with a reg‘ﬂf-j
larisation problem, the accuracy should decrease reguaith 7 \ye gid not present the fit of the individual large frequencyase-
the change of parameters (since we are slightly reducing ths for Model, to avoid redundancy with Modgl and Mode} 5.
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Table 5: Sets of modes used to analyse the impact of the nuambeype of frequencies on the inversion results

Set Seb Seg Setf Set 16CygA 16CygB
(=0 n=9-28|n=5-27|n=9-34| n=11-24 | n=11-26 | n=12-27 | n=13-26
t=1|n=9-28| n=5-27|n=9-34| n=11-24 | n=11-26 | n=11-27 | n=13-26
(=2|n=9-28| n=5-27|n=9-34| n=11-24 | n=11-26 | n=11-24 | n=12-25
=3 - - - n=9-20 | n=12-22 | n=15-21 | n=17-24
Table 6: Inversion results for Targaitsing the (, I';) kernels and Sets-15 of Table 5.
ref nv obs
A (@/onf) | g (@/onf) (UTy) | g (@/enf) | eh £Cross £Res
Set 5.855 5.700+ 0.161 5.538 2.805x 1072 | -4.246x 10> | 4.881x 107*
Sep 5.888 5.566+ 0.088 5538 4.062x 103 | 1.869x 1074 3.505x 1074
Seg 5.895 5.690+ 0.146 5.538 2.79%x 1072 9.25x 1076 6.8x 104
Set, 5.886 5570+ 0.110 5.538 6.074x 10°% | 2.859x10* | —1.893x 10°°
Seg 5.968 5.630+ 0.105 5.538 1.644x 1072 | -4.072x 10* | 4.714x 107*
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Fig. 7: Results of the fit using the Levenberg-Marquardtatgm for the first target as a function of the observed fremyethe

upper panel is associated with MoglgWhich used the average large frequency separation anddhédnalro; andév, as
constraints; the central panel is associated with Mggdehich used individual\v,; anddvy as constraints; the lower panel is
associated with Modgt which also used individualv,; andév, as constraints.

improved the value of,. In some cases, the acoustic radiusaving lown and |

3 modes was the best way to ensure

was not well fitted by the forward modelling process but th&ccuracy.
inversion could improve its determination. Table 11 illagts

the results of combined inversions, whereas Table 10 gives Based on the above, the frequency set used for these test
results for all test cases. In fact, one could argue that the e cases is of lower quality and this has been compensated for
contributions are not that fiierent from what was obtainedby the forward modelling process. To further illustrate the
using only the average large and small frequency sepasationimportance of the model selection, in Table 10 we repeat the
constraints. However, our previous analysis of the depeeeleresults obtained by simply ajustirgAv > and< év > that we

on the degree and radial order of the modes has shown us th&iote as Modeb. For Target we see that the dominant source
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Fig. 8: Results of the fit using the Levenberg-Marquardtatgm for the second target as a function of the observedigrqy
(colour online): the red dots are associated with Mgdethich used individuaty, as constraints and the purple dots are
associated with Modg} which used individuatg, andrg; as constraints.

of error contributiongayg is +6 to 10 times smaller than whatdid not consider the first age indicatorfrom Buldgen et al.
is for Modeko. As a result it is clear that using the informatior{2015). In fact, the indicatdrcould also provide accurate results
given by individual frequencies is crucial to ensure actwuraor Target. However, its inaccuracy for older models has been
results in observed cases. observed during this entire study, and we recommend lignits

use to young stafswhere it can provide valuable information
The necessity of an acoustic radius inversion results frgmmoviding that the kernels are well optimised.
two aspects in the selection of the reference models. The firs
one is present in Modg}; the change o& induced during the
fit had an important impact on the upper regions and therefor lusi
change in the acoustic radius was observable. The second %hgonc usion
is present in Modgl, and Moded,, where the observational . . o
constraints were sensitive to core regions, except for title-a !N this article, we have presented a new approach to consteai
metic average of the large frequency separations. In thie,cd"Xing processes in stellar cores using the SOLA inversion
the upper regions are less constrained and the inversidgitl is §&chnique. We used the framework presented in Buldgen et al.
necessary. However, we note that in most cases the acougfl5) to develop an integrated quantity, denotgdthat is
radius of the reference model was very accurate. This is dRhsitive to the feects of stellar evolution and to the impact
to the lack of surfacefects in the target models. If we werePf additional mixing processes or mismatches in the chemica
to include non-adiabatic computations orffeiences in the composition of the core. We based our choice solely on struc-
convection treatment, fierences would be seen in the acoustf¢!r@l &fects and considerations about the variational principle
radii of the targets and reference models, but it is cleamfro@nd the ability of the kernels to fit their targets.
these test cases that the acoustic radius combinedystione o ) . .
is not suficient to distinguish betweerffects of diferences in The derivation of this new quantity was made possible us-
helium abundance andfects of microscopic diusion. We also iNd the approach of Masters (1979) to derive new structural
note that when using the individue, along with the< Ay > kernels in the context of asteroseismology by solving an
(the test case of Mode]), we obtain a very good fit df, with prd;na_ry dffe.rentlal equation. We discussed the problem of the
the reference model. This is a consequence of the factghi intrinsic scaling €ect presented in Basu (2003) and discussed
very sensitive to core regions, and so the core charadtsréste hovy it could gﬂect the indicatot,. We tested its sensitivity to
reproduced well. However, with the acoustic radius inversi various physical changes between the target and the referen
we note that the surface regions are not well fitted, and if wWeodel and demonstrated that SOLA inversions are able to
includerqy, as done in the test case of Moglelwe obtain a S|gn|f|cantly improve the accuracy with whmhus determ.med,
better fit of the acoustic radius, bitis then less accurate. Thethereby indicating whether there is a problem in the corerey
inversion of the indicatot, informs us that the core regions2f the reference model.
are not reproduced well in this reference model. We can see .
that Modek 1 or Modek > and Mode} 3 reproduce the indicator We then qnalysed the importance of the number and type
t, better. However, in all these cases the acoustic radius V¥smodes in the observational data and concluded that the
not properly reproduced. Therefore the combined invessioftcuracy of an inversion of the indicatar increased with
indicate that something is wrong with the set of free paramsnetmmnple values of the degreé€, and low values of the radial
used because we cannot fit properly surface and core regiBfer.n. Following from this, we emphasise that the observation
simultaneously, although the fit of the seismic constrawita ©f £ = 3 modes is important for the inversion of the indicator
the Levenberg-Marquardt algorithm is excellent in all sase  fu Since it can improve the accuracy without the need of fow

- - - 8
We also mention that in all test cases carried out here, w \ilzgtcgl:ose not to present these results and to focus our stutiien

Article number, page 13 of 15



modes. Such modes ardfutiult to observe. Indeed, only a fewGrundahl, F., Kjeldsen, H., Christensen-Dalsgaard, En#uft, T., & Frandsen,
octupole modes have been detected for around 15% of skéar-li S.2007, Communications in Asteroseismology, 150, 300 ,
stars with Kepler. The use of other observational facﬂitieKOSOV'CheV' A. G. 1999, Journal of Computational and ApplMathematics,
such as_ the, SONG netvyork (Grundahl etal. 2007)' mlght hq_lporeton, Y., Goupil, M. J., & Montalban, J. 2014a, in EAS Rediions Series,
us obtain richer oscillation spectra as far as octupole ®ode vol. 65, EAS Publications Series, 99-176

are concerned. The test cases for the 16CygA and 16CyigiBreton, Y., Goupil, M. J., & Montalban, J. 2014b, in EAS Redtions Series,
clones demonstrated that our method was applicable torgurre Vol- 65, EAS Publications Series, 177-223

- - . Masters, G. 1979, Geophysical Journal International, 87, 5
observational data and one could still carry out an inversid, Metcalfe, T. S., Chaplin, W. J.. Appourchaux, T., et al. 20483, 748, L10

without these modes. However, it is clear that this methdt Wisigiio, A., Girardi, L., Rodrigues, T. S., Stello, D., & Chéip, W. J. 2015, As-
only be applicable to the best observational cases withdfepl trophysics and Space Science Proceedings, 39, 11
Plato or SONG. Pijpers, F. P. & Thompson, M. J. 1994, A&A, 281, 231

Rauer, H., Catala, C., Aerts, C., et al. 2014, Experimensiiohomy, 38, 249

. . Reese, D. R. 2013, A&A, 555, A148
We also analysed the impact of the selection of the refejzese p R Marques, J. P., Goupil, M. J., Thompson, M. DeBeuvels, S.

ence model on the inversion results and concluded that usingo12, A&A, 539, A63
individual frequency combinations is far morffieient in terms Roxburgh, I. W. 2010, Ap&SS, 328, 3
of accuracy and stability for the inversion results. HowgveRoxburgh, I. W. 2015, A&A, 574, A45

. : ou, J., Christensen-Dalsgaard, J., & Thompson, M. 3,188], 433, 389
we noticed in supplementary tests that there was what co flaire. R., Montalban, J.. Théado. S., et al. 20082, Ap&S8, 149

be called a resolution limit for th& inversion which depends scyfiaire, R., Théado, S., Montalban, J., et al. 2008b, Ap&RS, 83
on the magnitude of the fierences in the physics between th&assoul, M. 1980, ApJS, 43, 469

reference model and its targets but also on the weight giv“é*wul,AK-A& B?hf]a"F;JANE&;O&b,At- 1|9%,1 ﬁpi, ‘32%,9 fégfig
to the core in the selection of the reference model. (See tﬁmeaT 'F'e.,i:ﬁbe}, b hq;?eétrd \Z’thi_ 2013, I\/F|)N’RAS,4$362
example the case of Modgl and the associated discussion).

This leads to the conclusion that supplementary indepdnden

integrated quantities should be derived to help us distgigu

between various physicalfects and improve our sensitivity to

the physics of stellar interiors. Nevertheless, the tesesaf

Sect. 5 showed that the SOLA method is much more sensitive

than the forward modelling process used to select the medere

model (here a Levenberg-Marquardt algorithm) and could

indicate whether the set of free parameters used to degtebe

model is adequate.

Acknowledgements. G.B. is supported by the FNRS (“Fonds National de la
Recherche Scientifique”) through a FRIA (“Fonds pour la Fation a la
Recherche dans I'Industrie et I'Agriculture”) doctoralléevship. D.R.R. is cur-
rently funded by the European Community’s Seventh Framlewsogramme
(FP72007-2013) under grant agreement no. 312844 (SPACEINNi¢chwis
gratefully acknowledged. This article made use of an adapéesion of Inver-
sionKit, a software developed in the context of the HELAS SRACEINN net-
works, funded by the European Commissions’s Sixth and Severmmework
Programmes.

References

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009A4&R, 47, 481

Basu, S. 2003, Ap&SS, 284, 153

Basu, S., Christensen-Dalsgaard, J., Perez HernandeZ, Thompson, M. J.
1996a, MNRAS, 280, 651

Basu, S., Christensen-Dalsgaard, J., Schou, J., Thomlgsdn, & Tomczyk, S.
1996b, Bulletin of the Astronomical Society of India, 24,714

Brown, T. M., Christensen-Dalsgaard, J., Weibel-Mihaks & Gilliland, R. L.
1994, ApJ, 427, 1013

Buldgen, G., Reese, D. R., Dupret, M. A., & Samadi, R. 20150874, A42

Dappen, W., Gough, D. O., Kosovichev, A. G., & Thompson, M1991, in
Lecture Notes in Physics, Berlin Springer Verlag, Vol. 38allenges to
Theories of the Structure of Moderate-Mass Stars, ed. Dg&é&uw. Toomre,
111

Deheuvels, S., Dgan, G., Goupil, M. J., et al. 2014, A&A, 564, A27

Dupret, M.-A. 2008, Communications in Asteroseismolody7,116

Dziembowski, W. A., Pamyatnykh, A. A., & Sienkiewicz, R. TBMNRAS,
244,542

Eggenberger, P., Meynet, G., Maeder, A, et al. 2010, A&A,54116

Elliott, J. R. 1996, MNRAS, 280, 1244

Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., & New, R9Q, Nature,
347,536

Gough, D. O. & Thompson, M. J. 1991, The inversion problem fed\. Cox,
W. C. Livingston, & M. S. Matthews, 519-561

Grevesse, N. & Noels, A. 1993, Physica Scripta Volume T, 83, 1

Article number, page 14 of 15



Table 7: Inversion results for the 16CygA and 16CygB clorsisgithe (1, I'1) kernels.

r (/o) | (/o) (u ) | o (@/enf) | e ECrass hes
16CygA (Full,6 = 107°) 2.965 2.891+0.083 2.885 2.641x 103 | -1.780x 1073 | 1.442x 1073
16CygA (Full,6 = 1074 2.965 2.872+0.036 2.885 ~-4.033x 1073 | -9.487x 10 | 7.149x 1074
16CygA (Smallg = 107°) 2.965 2.971+0.083 2.885 3.117x 102 | -2577x 102 | 5.000x 10°*
16CygA (Smallg = 107%) 2.965 2.906+ 0.031 2.885 8.240x 103 | —1.778x 1072 | 7.000x 10
16CygB (Full) 4540 4.007+ 0.095 3.783 4547x 1072 | —2.407x 10 | 2.277x 1072
16CygB (Small) 4540 4.295+0.113 3.783 1.093x 10! | -1.715x 1073 | 1.138x 1072
Table 8: Characteristics of TargeTargeg, and of the models obtained with the Levenberg-Marquagdtréghm.
Target7 Model7,1 Model7,2 MOdEI7_3 Targetg MOdGIg,l MOdeng
Mass (Mo) 0.9 0.933 0.908 0.957 10 1.009 1.029
Radius (R,) 0.908 0.919 0.912 0.926 1.17 118 1.19
Age (Gyr) 3.075 3.34 3.69 3.45 4.168 4.322 4.489
Terr (K) 5659 5701 5488 5713 6003 5985 5966
Z | 0.0122 | 0.0122 0.0122 0.0105 | 0.0122 | 0.0185 0.0181
Yo | 0.308 0.274 0.269 0.243 0.3078 0.323 0.305
Abundances | AGSS09| AGSS09| AGSS09| AGSS09| AGSS09| AGSS09 | AGSS09
amt 1.522 1.522 1.297 1522 1.522 1.522 1.522
Diffusion coefficient 16 0 0 0 16 0 0
Table 9: Constraints and free parameters used for the LevgrWlarquardt fit.
Constraints Parameters
Modeko | < Avni(v) > + < 6vni(v) > Mass+ Age
Modeby | Avni(v) + 0vni(v) + ros(v) Mass+ Age + Yo
Model, » Avni(v) + 0vni(v) Mass+ Age + Yo+ amt
Modek 3 Avni(v) + v (v) Mass+ Age+ Yo + Zo
Modek 1 < Av >+ rg2(v) Mass+ Age + Yo + Zo
Modek, | < Av > +r1o2(v) + ro1(v) Mass+ Age+ Yo + Zo
Table 10: Inversion results for various fits with the Levemngsklarquardt algorithm.
R (@P/enf) | g (@/om) (ul) | g (@/enf) | e Erass ERes
Modek o 7.626 7.000+ 0.24 6.703 4.952x 1072 294x 10% | -3.389x 1073
Model; 1 6.562 6.657+0.122 6.703 -14x107° | —2407x10% | =2.777x 10°*
Model; , 6.393 6.669+ 0.123 6.703 -6.597x 1073 | -1.292x 104 | —2.478x 107
Model 3 6.467 6.667+0.121 6.703 -2571x 102 | -3.322x 10 | -5.661x 10
Modek 1 3.450 3.651+ 0.092 3.568 2.458x 102 | —2.302x 10* | —1.745x 1073
Modek, 3.337 3.637+0.096 3.568 2.089x 102 | -6.553x 10 | —-1.568x 1073

Table 11: Combinedd(t,) inversion results for various fits with the Levenberg-Maacdt algorithm.

- (@/om®) [ - (@enf) (I | & @/em®) [ re® |t | o9
Modek , 6.393 6.657+ 0.092 6.703 3230 | 3223+ 0.028 | 3222
Modelk 1 3.450 3.651+ 0.096 3.568 4509 | 4450+ 0.028 | 4442
Modek 3.337 3.637+0.120 3.568 4517 | 4448+ 0.017 | 4442
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