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ABSTRACT

Context. Currently, seismic modelling is one of the best ways of building accurate stellar models, thereby providing accurate ages.
However, current methods are affected by simplifying assumptions concerning stellar mixing processes. In this context, providing
new structural indicators that are less model-dependent and more sensitive to mixing processes is crucial.
Aims. We wish to build a new indicator for core conditions (i.e. mixing processes and evolutionary stage) on the main sequence.This
indicatortu should be more sensitive to structural differences and applicable to older stars than the indicatort presented in a previous
paper. We also wish to analyse the importance of the number and type of modes for the inversion, as well as the impact of various
constraints and levels of accuracy in the forward modellingprocess that is used to obtain reference models for the inversion.
Methods. First, we present a method of obtaining new structural kernels in the context of asteroseismology. We then use these new
kernels to build a new indicator of central conditions in stars, denotedtu, and test it for various effects including atomic diffusion,
various initial helium abundances, and various metallicities, following the seismic inversion method presented in our previous paper.
We then study the indicator’s accuracy for seven different pulsation spectra including those of 16CygA and 16CygB and analyse how
it depends on the reference model by using different constraints and levels of accuracy for its selection
Results. We observe that the inversion of the new indicatortu using the SOLA method provides a good diagnostic for additional
mixing processes in central regions of stars. Its sensitivity allows us to test for diffusive processes and chemical composition mismatch.
We also observe that using modes of degree 3 can improve the accuracy of the results, as well as using modes of low radial order.
Moreover, we note that individual frequency combinations should be considered to optimise the accuracy of the results.
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1. Introduction

Determining accurate and precise stellar ages is a major prob-
lem in astrophysics. These determinations are either obtained
through empirical relations or model-dependent approaches.
Moreover, accurate stellar ages are crucial when studying
stellar evolution, when determining properties of exoplan-
etary systems or when characterising stellar populations in
the galaxy. However, the absence of a direct observational
method for measuring this quantity makes such determinations
rather complicated. Age is usually related empirically to the
evolutionary stage or determined through model dependent
techniques like the forward asteroseismic modelling of stars.
However, this model-dependence is problematic because, ifa
physical process is not taken into account during the modelling,
it will introduce a bias when determining the age, as well as in
the determination of other fundamental characteristics like the
mass or the radius (see, for example, Eggenberger et al. (2010)
for the impact of rotation on asteroseismic properties, and
Miglio et al. (2015), for a discussion in the context of ensemble
asteroseismology, and Brown et al. (1994), for a comprehensive
study of the relation between seismic constraints and stellar
model parameters). It is also clear that asteroseismology probes
the evolutionary stage of stars and not the age directly. In other
words, we are able to analyse the stellar physical conditions
but relating these properties to an age will, ultimately, always
depend on assumptions made during the building of the evolu-

tionary sequence of the model. A general review of the impact
of the hypotheses of stellar modelling and of asteroseismic
constraints on the determination of stellar ages is presented in
Lebreton et al. (2014a) and Lebreton et al. (2014b).

In the sense of this age determination problematic, the
question of additional mixing processes is central (Dupret2008)
and can only be solved by using less model dependent seismic
analysis techniques and new generations of stellar models.
These new seismic methods should be able to provide relevant
constraints on the physical conditions in the central regions
and help with the inclusion of additional mixing in the models.
In this context, seismic inversion techniques are an interesting
way to relate structural differences to frequency differences and
therefore offer a new insight into the physical conditions inside
observed stars. From the observational point of view, the high
quality of the Kepler and CoRoT data as well as the selection of
the Plato mission (Rauer et al. 2014) allows us to expect enough
observational data to carry out inversions of global character-
istics. In the context of helioseismology, structural inversion
techniques have already led to noteworthy successes. They
have provided strong constraints on solar atomic diffusion (see
Basu et al. 1996b), thus confirming the work of Elsworth et al.
(1990). However, application of structural inversion techniques
in asteroseismology is still limited. Inversions for rotation
profiles have been carried out (see for example Deheuvels et al.
2014, for an application to Kepler subgiants), but as far as struc-
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tural inversions are concerned, one can use either non-linear
(see Roxburgh 2010, 2015, for an example of the differential
response technique), or linear inversion techniques applied to
integrated quantities as in Reese et al. (2012) and Buldgen et al.
(2015).

In our previous paper (see Buldgen et al. 2015), we ex-
tended mean density inversions based on the SOLA technique
(Reese et al. 2012) to inversions of the acoustic radius of the
star and an indicator of core conditions, denotedt. We also
developed a general approach to determining custom-made
global characteristics for an observed star. We showed that
applying the SOLA inversion technique (Pijpers & Thompson
1994) to a carefully selected reference model, obtained via
the forward-modelling technique, could lead to very accurate
results. However, it was then clear that the first age indicator was
limited to rather young stars and that other indicators should be
developed. Moreover, the model dependence of these techniques
should be carefully studied and there is a need to define a
more extended theoretical background for these methods. The
influence of the number but also the type of modes used for a
specific inversion should be investigated. In the end, one should
be able to define whether the inversion should be carried out
or not, knowing the number of observed frequencies and the
quality of the reference model according to its selection criteria.

In this study, we offer an answer to these questions and
provide a new indicator for the mixing processes and the
evolutionary stage of an observed star. We structure our study
as follows: Section 2 introduces a technique to obtain equations
for new structural kernels in the context of asteroseismology
and applies it to the (u, Γ1) and the (u, Y) kernels, whereu is the
squared isothermal sound speed,Γ1 the adiabatic gradient andY
the current helium abundance profile. Section 3 introduces anew
indicator of mixing processes and evolutionary stages, which is
not restricted to young stars, as was the case for the indicator
presented in Buldgen et al. (2015). Having introduced this new
indicator, we test its accuracy using different physical effects
such as including atomic diffusion processes with high velocities
(up to 2.0 times the solar microscopic diffusion velocities) in the
target, changing the helium abundance, changing the metallicity
and changing the solar mixture of heavy elements. Section 4
analyses the impact of the type and number of modes on the
inversion results whereas Section 5 studies how the accuracy
depends on the reference model. We also tested our method on
targets similar to the binary system 16CygA and 16CygB using
the same modes as those observed in Verma et al. (2014) to
show that our method is indeed applicable to current observa-
tional data. Section 6 summarises our results and presents some
prospects on future research for global quantities that could be
obtained with the SOLA inversion technique.

2. (u, Γ1) and (u, Y) structural kernels

2.1. Integral equations for structural couples in the
asteroseismic context

Gough & Thompson (1991) demonstrate that one could deduce a
linear integral relation between the perturbations of frequencies
and the perturbation of structural variables from the variational
principle. This equation is obtained by assuming the adiabatic
approximation and spherical symmetry, and by neglecting sur-
face integral terms. It is only valid if the stellar models are close

to each other. If one is working with the structural pair (c2, ρ),
wherec2 is the adiabatic squared sound velocity andρ the den-
sity, this relation takes on the form:

δνi

νi
=

∫ 1

0
Ki
ρ,c2

δρ

ρ
dx +

∫ 1

0
Ki

c2,ρ

δc2

c2
dx +

G(ν)
Qi
+ O(2), (1)

where x = r
R with R the stellar radius, and where the classi-

cal definition of the relative differences between the target and
model for any structural quantitys has been used:

δs(x)
s
=

sobs(x) − sref(x)
sref

. (2)

In what follows, we always use the subscript or superscript
“obs” when referring to the observed star, “ref” for the reference
model variables in perturbation definitions, and inv for inverted
results. Other variables, like the kernel functions, whichare
denoted without subscripts or superscripts, are of course related
to the reference model and are known in practice. Finally, one
should also note that the suffix i is only meant to be an index
to classify the modes. Moreover, since it is clear that some
hypotheses are not suitable for surface regions, a supplementary
function, G(ν) was added to model these so-called surface
effects. It is defined as a linear combination of Legendre
polynomials, normalised by the factorQi, which is the mode
inertia normalised by the inertia of a radial mode interpolated
to the same frequency. We emphasise here that neither this
normalisation coefficient nor the treatment of surface effects are
uniquely defined and that other techniques have also been used
(see for example Dziembowski et al. 1990; Däppen et al. 1991;
Basu et al. 1996a).

The kernels of the couple (ρ, Γ1) have already been pre-
sented in Gough & Thompson (1991) who also mentionned the
use of another method, defined in Masters (1979) to modify
Eq. 1 and obtain such relations for the (c2, Γ1) couple and
also the (N2, c2) couple. Other approaches to obtaining new
structural kernels were presented (see for example Elliott1996;
Kosovichev 1999, for the application of the adjoint equations
method to this problem). The latter approach has been used
in helioseismology where it was assumed that the mass of the
observed star is known to a sufficient level of accuracy to impose
surface boundary conditions. In the context of asteroseismology,
we cannot make this assumption. Nevertheless, the approach
defined in Masters (1979) allows us to find ordinary differential
equations for a large number of supplementary structural
kernels, without assuming a fixed mass1.

Another question arises in the context of asteroseismol-
ogy: what about the radius? We implicitly define our integral
equation in non-dimensional variables but how do we relate the
structural functions, for examplec2

obs(r) defined for the observed
star andc2

ref(r) defined for the reference model? What are the
implications of defining all functions in the same domain in
x = r

Rre f
varying from 0 to 1? It was shown by Basu (2003)

that an implicit scaling was applied by the inversion in the
asteroseismic context. The observed target is homologously
rescaled to the radius of the reference model, while its mean
density is preserved. This means that the oscillation frequencies
are the same, but other quantities such as the adiabatic sound

1 The method of adjoint equations previously described couldalso be
used but would require an additional hypothesis to replace the missing
boundary condition.
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speedc, and the squared isothermal sound speedu = P
ρ
, will be

rescaled. Therefore, when inverted, they are not related tothe
real target but to a scaled one.

This can be demonstrated with the following simple test.
We can take two models a few time steps from one another on
the same evolutionary sequence knowing that they should notbe
that different. (Here, we consider 1M⊙, main-sequence models.)
We then test the verification of Eq. 1 by plotting the following
relative difference

Ei
ρ,c2 =

δνi
νi
− Si

δνi
νi

, (3)

with Si defined as

Si =

∫ 1

0

(

Ki
ρ,c2

δρ

ρ
+ Ki

c2,ρ

δc2

c2

)

dx. (4)

The results are plotted in blue in the left panel of Fig. 1, where
we can see that this equation is not satisfied. However, one might
think that this inaccuracy is related to the neglected surface terms
or to non-linear effects. Therefore we carry out the same test us-
ing the (ρ, Γ1) kernels, plotted in red in the right-hand panel of
Fig. 1. We see that for these kernels, the equation is satisfied.
Moreover, when separating the contributions of each structural
term, we see that the errors arise from the term related toc2 in
the first case. Using the scaled adiabatic sound speed, however,
leads to the blue symbols in the right-hand panel of Fig. 1 and
we directly see that in this case, the integral equation is satisfied.
This leads to the conclusion that inversion results based oninte-
gral equations are always related to the scaled target and not the
target itself, as concluded by Basu (2003). We see in Sect. 3 that
this has strong implications for the structural information given
by inversion techniques.

2.2. Differential equation for the (u, Γ1) and the (u, Y)
kernels

As mentioned in the previous section, the method described in
Masters (1979) allows us to derive differential equations for
structural kernels. In what follows, we will apply this method
to the (u, Γ1) and the (u, Y) kernels. However, this approach
can be applied to many other structural pairs such as: (c2, Γ1),
(c2, Y), (g, Γ1), (g, Y), . . . , with c2 =

Γ1P
ρ

the squared adiabatic

sound speed ,g = Gm
r2 the local gravity,Γ1 =

(

∂ ln T
∂ ln P

)

S
the

adiabatic gradient andY the local helium abundance. We do
not describe these kernels since they are straightforward to
obtain using the same technique as that which will be used here
for the (u, Γ1) kernels. One should also note that a differential
equation cannot be obtained for the couple (N2, c2), with N2 the
Brunt-Väisälä frequency, defined as:N2 = 1

g

(

1
Γ1

d ln P
dr −

d ln ρ
dr

)

,
without neglecting a supplementary surface term.

The first step is to assume that if these kernels exist, they
should satisfy an integral equation of the type given in Eq. 1,
thereby leading to:

δνi

νi
=

∫ 1

0
Ki
ρ,Γ1

δρ

ρ
dx +

∫ 1

0
Ki
Γ1,ρ

δΓ1

Γ1
dx,

=

∫ 1

0
Ki

u,Γ1

δu
u

dx +
∫ 1

0
Ki
Γ1,u

δΓ1

Γ1
dx. (5)

From that point, we use the definition ofu to express the first
integral in terms of a density perturbation. This is done using the
definition of the pressure,P, and the cumulative mass up to a
radial position,r:

P =
∫ R

r

Gm̃ρ̃
r̃2

dr̃ + Psur f (6)

m =
∫ r

0
4πr̃2ρ̃dr̃ (7)

where we neglect the pressure perturbation at the surface. In
what follows, we use the non-dimensional formsP̂ = PR4

GM2 ,
whereM is the stellar mass,R the stellar radius andG the grav-

itational constant, ˆm = m
M andρ̂ = R3ρ

M . To avoid any confusion
in already rather intricate equations, we drop the hat notation in
what follows and denote these non-dimensional variablesP, m
andρ. Using Eqs. 6 and 7, one can relateu perturbations toP
andρ perturbations as

δu
u
=
δP
P
−
δρ

ρ
. (8)

However, using Eq. 6, one can also relateP perturbations toρ
perturbations. Doing this, one should note that the surfacepres-
sure perturbation is usually neglected and considered as a so-
called surface effect. Using non-dimensional variables and com-
bining Eqs. 6 and 7 in Eq. 8, one obtains an expression relating
u perturbations solely toρ perturbations. (Of course, this is an
integral relation due to the definition of the hydrostatic pressure,
P). One can use this relation to replaceδuu in Eq. 5 and after
the permutation of the integrals stemming from the definition of
the hydrostatic pressure perturbation, one obtains the following
integral equation relatingKi

ρ,Γ1
to Ki

u,Γ1
:

∫ 1

0
Ki
ρ,Γ1

δρ

ρ
dx +

∫ 1

0
Ki
Γ1,ρ

δΓ1

Γ1
dx =

∫ 1

0















m(x)ρ
x2















∫ x

0

Ki
u,Γ1

P̄
dx̄















+4πx2ρ















∫ 1

x

ρ̃

x̃2















∫ x̃

0

Ki
u,Γ1

P̄
dx̄















dx̃















− Ki
u,Γ1















δρ

ρ
dx

+

∫ 1

0
Ki
Γ1,u

δΓ1

Γ1
dx. (9)

One should be careful when solving this equation since one is
faced with multiple integrals, with certain equilibrium variables
associated to ˜x or x̄. Therefore care should be taken when inte-
grating to check the quality of the result. To obtain a differential
equation, we note that it is clear that the equation is satisfied if
the integrands are equal, meaning that the kernels are related as
follows:

Ki
ρ,Γ1
=

m(x)ρ
x2















∫ x

0

Ki
u,Γ1

P̄
dx̄















+ 4πx2ρ















∫ 1

x

ρ̃

x̃2















∫ x̃

0

Ki
u,Γ1

P̄
dx̄















dx̃















− Ki
u,Γ1
, (10)

Ki
Γ1,ρ
= Ki

Γ1,u
. (11)

Given this integral expression, one can simply derive and sim-
plify the expression to obtain a second-order ordinary differen-
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Fig. 1: Verification of Eq. 1 for a set of 120 modes with the· being the 40 radial modes, the× being the 40 dipolar modes and the+
being the 40 quadrupolar modes. The left plot illustrates this verification for the (ρ, c2) couple when no scaling is applied toc2

whereas the right plot illustrates the same verification forthe (ρ, c2) couple when scaling is applied toc2, as well as the (ρ, Γ1)
couple where no scaling is needed.

tial equation inx as follows:

−y
d2κ

′

(dy)2
+

[

2πy3/2ρ̃

m̃
− 3

]

dκ
′

dy
= y

d2κ

(dy)2

−

[

2πy3/2ρ̃

m̃
− 3+

m̃ρ̃

2y1/2P̃

]

dκ
dy

+

[

m̃ρ̃

4yP̃2

dP̃
dx
−

m̃

4yP̃

dρ̃
dx
−

3

4y1/2P̃

dP̃
dx
−

m̃ρ̃

2y3/2P̃

]

κ, (12)

whereκ =
Ki

u,Γ1

x2ρ
, κ

′

=
Ki
ρ,Γ1

x2ρ
andy = x2. The central boundary

condition in terms ofκ and κ
′

is obtained by taking the limit
of Eq. 12 asy goes to 0. The additional boundary conditions
are obtained from Eq. 10. Namely, we impose that the solution
satisfies Eq. 10 at some point of the domain. This system is
then discretised using a finite difference scheme based on Reese
(2013), and solved using a direct band-matrix solver.

Two quality checks can be made to validate our solution,
the first being that every kernel satisfies Eq. 10, the second
being that they satisfy a frequency-structure relation (asin Eq.
5) within the same accuracy as the classical structural kernels
(ρ, Γ1) or (ρ, c2). We can carry out the same analysis as in
section 2.1, keeping in mind that the squared isothermal sound
speed will also be implicitly rescaled by the inversion since it
is proportional toM

R , as is the squared adiabatic sound speed,
c2. The results of this test are plotted in Fig. 2 along with an
example of the verification of the integral equation for the kernel
associated with theℓ = 0, n = 15 mode.

The equation for the (u, Y) kernels is identical when using
the following relation:

δνi

νi
=

∫ 1

0
Ki
ρ,Y
δρ

ρ
dx +

∫ 1

0
Ki

Y,ρδYdx,

=

∫ 1

0
Ki

u,Y
δu
u

dx +
∫ 1

0
Ki

Y,uδYdx. (13)

meaning that Eq. 12 can simply be transposed using the defini-

tions:κ =
Ki

u,Y

x2ρ
andκ

′

=
Ki
ρ,Y

x2ρ
. One could also start from Eq. 5, use

the definition:

δΓ1

Γ1
=

(

∂ln(Γ1)
∂ln(P)

)

Z,Y,ρ

δP
P
+

(

∂ln(Γ1)
∂ln(ρ)

)

Z,Y,P

δρ

ρ
+

(

∂ln(Γ1)
∂Y

)

Z,P,ρ

δY

+

(

∂ln(Γ1)
∂Z

)

Y,P,ρ

δZ, (14)

and neglect theδZ contribution. This assumption is particularly
justified if one places spectroscopic constraints on the metallic-
ity. Nevertheless, the term associated withδZ is smaller than
the three other terms and if one is probing the core regions, the
δΓ1
Γ1

contribution is already very small. Consequently, all of the
terms of Eq. 14 are small compared to the integral contribution.
Still, this assumption is not completely sound if one wishesto
probe surface regions. When comparing the

(

∂ln(Γ1)
∂Z

)

Y,P,ρ
to the

(

∂ln(Γ1)
∂Y

)

Z,P,ρ
δY, we notice that their amplitude is comparable

and that
(

∂ln(Γ1)
∂Z

)

Y,P,ρ
is even often larger. However, we have

to consider that it will be multiplied byδZ, which is much
smaller thanδY. Moreover, the functions are somewhat alike
in central regions and, as a consequence, there will be an
implicit partial damping of theδZ term when damping theδY
contribution if it is in the cross-term of the inversion. We can
control the importance of this assumption by switching from
the (u, Y) kernels to the (u, Γ1) kernels. Indeed, if the error is
large, the inversion result will be changed by the contribution
from the neglected term. In conclusion, in the case of the
inversion of tu, we present and use in the next sections, this
assumption is justified, but this is not certain for inversions of
helium mass fraction in upper layers, for which only numeri-
cal tests for the chosen indicator will provide a definitive answer.

Knowing these facts, we can search for the (u, Y) kernels
using the previous developments. It is in fact straightforward
when using the (ρ, Y) kernels, which are directly obtained from
(ρ, Γ1) or (ρ, c2). However, one should also note that by using
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Fig. 2: (left) Plot illustrating the verification of Eq. 10 for n = 15,ℓ = 0 kernelK15,0, whereIu,Γ1 is the right-hand side of this
equation andR is the residual. (right) Same test as in Fig. 1 for the (u, Γ1) kernels.
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Fig. 3: Same as Fig. 2 for the (u, Y) kernels.

Eq. 14, we assume that the equation of state is known for
the target which might introduce small errors2. Again, Fig. 3
illustrates the tests of our solutions by plotting the errors on the
integral equation (Eq. 13), and by seeing how well our solution
for theℓ = 0, n = 15 mode verifies Eq. 10. The (u, Γ1) and (u, Y)
kernels of this particular mode are illustrated in figure 4. The
kernels associated withu are very similar, except for the surface
regions where some differences can be seen.

3. Indicator for internal mixing processes and
evolutionary stage based on the variations of
u

3.1. Definition of the target function and link to the
evolutionary effect

Knowing that it is possible to obtain the helium abundance
in the integral Eq.13, we could be tempted to use it to obtain
corrections on the helium abundance in the core and thereby
gain insights into the chemical evolution directly. However, Fig.
4 reminds us of the hard reality associated with these helium
kernels. Their intensity is only non-negligible in surfaceregions,
making it impossible to obtain information on the core helium

2 However, these can be neglected when compared to other uncertain-
ties on the structural properties of observed stars.

abundance using them.

Another approach would be to use the squared isothermal
sound speed,u, to reach our goal. Indeed, we know that
u = P

ρ
∝ T

µ
, and that during the evolution along the main

sequence, the mean molecular weight will change. Moreover
the core contraction can also lead to changes in the variation of
theu profile. Using the same philosophy as for the definition of
the first age indicator (see Buldgen et al. 2015) and ultimately
for the use of the small separation as an indicator of the core
conditions (see Tassoul 1980), we build our indicator usingthe
first radial derivative ofu. Using u instead ofc2 allows us to
avoid the dependence inΓ1 which is responsible for the surface
dependence ofdc

dr . To build our indicator, we analyse the effect
of the evolution on the profile ofdu

dr . This effect is illustrated
in Fig. 5. As can be seen, two lobes tend to develop as the star
ages. The first problem is that these variations have opposite
signs, meaning that if we integrate through both lobes, the
sensitivity will be greatly reduced. Therefore, we choose to base
our indicator on the squared first radial derivative:

t̄u =
∫ R

0
f (r)

(

du
dr

)2

dr, (15)

where f (r) is an appropriate weight function. First, we consider
that the observed star and the reference model have the same
radius. The target function for this indicator can easily beob-
tained. We perturb the equation fortu and use an integration by
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Fig. 4: Structural kernels for then = 15,ℓ = 0 mode associated with the (u, Γ1) couple on the left hand side and with the (u, Y)
couple on the right hand side.

parts to relate the perturbations of the indicator to structural per-
turbations ofu:

δt̄u
t̄u
=

2
t̄u

∫ R

0
f (r)

du
dr

dδu
dr

dr,

=
−2
t̄u

∫ R

0
u

d
dr

(

f (r)
du
dr

)

δu
u

dr +

[

f (r)
du
dr
δu

]R

0

. (16)

The last term on the second line is not suitable for SOLA inver-
sions, given the neglect of surface terms in the kernels. We thus
define the functionf so thatf (0) = f (R) = 0, thereby cancelling
this term. This leads to the following expression:

δt̄u
t̄u
=

∫ R

0
Ttu
δu
u

dr, (17)

where

Ttu =
−2u
t̄u

d
dr

(

f (r)
du
dr

)

. (18)

The weight functionf (r) must be chosen according to a number
of criteria: it has to be sensitive to the core regions where
the profile changes; it has to have a low amplitude at the
boundaries of the domain, allowing us to do the integration by
parts necessary for obtainingδu in the expression; and it should
be possible to fit the target function associated with thisf (r)
using structural kernels from a restricted number of frequencies.
Moreover, Eq. (18) being related to linear perturbations, it is
clear that non-linear effects should not dominate the changes
of this indicator3. We also know that the amplitude of the
structural kernels is 0 in the centre, sof (r) should also satisfy
this condition.
3 Otherwise, using the SOLA technique, which is linear, wouldbe im-
possible.

We define the weight function as:

f (r) = rα (r − R)λ exp

(

−γ

( r − ropt

R

)2
)

, (19)

which means that we have four parameters to adjust. The case
of ropt is quickly treated. Since we know that the changes will
be localised in the lobes developing in the core regions, we
chose to putropt = 0, andα andλ should be at least 1, so that
the integration by part is exact and the central limit for the
target function and the structural kernels is the same. Gamma
depends on the effects of the non-linearities. However, since
we have to perform a second derivative ofu a more practical
concern appears: we do not want to be influenced by the effects
of the discontinuity at the boundary of the convective envelope.
Ultimately, we use the following set of parameters:α = 1,
λ = 2, γ = 7, andropt = 0. One could argue that the optimal
choice forropt would be either at the maximum of the second
lobe or between both lobes to obtain the maximal sensitivityin
the structural variations. These values were also tested, but the
results were a little less accurate than usingropt = 0 and they
involved higher inversion coefficients and, hence, higher error
magnification. We illustrate the weighted profile obtained for
this optimal set of parameters in the right-hand side panel of
Fig. 5. Furthermore, Eq. 17 is satisfied up to 5%, so we can try
to carry out inversions for this indicator. It is also important to
note that for the sake of simplicity, we do not choose to change
the values of these parameters with the model, which would
only bring additional complexity to the problem.

Because of the target functionTtu , we can now carry out
inversions for the integrated quantitytu using the linear SOLA
inversion technique (Pijpers & Thompson 1994). But first, we
should recall the purpose of inversions and our adaptation
of the SOLA technique to integrated quantities. Historically,
inversions have been used to obtain seismically constrained
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structural profiles (Basu et al. 1996b) as well as rotational
profiles (Schou et al. 1994) in helioseismology. However, none
of these methods are suited for the inversions we wish to carry
here. As discussed in Buldgen et al. (2015), the SOLA inversion
technique, which uses a so-called kernel-matching approach is
well suited to our purpose. Indeed, this approach allows us to
define custom-made target functions that will be used to build a
cost function, here denotedJ. In the case of thetu quantity, one
has the definition

Jtu =

∫ 1

0

[

KAvg − Ttu

]2
dx + β

∫ 1

0
K2

Crossdx + tan(θ)
N

∑

i

(ciσi)
2

+ η















N
∑

i

ci − k















, (20)

whereKAvg is the so-called averaging kernel andKCross is the
so-called cross-term kernel defined as follows for the (u, Γ1)
structural pair (for (u, Y), replaceKi

u,Γ1
by Ki

u,Y and Ki
Γ1,u

by
Ki

Y,u):

KAvg =

N
∑

i

ciK
i
u,Γ1
, (21)

KCross=

N
∑

i

ciK
i
Γ1,u
. (22)

The symbolsθ andβ are free parameters of the inversion. Here,
θ is related to the compromise between the amplification of the
observational error bars (σi) and the fit of the kernels, whereas
β is allowed to vary to give more weight to the elimination of
the cross-term kernel. In this expression,N is the number of
observed frequencies, theci are the inversion coefficients, used
to determine the correction that will be applied on thetu value.
Eta is a Lagrange multiplier and the last term appearing in the
expression of the cost-function is a supplementary constraint
applied to the inversion that is presented in Sect. 3.2.

If the observed target and the reference model have the
same radius, the inversion will measure the value oftu for
the observed target. However, if this condition is not met, the
inversion will produce a scaled value of this indicator. By
defining integral equations such as Eq. 15, or even Eq. 1, we
have seen in Sect. 2.1 that we made the hypothesis that both the
target and the reference model had the same radius. However,

because the frequencies scale with
(

M
R3

)1/2
, the inversion will

preserve the mean density of the observed target. Therefore,
we are implicitly carrying out the inversion for a scaled target
homologous to the observed target, which has the radius of
the reference model but the mean density of the observed
target. Simple reasoning demonstrates that the mass of this

scaled target is:M̄tar = Mtar
R3

re f

R3
tar

. Thus, becausetu scales as

M2, there is a difference between the target valuetobs
u and the

measured value,tinv
u . Consequently, we can write the following

equations:

tinv
u

M̄2
tar

=
tobs
u

M2
tar

, (23)

tinv
u

R6
re f

=
tobs
u

R6
tar

, (24)

where we have used the definition of̄Mtar to express the mass
dependencies as radius dependencies. Therefore, we use Eq.24
as a criterion to determine whether the inversion was successful
or not.

3.2. Non-linear generalisation

This section presents a general approach to the non-linear gen-
eralisation presented in Reese et al. (2012) and Buldgen et al.
(2015) for any type of global characteristic that can scale with
the mass of the star. It is obvious that we can say that the fre-
quencies scale asM1/2. Of course, they scale as the mean density,

namely
√

M
R3 . However, since the inversion works with a fixed

radius and implicitly scales the target to the same radius asthe
reference model, the iterative process associated with this non-
linear generalisation will never change the model radius. There-
fore, we do not take this dependence into account and simply
work on the mass dependence. We letA be a global characteris-
tic, related to the mass of the star. It is always possible to define
a factork so that:

A ∝ νk. (25)

And we directly obtain:

δA
A
= k
δν

ν
. (26)

However, using the definition of the inverted correction ofA, one
has:

δA
A
=

∑

i

ci
δνi

νi
, (27)

whereci are the inversion coefficients. Using the same reasoning
as in Buldgen et al. (2015) and Reese et al. (2012), we define the
inversion as “unbiased” (a term that should not be taken in the
statistical sense.) if it satisfies the condition
∑

i

ci = k. (28)

Now we can define an iterative process using the scale factor
sk
0 =

Ainv,0

Aref
. We scale the reference model (in other words, multi-

ply its mass and density bys2, its pressure bys4, leavingΓ1 un-
changed), carry out a second inversion, then define a new scale
factor and so on until no further correction is made by the inver-
sion process. In other words, we search for the fixed point of the
equation of the scale factor. At thejth iteration, we obtain the
following equation for the inversion value ofA:

Ainv = Arefs
k−1
j















s j +
∑

i

ci
δνi

νi
+ k(1− s j)















. (29)

This can be written in terms of the scale factor alone, notingthat
at the jth iteration, Ainv

Are f
= sk

j+1:

sk
j+1 = sk−1

j















s j +
∑

i

ci
δνi

νi
+ k(1− s j)















. (30)

The fixed point is then obtained,

sopt =

∑

i ci
δνi
νi

k
+ 1, (31)
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Fig. 5: Left panel: structural changes in the scaleddu
dx profile with the evolution. The models are main sequence 1.0M⊙ models.

Right panel: the same effects as seen when
(
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)2
is weighted according to Eq. 19.

and can be used directly to obtain the optimal value of the in-
dicatorA. We can also carry out a general analysis of the error
bars treating the observed frequencies andAinv as stochastic vari-
ables:

νobs,i = ν̄obs,i(1+ ǫi), (32)

Ainv = Āinv(1+ ǫA), (33)

with ǫi andǫA being the stochastic contributions to the variables.
Using the hypothesis thatǫi ≪ 1 we obtain the following equa-
tion for the error bars:

σA = Are f















1
k

∑

i

ci
νobs

i

νref
i















k−1 √

(
∑

i

ciσi)2. (34)

We note that in the particular case of the indicatortu, k = 4.
Indeed,tu ∝ M2 whereasν ∝ M1/2.

3.3. Tests using various physical effects

To test the accuracy of the SOLA technique applied to the
tu indicator, we carried out the same test as in Buldgen et al.
(2015) using stellar models that would play the role of observed
targets. These models included physical phenomena not taken
into account in the reference models. A total of 13 targets were
constructed, with masses of 0.9 M⊙, 1.0 M⊙ and 1.1 M⊙ but to
avoid redundancy, we only present six that are representative of
the mass and age ranges and of the physical effects considered
in our study. We tested various effects for each mass. These
effects fell into the following categories: those that come
from microscopic diffusion using the approach presented in
Thoul et al. (1994) (multiplying the atomic diffusion coefficients
by a factor given in the last line of Table 14), those caused by a
helium abundance mismatch, those that result from a metallicity
mismatch, and those that stem from using a different solar
heavy-element mixture. For the last case, the target was built
using the Grevesse & Noels (1993)(GN93) abundances and
the reference model was built using the Asplund et al. (2009)

4 These values might seem excessive regarding the reliability of the
implementation of diffusion. We stress here that our goal was to wit-
ness the impact of significant changes on the results. However, other
processes or mismatches could alter thedu

dr gradient and thus be detected
by the inversion.

(AGSS09) abundances.

All targets and reference models were built using version
18.15 of the Code Liégeois d’Evolution Stellaire (CLES) stellar
evolution code (Scuflaire et al. 2008b) and their oscillations
frequencies were calculated using the Liège oscillation code
(LOSC, Scuflaire et al. (2008a)). Table 1 summarises the prop-
erties of the six targets presented in this paper. The selection
of the reference model was based on the fit of the large and
small separation for 60 modes withn = 7 − 26 andℓ = 0 − 2
using a Levenberg-Marquardt minimisation code. The use of
supplementary constraints will be discussed in Sect. 5 whereas
the effects of the selection of the modes will be discussed in
Sect. 4. The choice of 60 frequencies is motivated by the number
of observed frequencies for the system 16CygA - 16Cyg B
by Kepler, which is between 50 and 60 (Verma et al. 2014).
The inversions were carried out using the (u, Y) and the (u, Γ1)
structural kernels.

If the inversion of tu shows that there are differences be-
tween the target and the reference model, then we know that
the core regions are not properly represented. Whether these
differences arise from atomic diffusion or a helium abun-
dance mismatch, thetu indicator alone could not answer this
question5. Therefore, the philosophy we adopt in this paper
is the following: Is the inversion able to correct mistakes in
the reference models? If so, within what range of accuracy?.
The capacity of disentangling different effects is partially
illustrated in Sect. 5, but additional indicators are stillrequired
to provide the best diagnostic possible given a set of frequencies.

The results are given in Table 2 for the (u, Γ1) kernels and
Table 3 for the (u, Y) kernels along with the respective error con-
tributions given according to the developments of Reese et al.
(2012) and Buldgen et al. (2015). We denote these error contri-
butions:εAvg, εCross, εRes. These errors contributions are defined

5 To completely constrain the changes that are a consequence of multi-
ple additional mixing processes with only one structural indicator is of
course impossible.
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Table 1: Characteristics of the 6 targets.

Target1 Target2 Target 3 Target4 Target5 Target6

Mass (M⊙) 1.0 1.0 1.0 0.9 1.0 1.1
Radius (R⊙) 1.076 1.159 1.14 0.89 1.193 1.297

Age (Gyr) 8.05 7.55 7.06 6.0 5.121 5.135
Teff (K) 5597 5884 5712 5329 6081 5967

Z0 0.015 0.0122 0.0122 0.0122 0.0122 0.0122
Y0 0.2457 0.2485 0.2485 0.2485 0.3078 0.2485

Abundances AGSS09 GN93 AGSS09 AGSS09 AGSS09 AGSS09
αMLT 1.522 1.522 1.522 1.522 1.522 1.522

Diffusion factor 0 0 2 1.6 0 1.6

Note: Differences between target and reference model in bold.

as

εAvg =

∫ 1

0

[

KAvg − Ttu

] δu
u

dx, (35)

εCross=

∫ 1

0
KCross

δΓ1

Γ1
dx, (36)

if the (u, Γ1) couple is used. If one prefers the (u, Y), εCross be-
comes

εCross=

∫ 1

0
KCrossδYdx. (37)

Finally, εRes is associated with the residual contribution, in
the sense that it is what remains after one has taken into
account bothεCross and εAvg. The target function and their
fits are illustrated in Fig. 6 for Target4. As we can see from
Tables 2 and 3, we obtain accurate results for all cases.
This means that the inversion is successful and that the regular-
isation process is sufficient for the valuesβ = 10−6 andθ = 10−5.

We see in the fifth column of Tables 2 and 3 that the aver-
aging kernel fit is usually the dominant error contribution.In the
next sections, we see how this result changes with the modes
used or with the quality of the reference model. If we analyse
the cross-term error contribution, we see that it is generally
much less important than the averaging kernel mismatch error.
We also see that despite the high amplitude of the cross-term
kernels associated withΓ1 shown in Fig. 6, the real error is quite
small and often smaller than the error associated with the helium
cross-term kernel. This is due not only to the small variations in
Γ1 between target and reference model but also to the oscillatory
behaviour of theΓ1 cross-term kernel. In contrast, the cross-term
kernel of the (u, Y) kernel has a smaller amplitude, but nearly
no oscillatory behaviour and is larger in the surface regions,
where the inversion is naturally less robust. Nonetheless,the
results of the (u, Y) kernels also show some compensation. We
also note that they tend to have larger residual errors. However,
there is no clear difference in accuracy between the (u, Γ1) and
the (u, Y) kernels. In the case of Target2, we see that although
the results are slightly improved, the reference value is within
the error bars of the inversion results. In an observed case,this
would mean that the reference model is already very close to
the target as far as the indicatortu is concerned. However, we
wish to point out that it seems rather improbable that the only
difference between a static model and a real observed star would
be in its heavy-element mixture.

Analysing the residual contribution is slightly more diffi-
cult, since it includes each and every supplementary effect:
surface terms, non-linear contributions, errors in the equation
of state (when using kernels related toY), etc. In this study, we
can see that the residual error is well constricted. This is not
the case, for example, if the parameterθ is chosen to be very
small, or if the scaling effect is not taken into account6. In fact,
the θ parameter is a regularizing parameter, in the sense that it
does not allow the inversion coefficients to take on extremely
high values. In that case, the inversion would be completely
unstable because a slight error in the fit would be amplified
and would lead to incorrect results. This is quickly understood
knowing that the inversion coefficients are used to recombine
the frequencies as

δtinv
u

tu
=

N
∑

i

ci
δνi

νi
, (38)

with N the total number of observed frequencies. Where this
equation is subject to the uncertainties in Eqs. 17 and 5 (or,re-
spectively Eq. 13), any error will be dramatically amplifiedby
the inversion process. Therefore there is no gain in reducing θ
since at some point, the uncertainties behind the basic equation
of the inversion process will dominate and lead the method to
failure. In this case, the inversion problem is not sufficiently reg-
ularised. Such an example is presented and analysed in the next
section.

4. Impact of the type and number of modes on the
inversion results

When carrying out inversions on observed data, we are limited
to the observed modes. Therefore the question of how the
inversion results depend on the type of modes is of utmost
importance. The reason behind this dependence is that different
frequencies are associated with different eigenfunctions, in
other words different structural kernels, sensitive to different
regions of the star. Therefore, the inverse problem will vary for
each set of modes because the physical information contained in
the observational data changes. Hence, we studied four targets
using seven sets of modes. As in Sect. 3.3, we wish to avoid
redundancy and so present our results for one target, namely
Target3, and five different frequency sets. As a supplementary

6 In which case one would be searching for a result that is impossible
to obtain.
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Table 2: Inversion results for the 6 targets using the (u, Γ1) kernels.
tref
u

R6
re f

(g2/cm6) tinv
u

R6
re f

(g2/cm6) (u, Γ1)
tobs
u

R6
tar

(g2/cm6) ε
u,Γ1

Avg ε
u,Γ1

Cross ε
u,Γ1

Res

Target1 4.032 3.568± 0.063 3.532 4.415× 10−4 −1.684× 10−4 9.767× 10−3

Target2 3.434 3.24± 0.075 3.428 −1.301× 10−3 −4.419× 10−4 5.951× 10−4

Target3 3.562 3.275± 0.067 3.252 5.789× 10−3 −1.178× 10−3 2.277× 10−3

Target4 5.879 5.621± 0.147 5.536 1.388× 10−2 3.088× 10−4 8.062× 10−4

Target5 2.845 2.669± 0.088 2.630 −6.498× 10−4 −4.493× 10−3 2.366× 10−4

Target6 3.205 3.480± 0.091 3.498 1.496× 10−2 −1.11× 10−3 7.824× 10−4

Table 3: Inversion results for the 6 targets using the (u, Y) kernels.
tref
u

R6
re f

(g2/cm6) tinv
u

R6
re f

(g2/cm6) (u, Y) tobs
u

R6
tar

(g2/cm6) ε
u,Y
Avg ε

u,Y
Cross ε

u,Y
Res

Target1 4.032 3.575± 0.063 3.532 8.34× 10−4 1.601× 10−4 1.1× 10−2

Target2 3.434 3.423± 0.075 3.428 −1.301× 10−3 1.338× 10−7 2.127× 10−5

Target3 3.562 3.283± 0.067 3.252 5.748× 10−3 8.296× 10−3 −4.794× 10−3

Target4 5.879 5.624± 0.148 5.536 1.386× 10−2 1.337× 10−3 5.448× 10−4

Target5 2.845 2.675± 0.089 2.630 −5.421× 10−4 −8.184× 10−3 3.168× 10−4

Target6 3.205 3.480± 0.091 3.498 1.458× 10−2 1.214× 10−2 −9.721× 10−3
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Fig. 6: (left) Averaging kernels for both structural pairs and their respective targets. The red and blue curves are nearly identical, so
that only the red curve is visible. (right) Cross-term kernels for both structural pairs, the target being 0.

test case, we defined two target models with the properties of
16CygA and 16CygB found in the litterature (Metcalfe et al.
2012; White et al. 2013; Verma et al. 2014). Using these prop-
erties, we added strong atomic diffusion to the 16CygA model
and usedZ = 0.023 as well as the GN93 mixture for 16CygB.
In constrast, the reference models usedZ = 0.0122 and the
AGSS09 mixture. The characteristics of these models are also
summarised in Table 4, where we used the set of observed
modes given by Verma et al. (2014) and ignored the isolated
ℓ = 3 modes for which there was no possibility to define a large
separation.

All the sets for the test cases of this section are summarised
in Table 5. The reference model was chosen as in Sect. 3.3,
using the arithmetic average of the large and small frequency
separations as constraints for its mass and age. With these test
cases, we first analyse whether the inversion results dependon
the values of the radial ordern of the modes, with the help of
the frequency Sets 1, 2 and 3 (see Table 5). Then we analyse the
importance of theℓ = 3 modes for the inversion using Sets 4
and 5.

The inversion results for all these targets and sets of mode
are presented in Tables 6 and 7 for the (u, Γ1) kernels. A first
conclusion can be drawn from the results using Sets 1, 2 and
3: low n are important for ensuring an accurate results. In fact,
Set 2 provides much better results than Set 1,. Even using Set
3 (which is only Set 1 extended up ton = 34 for eachℓ) does
not improve the results any further. This means that modes with
n > 27 are barely used to fit the target.

This first result can be interpreted in a variety of ways.
Firstly, using mathematical reasoning, we can say that the
kernels associated with highern have high amplitudes in the
surface regions and are therefore not well suited to probing
central regions. Another way to interpret this problem follows:
When we use modes with highn, we come closer to the asymp-
totic regime, and the eigenfunctions are described by the JWKB
approximation, all of which have a similar form and do not
therefore provide useful additional information. Based onthis,
we see a clear difference between inverted structural quantities
and the information deduced from asymptotic relations, which
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Table 4: Characteristics of 16CygA and 16CygB clones.

16CygA-clone 16CygB-clone
Mass (M⊙) 1.11 1.06

Radius (R⊙) 1.13 1.04
Age (Gyr) 6.9 6.7

Teff (K) 5696 5772.9
Z0 0.024 0.023
Y0 0.241 0.242

Abundances AGSS09 GN93
αMLT 2.0 2.0

Diffusion coefficient 2 0

requires highn values to be valid, thereby highlighting the
usefulness of inversions. The question of the importance ofthe
modesℓ = 3 is also quickly answered from the results obtained
with Set 4 and 5. For these test cases, we reach very good
accuracy even withoutn ≤ 9 unlike the previous test case using
Set 2. Moreover, we use even fewer frequencies than for the first
three sets. In fact, this is crucial to determine whether onecan
apply an inversion in an observed case, since a fewℓ = 3 modes
can change the results and make the inversion successful.

To further illustrate the importance of the octupole modes,
we use the 16CygA and 16CygB clones to carry out inversions
for their respective observed frequency sets. In a first testcase,
we use all frequencies and reach a reasonable accuracy for both
targets. In the second test case, we do not use the octupole
modes and we can observe a drastic change in accuracy.
These results are illustrated in Table 7, where the notation
"Small" (for small frequency set) has been added to the linesas-
sociated with the results obtained without using theℓ = 3 modes.

Looking again at the results for 16CygA, we see that al-
though the inversion improves the value oftu, the reference
value lies within the observational error bars of the inverted
result. The case of the truncated set of frequencies is even worse,
since the inverted result is less accurate than the reference value.
We therefore analysed the problem for the full frequency set.
To do so we carried out a variety of inversions using higher
values ofθ. The results forθ = 10−4 are illustrated in Table 7.
In this case we have lower error bars, but what is reassuring
is that the result did not change drastically when we changed
θ. This means that the problem is properly regularised around
θ = 10−5 and θ = 10−4 and that we can trust the inversion
results. Our advice is therefore to always look at the behaviour
of the solution with the inversion parameters to see if thereis
any sign of compensation or other undesirable behaviour. Infact
there is no law to select the value ofθ and applying fixed values
blindly for all asteroseismic observations is probably thebest
way to obtain unreliable results.

The case of the small frequency set is even more intrigu-
ing since the result improves greatly withθ = 10−4. The
question that arises is whether the problem is not properly
regularised withθ = 10−5 or whether we are faced with some
fortuitous compensation effect that leads to very accurate
results. If we are faced with fortuitous compensation, taking θ
slightly larger than 10−4 or increasingβ will drastically reduce
the accuracy since any change in the linear combination will
affect the compensation. However, if we are faced with a regu-
larisation problem, the accuracy should decrease regularly with
the change of parameters (since we are slightly reducing the

quality of the fit with those changes). We emphasise again that
one should not choose values of the inversion parameters where
any small augmentation of the regularisation would drastically
change the result. In this particular case, we were confronted
with insufficient regularisation and choosingθ = 10−4 corrected
the problem.

5. Impact of the quality of the forward modelling
process on the inversion results

In this section we present various inversion results using
different criteria to select the reference model for the inversion.
The previous results, only using the average large and small
frequency separations as constraints for the mass and age ofthe
model, are indeed a crude representation of the real capabilities
of seismic modelling. It is well known that other individual
frequency combinations can be used to obtain independent
information on the core mixing processes and that we should
adjust more than two parameters to describe the physical
processes in stellar interiors.

To carry out these test cases, we built two target models
including microscopic diffusion. As before, we did not in-
clude this process in the reference models obtained by fitting
the so-called 56 observed frequencies. We used the modes
l = 0, n = 12− 25; l = 1, n = 11− 25; l = 2, n = 11− 26;
l = 3, n = 14− 24. The characteristics of the targets are sum-
marised in Table 8 along with those of the best models obtained
through seismic modelling. Table 9 contains information on
the various constraints and free parameters used for the fit.We
used various seismic constraints such as the individual large and
small frequency separations, the individualr01 andr02, defined
as

r02 =
νn−1,2 − νn,0

νn,1 − νn−1,1
, (39)

r01 =
νn,0 − 2νn,1 + νn+1,0

2(νn+1,0 − νn,0)
. (40)

The free parameters were chosen to match what is done when
trying to fit observations, although the final quality of the fit
is much higher than one expects from an observed case, as
illutrasted in Fig. 7 for Target7

7 and Fig. 8 for Target8. Here one
should note that the arithmetic average of the large frequency
separations were fitted to within 1% in addition to the individual
quantities plotted in Fig. 8. In all these cases the inversion

7 We did not present the fit of the individual large frequency separa-
tions for Model7.1 to avoid redundancy with Model7.2 and Model7.3.
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Table 5: Sets of modes used to analyse the impact of the numberand type of frequencies on the inversion results

Set1 Set2 Set3 Set4 Set5 16CygA 16CygB
ℓ = 0 n = 9− 28 n = 5− 27 n = 9− 34 n = 11− 24 n = 11− 26 n = 12− 27 n = 13− 26
ℓ = 1 n = 9− 28 n = 5− 27 n = 9− 34 n = 11− 24 n = 11− 26 n = 11− 27 n = 13− 26
ℓ = 2 n = 9− 28 n = 5− 27 n = 9− 34 n = 11− 24 n = 11− 26 n = 11− 24 n = 12− 25
ℓ = 3 − − − n = 9− 20 n = 12− 22 n = 15− 21 n = 17− 24

Table 6: Inversion results for Target3 using the (u, Γ1) kernels and Sets 1− 5 of Table 5.
tref
u

R6
re f

(g2/cm6) tinv
u

R6
re f

(g2/cm6) (u, Γ1) tobs
u

R6
tar

(g2/cm6) ε
u,Γ1
Avg ε

u,Γ1
Cross ε

u,Γ1
Res

Set1 5.855 5.700± 0.161 5.538 2.805× 10−2 −4.246× 10−5 4.881× 10−4

Set2 5.888 5.566± 0.088 5.538 4.062× 10−3 1.869× 10−4 3.505× 10−4

Set3 5.895 5.690± 0.146 5.538 2.79× 10−2 9.25× 10−6 6.8× 10−4

Set4 5.886 5.570± 0.110 5.538 6.074× 10−3 2.859× 10−4 −1.893× 10−3

Set5 5.968 5.630± 0.105 5.538 1.644× 10−2 −4.072× 10−4 4.714× 10−4
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Fig. 7: Results of the fit using the Levenberg-Marquardt algorithm for the first target as a function of the observed frequency: the
upper panel is associated with Model7.1 which used the average large frequency separation and the individualr01 andδ̃νnl as

constraints; the central panel is associated with Model7.2 which used individual∆νn,l andδ̃νn,l as constraints; the lower panel is
associated with Model7.3 which also used individual∆νn,l andδ̃νn,l as constraints.

improved the value oftu. In some cases, the acoustic radius
was not well fitted by the forward modelling process but the
inversion could improve its determination. Table 11 illustrates
the results of combined inversions, whereas Table 10 gives the
results for all test cases. In fact, one could argue that the error
contributions are not that different from what was obtained
using only the average large and small frequency separations as
constraints. However, our previous analysis of the dependence
on the degree and radial order of the modes has shown us that

having low n and l = 3 modes was the best way to ensure
accuracy.

Based on the above, the frequency set used for these test
cases is of lower quality and this has been compensated for
by the forward modelling process. To further illustrate the
importance of the model selection, in Table 10 we repeat the
results obtained by simply ajusting< ∆ν > and< δ̃ν > that we
denote as Model7.0. For Target7 we see that the dominant source
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Fig. 8: Results of the fit using the Levenberg-Marquardt algorithm for the second target as a function of the observed frequency
(colour online): the red dots are associated with Model8.1 which used individualr02 as constraints and the purple dots are

associated with Model8.2 which used individualr02 andr01 as constraints.

of error contribution,εAvg is ±6 to 10 times smaller than what
is for Model7.0. As a result it is clear that using the information
given by individual frequencies is crucial to ensure accurate
results in observed cases.

The necessity of an acoustic radius inversion results from
two aspects in the selection of the reference models. The first
one is present in Model7.2; the change ofα induced during the
fit had an important impact on the upper regions and thereforea
change in the acoustic radius was observable. The second one
is present in Model8.1 and Model8.2, where the observational
constraints were sensitive to core regions, except for the arith-
metic average of the large frequency separations. In this case,
the upper regions are less constrained and the inversion is still
necessary. However, we note that in most cases the acoustic
radius of the reference model was very accurate. This is due
to the lack of surface effects in the target models. If we were
to include non-adiabatic computations or differences in the
convection treatment, differences would be seen in the acoustic
radii of the targets and reference models, but it is clear from
these test cases that the acoustic radius combined withtu alone
is not sufficient to distinguish between effects of differences in
helium abundance and effects of microscopic diffusion. We also
note that when using the individualr02 along with the< ∆ν >
(the test case of Model8.1), we obtain a very good fit oftu with
the reference model. This is a consequence of the fact thatr02 is
very sensitive to core regions, and so the core characteristics are
reproduced well. However, with the acoustic radius inversion,
we note that the surface regions are not well fitted, and if we
include r01, as done in the test case of Model8.2, we obtain a
better fit of the acoustic radius, buttu is then less accurate. The
inversion of the indicatortu informs us that the core regions
are not reproduced well in this reference model. We can see
that Model8.1 or Model7.2 and Model7.3 reproduce the indicator
tu better. However, in all these cases the acoustic radius was
not properly reproduced. Therefore the combined inversions
indicate that something is wrong with the set of free parameters
used because we cannot fit properly surface and core regions
simultaneously, although the fit of the seismic constraintswith
the Levenberg-Marquardt algorithm is excellent in all cases.

We also mention that in all test cases carried out here, we

did not consider the first age indicatort from Buldgen et al.
(2015). In fact, the indicatort could also provide accurate results
for Target7. However, its inaccuracy for older models has been
observed during this entire study, and we recommend limiting its
use to young stars8, where it can provide valuable information
providing that the kernels are well optimised.

6. Conclusion

In this article, we have presented a new approach to constraining
mixing processes in stellar cores using the SOLA inversion
technique. We used the framework presented in Buldgen et al.
(2015) to develop an integrated quantity, denotedtu, that is
sensitive to the effects of stellar evolution and to the impact
of additional mixing processes or mismatches in the chemical
composition of the core. We based our choice solely on struc-
tural effects and considerations about the variational principle
and the ability of the kernels to fit their targets.

The derivation of this new quantity was made possible us-
ing the approach of Masters (1979) to derive new structural
kernels in the context of asteroseismology by solving an
ordinary differential equation. We discussed the problem of the
intrinsic scaling effect presented in Basu (2003) and discussed
how it could affect the indicatortu. We tested its sensitivity to
various physical changes between the target and the reference
model and demonstrated that SOLA inversions are able to
significantly improve the accuracy with whichtu is determined,
thereby indicating whether there is a problem in the core regions
of the reference model.

We then analysed the importance of the number and type
of modes in the observational data and concluded that the
accuracy of an inversion of the indicatortu increased with
multiple values of the degree,ℓ, and low values of the radial
order,n. Following from this, we emphasise that the observation
of ℓ = 3 modes is important for the inversion of the indicator
tu since it can improve the accuracy without the need of lown

8 We chose not to present these results and to focus our study onthe tu

indicator.
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modes. Such modes are difficult to observe. Indeed, only a few
octupole modes have been detected for around 15% of solar-like
stars with Kepler. The use of other observational facilities,
such as the SONG network (Grundahl et al. 2007), might help
us obtain richer oscillation spectra as far as octupole modes
are concerned. The test cases for the 16CygA and 16CygB
clones demonstrated that our method was applicable to current
observational data and one could still carry out an inversion of tu
without these modes. However, it is clear that this method will
only be applicable to the best observational cases with Kepler,
Plato or SONG.

We also analysed the impact of the selection of the refer-
ence model on the inversion results and concluded that using
individual frequency combinations is far more efficient in terms
of accuracy and stability for the inversion results. However,
we noticed in supplementary tests that there was what could
be called a resolution limit for thetu inversion which depends
on the magnitude of the differences in the physics between the
reference model and its targets but also on the weight given
to the core in the selection of the reference model. (See for
example the case of Model8.1 and the associated discussion).
This leads to the conclusion that supplementary independent
integrated quantities should be derived to help us distinguish
between various physical effects and improve our sensitivity to
the physics of stellar interiors. Nevertheless, the test cases of
Sect. 5 showed that the SOLA method is much more sensitive
than the forward modelling process used to select the reference
model (here a Levenberg-Marquardt algorithm) and could
indicate whether the set of free parameters used to describethe
model is adequate.
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Table 7: Inversion results for the 16CygA and 16CygB clones using the (u, Γ1) kernels.
tref
u

R6
re f

(g2/cm6) tinv
u

R6
re f

(g2/cm6) (u, Γ1)
tobs
u

R6
tar

(g2/cm6) ε
u,Γ1

Avg ε
u,Γ1

Cross ε
u,Γ1

Res

16CygA (Full,θ = 10−5) 2.965 2.891± 0.083 2.885 2.641× 10−3 −1.780× 10−3 1.442× 10−3

16CygA (Full,θ = 10−4) 2.965 2.872± 0.036 2.885 −4.033× 10−3 −9.487× 10−4 7.149× 10−4

16CygA (Small,θ = 10−5) 2.965 2.971± 0.083 2.885 3.117× 10−2 −2.577× 10−3 5.000× 10−4

16CygA (Small,θ = 10−4) 2.965 2.906± 0.031 2.885 8.240× 10−3 −1.778× 10−3 7.000× 10−4

16CygB (Full) 4.540 4.007± 0.095 3.783 4.547× 10−2 −2.407× 10−4 2.277× 10−2

16CygB (Small) 4.540 4.295± 0.113 3.783 1.093× 10−1 −1.715× 10−3 1.138× 10−2

Table 8: Characteristics of Target7, Target8, and of the models obtained with the Levenberg-Marquardt algorithm.

Target7 Model7.1 Model7.2 Model7.3 Target8 Model8.1 Model8.2
Mass (M⊙) 0.9 0.933 0.908 0.957 1.0 1.009 1.029

Radius (R⊙) 0.908 0.919 0.912 0.926 1.17 1.18 1.19
Age (Gyr) 3.075 3.34 3.69 3.45 4.168 4.322 4.489

Teff (K) 5659 5701 5488 5713 6003 5985 5966
Z 0.0122 0.0122 0.0122 0.0105 0.0122 0.0185 0.0181

Y0 0.308 0.274 0.269 0.243 0.3078 0.323 0.305
Abundances AGSS09 AGSS09 AGSS09 AGSS09 AGSS09 AGSS09 AGSS09

αMLT 1.522 1.522 1.297 1.522 1.522 1.522 1.522
Diffusion coefficient 1.6 0 0 0 1.6 0 0

Table 9: Constraints and free parameters used for the Levenberg-Marquardt fit.

Constraints Parameters
Model7.0 < ∆νn,l(ν) > + < δ̃νn,l(ν) > Mass+ Age
Model7.1 ∆νn,l(ν) + δ̃νn,l(ν) + r01(ν) Mass+ Age+ Y0

Model7.2 ∆νn,l(ν) + δ̃νn,l(ν) Mass+ Age+ Y0+ αMLT

Model7.3 ∆νn,l(ν) + δ̃νn,l(ν) Mass+ Age+ Y0 + Z0
Model8.1 < ∆ν > + r02(ν) Mass+ Age+ Y0 + Z0
Model8.2 < ∆ν > + r02(ν) + r01(ν) Mass+ Age+ Y0 + Z0

Table 10: Inversion results for various fits with the Levenberg-Marquardt algorithm.
tref
u

R6
re f

(g2/cm6) tinv
u

R6
re f

(g2/cm6) (u, Γ1)
tobs
u

R6
tar

(g2/cm6) ε
u,Γ1
Avg ε

u,Γ1
Cross ε

u,Γ1
Res

Model7.0 7.626 7.000± 0.24 6.703 4.952× 10−2 2.94× 10−4 −3.389× 10−3

Model7.1 6.562 6.657± 0.122 6.703 −1.4× 10−3 −2.407× 10−4 −2.777× 10−4

Model7.2 6.393 6.669± 0.123 6.703 −6.597× 10−3 −1.292× 10−4 −2.478× 10−5

Model7.3 6.467 6.667± 0.121 6.703 −2.571× 10−3 −3.322× 10−4 −5.661× 10−4

Model8.1 3.450 3.651± 0.092 3.568 2.458× 10−2 −2.302× 10−4 −1.745× 10−3

Model8.2 3.337 3.637± 0.096 3.568 2.089× 10−2 −6.553× 10−4 −1.568× 10−3

Table 11: Combined (τ, tu) inversion results for various fits with the Levenberg-Marquardt algorithm.
tref
u

R6
re f

(g2/cm6) tinv
u

R6
re f

(g2/cm6) (u, Γ1)
tobs
u

R6
tar

(g2/cm6) τref(s) τinv(s) τobs(s)

Model7.2 6.393 6.657± 0.092 6.703 3230 3223± 0.028 3222
Model8.1 3.450 3.651± 0.096 3.568 4509 4450± 0.028 4442
Model8.2 3.337 3.637± 0.120 3.568 4517 4448± 0.017 4442
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