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What is human pose estimation ?

Definition (Human pose estimation)

In computer vision, it is the study of algorithms and systems that
recover the pose of a human body, which consists of joints and
rigid parts.
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Applications of human pose estimation: entertainment

Video games with the camera Kinect of Microsoft.
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Applications of human pose estimation: sport

Analyze the motion of athletes to optimize it.
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Applications of human pose estimation: medical

It can be used for the rehabilitation of injured persons or walking
analysis of neurologically diseased persons.
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Applications of human pose estimation: animation movies

It can be used to animate 3D characters.

6 / 34



Types of camera-based pose estimation systems

The camera-based pose estimation systems (or motion capture
systems) can be marker-based or markerless:

maker-based systems: markers are put on the subject and the
pose is recovered by localizing these markers with a multi-camera
setup.

markerless systems: the subject has nothing to wear and its pose
is recovered using a body model tracking method or a machine
learning technique.
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State-of-the-art marker-based system with passive markers

I The Vicon system:
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How does the Vicon system works ?

I It uses more than 10 calibrated IR cameras with IR LEDs.

I A set of reflective markers are placed on anatomical landmarks
of the subject.

I The images taken by the cameras are filtered to keep only the
markers.

I A 3D representation of the markers is constructed based on all
the images.

I The body joint locations are recovered based on the markers
positions.
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State-of-the-art marker-based system with active markers

I The PhaseSpace system:
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Advantages of active markers compared to passive ones ?

I Each marker is powered to emit its own light and can be
uniquely identified.

=⇒ The marker swapping problem is eliminated.

=⇒ It provides much cleaner data.
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Pros and cons of marker-based pose estimation systems

Pro

I Accuracy (error smaller than 1 mm on the markers positions)

Cons

I Long time needed to equip the person

I Errors due to markers misplacement

I Errors due to soft tissue artifact

I Large number of cameras needed wrt the tracking area (>10
cameras for a 5 x 5 m area)

I Markers can modify the gait
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Pros and cons of marker-based systems
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Markerless systems

For what purpose ?

Markerless systems can solve nearly all the mentioned
disadvantages of marker-based systems

Depending on the application the objective is to make them either:

I as accurate as possible (medical and sports analysis).

or
I as fast as possible (gaming).

or
I a trade-off between the two (animation movies).
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State-of-the-art markerless system for medical and sports
analysis (ref: Corazza et al. 2010)

Main characteristics of the method:

I Multiple color cameras (> 8)

I 3D reconstruction of the subject’s body

I Subject-specific model

I Accurate and anatomically consistent tracking algorithm

I Not realtime
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3D reconstruction of the subject’s body

A 3D reconstruction of the subject’s body is obtained from the
calibrated color cameras:

1 The background is subtracted in each color camera image
sequence using an intensity and color threshold.

2 The 3D reconstruction is achieved through visual hull.
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Visual hull

Definition (Visual hull [Laurentini, 1994])

The visual hull is defined as the maximal volume consistent with
an object’s silhouettes as seen from a set of viewpoints.
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Tracking algorithm

The visual hull reconstruction is tracked using an articulated
Iterative Closest Point (ICP) method and the subject-specific body
model.

ICP: algorithm that minimizes the difference between two clouds of
points by using translation and rotation transformations
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Tracking algorithm

Figure: Visual hull (blue) and body model (red) matched with an
articulated ICP algorithm.
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Generation of a subject-specific model

The key of the method to improve accuracy is to generate a
subject-specific body model with joint center locations.

I This is done using just one static scan (mesh) of the subject
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Learning joint centers locations

A training data set of nine subjects was used to learn the optimal
joint center locations in a subject-specific model.
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Learning joint centers locations

To make the process of model generation fully automatic, the joint
center locations are linked to the n nearest vertexes in the mesh.

(a1a2 . . . an)j


x1i y1i z1i
x2i y2i z2i
. . . . . . · · ·
xni yni zni

 = (x̄ji ȳji z̄ji ) (1)

where (x̄ji ȳji z̄ji ) are the coordinates of the joint center j .

I It was found that n = 7 minimizes the generalization error.

22 / 34



State-of-the-art markerless system for entertainment (ref:
Shotton et al. 2012)

Main characteristics of the method:

I One depth camera

I Machine learning approach with a large synthetic training set

I Each frame is treated independently (no temporal information)

I Super-realtime (around 200 fps)
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Outline of the method
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Body part classification approach

The body part classification (BPC) estimates the human pose in 2
steps:

1 It predicts a body part label for each pixel.

2 It uses the inferred body part labels to localize the body joint
centers.
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Learning set

The method use a large (1 million images) and highly varied
training set of synthetic data.
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Body part prediction model

I A forest of decision trees is used to predict a body part label
for each pixel u.
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Body parts prediction model

I A feature value is thresholded at each split node and the pixel
u takes a different path depending on the result.

I The leaf where the pixel u ends determines the probabilities to
belong to the different body parts.

I The final prediction is obtained by averaging the predictions
over all the trees.
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Features

The features used are simple depth comparisons

f (u|φ) = z

(
u +

δ1
z(u)

)
− z

(
u +

δ2
z(u)

)
(2)

with feature parameters φ = (δ1, δ2)
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Recovering body joint locations

Problem:

I In the world space coordinates, the pixels lie on the body
surface and so they are not aligned with a body joint in the z
direction.

Solution:

1 The 3D coordinates of each pixel are computed:
x(u) = (x(u), y(u), z(u))T

2 An offset along the z direction ζj is used to push back the 3D
coordinates to better align with the interior body joint j:
xj(u) = x(u) + (0, 0, ζj)

30 / 34



Recovering body joint locations

How do we map the surface body parts to the interior body joint
locations?

1 Each pixel u provides exactly one vote xj(u) for each body
joint j .

2 Each vote is given a weight

wj(u) = p(c = c(j)|u).z2(u) (3)

where c(j) is the body part associated with joint j .

3 The body joint locations are then given by the modes of the
following density estimators:

pj(x
′) �

∑
u

wj(u).exp

(
−
∥∥∥∥x′ − xj(u)

bj

∥∥∥∥2
)

(4)
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Conclusion

I There exist a lot of different pose estimation methods.

I The choice of a method strongly depends on the application
and should be based on three main aspects:

=⇒ the setup complexity

=⇒ the computing time

=⇒ the precision of the pose estimation
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A fun application: combining a markerless pose estimation
system with a virtual reality system

Oculus Rift : a virtual reality headset for 3D gaming
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