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Abstract— This paper studies path synthesis for nonholo-
nomic mobile robots moving in two-dimensional space. We
first address the problem of interpolating paths expressed as
sequences of straight line segments, such as those produced
by some planning algorithms, into smooth curves that can be
followed without stopping. Our solution has the advantage of
being simpler than other existing approaches, and has a low
computational cost that allows a real-time implementation. It
produces discretized paths on which curvature and variation
of curvature are bounded at all points, and preserves obstacle
clearance. Then, we consider the problem of computing a time-
optimal speed profile for such paths. We introduce an algorithm
that solves this problem in linear time, and that is able to
take into account a broader class of physical constraints than
other solutions. Our contributions have been implemented and
evaluated in the framework of the Eurobot contest.

I. INTRODUCTION

The general problem of moving a mobile robot as fast as
possible from a configuration to another while avoiding a
given set of obstacles can be tackled by several methods,
such as cell decomposition [3], roadmap [6], and potential
field techniques [5]. In two-dimensional planar space, a
large number of planning algorithms produce paths that are
expressed as broken lines, i.e., sequences of straight line
segments, between the initial and final configurations.

A differential-drive robot cannot follow such a path with-
out stopping at the junction points between adjacent line
segments in order to change its orientation, which wastes
time. This problem can be alleviated by interpolating broken
lines into smooth curves along which the orientation of
the robot and the curvature remain continuous everywhere.
This paper first addresses the problem of computing such
interpolations, so as to obtain paths that can be physically
followed without the need for stopping or slowing down
excessively. We consider the case of differential-drive robots,
but our results also apply to tricycle or car-like platforms.
We develop an interpolation algorithm that guarantees that
the obstacles cleared by a broken line are avoided as well
by the resulting smoothed out path.

Once an interpolated path has been obtained, we then
address another problem which consists in computing a time-
optimal speed profile for it, i.e., associating each point of
the curve with a timestamp that provides the instant at
which it will be visited, in such a way that the total time
needed for following the path becomes as small as possible.
This computation has to take into account various physical
constraints of the robot, e.g., bounds on its velocity or
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acceleration measured at its wheels or its center of mass,
limits imposed by the steering mechanism, . . . Some of these
constraints may be context-sensitive, e.g., a tight speed bound
may be imposed in the vicinity of obstacles cleared by a
small margin, or steering constraints may be expressed as a
function of the robot velocity.

Our motivation for studying these problems originates
from our participation to the Eurobot2 contest, in which
autonomous mobile robots compete in a short-duration game
played on a 2 × 3m2 area. For this application, it is
essential to plan paths in real-time due to the dynamic
nature of obstacles, which practically requires a method
with a computational cost limited to milliseconds of CPU
time, as well as to obtain trajectories that minimize the
time needed for moving the robot from one configuration to
another. This prompted the development of a time-optimal
speed profile computation algorithm that takes into account
all the relevant physical constraints, such as those limiting
traction at the robot wheels, or needed for ensuring stability
in turns. Another requirement that is specific to the Eurobot
application is to receive detailed and precise information
about the locations that will be visited by the robot and their
associated timestamps before starting to follow a trajectory,
in order to be able to coordinate complex actions such as
actuations carried out when the robot is moving, or jointly
performed by two partner robots. While other approaches
such as [7] and [8] have been proposed to deal with some
of these requirements, our solutions are, to the best of
our knowledge, the first ones that meet all of them in a
satisfactory way. Our algorithms have been implemented and
evaluated in the robots that we have built for Eurobot since
2008, which amounts to hundreds of thousands of trajectories
successfully synthesized.

II. PROBLEMS STATEMENT

A. Interpolation Problem

The first problem that we consider consists of smoothing
out a path expressed as a broken line. We define a broken
line path as a sequence p0, p1, . . . pn of points, with n ≥ 1,
such that
• each point pi, with i ∈ [0, n] is defined by its coordi-

nates (xi, yi) in two-dimensional space, and
• each intermediate point pi, with i ∈ [1, n− 1], is asso-

ciated with a clearance parameter ci ∈ R>0 ∪ {+∞}.
The path is composed of the successive straight line

segments [p0, p1], [p1, p2], . . . , [pn−1, pn]. In order to deal

2http://www.eurobot.org



obstacles

ci
safe zone

βi

pi : (xi, yi)

pi−1 : (xi−1, yi−1)

pi+1 : (xi+1, yi+1)

Fig. 1. Safe zone between adjacent segments

with obstacles, we assume that robots have zero measure,
in other words, that a path clears a set of obstacles iff
the intersection between its line segments and the union
of all these obstacles is empty. (The case of robots with
a cylindrical geometry can straightforwardly be handled by
dilating obstacles.) The purpose of the clearance parameter ci
is to provide additional information about the location of the
obstacles that are avoided when moving along the segments
[pi−1, pi] and [pi, pi+1]. This is achieved by considering a
disk Di that is tangent to both segments (which implies that
its center belongs to the inner bisector of the angle formed by
these segments), and that fully covers the obstacles cleared
by the pair of segments. This latter property precisely means
that the area located between the disk Di and the segments
[pi−1, pi] and [pi, pi+1] is free from obstacles; we call this
area the safe zone of this pair of segments. (By extension, we
consider that the segments themselves also belong to their
safe zone.) The point is that any interpolation of the path that
is confined to safe zones is guaranteed to avoid obstacles.
The safe zone across pi is characterized by the parameter ci,
defined as the distance between pi and the points of tangency
between Di and the segments [pi−1, pi] and [pi, pi+1]. This
parameter may be left undefined (ci = +∞), in which case
its value can be replaced by the smallest of the lengths of the
two segments. (In other words, Di is then the largest disk
simultaneously tangent to both segments.) An illustration is
provided in Figure 1.

For each i ∈ [1, n− 1], we define βi as the angle between
the vectors −−−−→pi−1pi and −−−−→pipi+1, which corresponds to the
change in orientation of the robot when it moves from the
segment [pi−1, pi] to the segment [pi, pi+1]. Without loss of
generality, we assume βi 6= 0. It is also natural to impose
an upper bound on |βi|. Indeed, with a large value of βi,
the segments [pi−1, pi] and [pi, pi+1] can be followed in
opposite directions, and it is not always appropriate in such
cases to interpolate the path into one that remains close to
the segments. In this work, we arbitrarily impose the upper
bound |βi| ≤ π/2 for all i ∈ [1, n−1]. In the case of adjacent
segments forming an acute angle, it then becomes necessary
to interleave an intermediate segment between them.

A differential-drive robot subject to physical constraints
cannot follow a broken line path without stopping at junction
points. Such constraints usually take the form of lower and
upper bounds on the velocity and acceleration of the robot
measured at specific locations, such as its individual wheels,

center of mass, or other reference centers. The speed that
can be reached by the robot at some point of a path is then
bounded by a function of the absolute curvature |κ| at this
point, as well as the rate of variation |dκ/ds| of this curvature
with respect to the linear traveled distance.

We are now ready to define precisely the interpolation
problem. Given a broken line path, the goal is to compute
a curve that leads from its origin to its endpoint staying
within safe zones, and such that the absolute curvature and
variation of curvature remain small at all points. For our
intended applications, it is essential to be able to carry out
this operation with a low computational cost. Finally, one
must be able to discretize the resulting interpolated path. This
discretization must be physically sound, in the sense that the
discretized values of the physical variables of interest (such
as speeds and accelerations) must remain close to their actual
value.

B. Speed Profile Problem

The second problem that we address takes as input a
discretized path, expressed as a sequence of configurations
(xi, yi, θi) successively visited by a robot, where (xi, yi)
denotes the two-dimensional coordinates of its reference
center, and θi its absolute orientation. In addition, some
number of physical constraints that need to be satisfied at
all times are provided, such as lower and upper bounds
on the velocity or acceleration of individual wheels, the
speed, angular speed, and tangential and radial accelerations
measured at the center of mass or some other reference
points, on the rate of variation of the steering angle for
a tricycle robot, . . . Some of those constraints may be
context-sensitive, such as imposing tighter speed bounds in
the vicinity of some obstacles, or expressing the admissible
angular velocity of the steering wheel as a function of the
robot speed. Besides those constraints, the initial speed of the
robot is specified at the origin of the path, together with an
upper bound on the speed that can be reached at its endpoint.
Given a path and a set of physical constraints, the aim is to
compute for all visited configurations (xi, yi, θi) a timestamp
ti that defines the time at which this configuration will be
reached, starting from t0 = 0. The goal is to obtain the speed
profile that minimizes the total time needed for following the
path, while satisfying the physical constraints at all times.

III. PATH INTERPOLATION

We solve the interpolation problem in two steps, the
first one being aimed at producing a path in which the
absolute curvature is bounded at all points, and the second
one modifying this path in order to now bound the rate of
variation of curvature. In both steps, the interpolated path
has to stay within safe zones in order to clear obstacles.

A. Bounding Curvature

In order to bound absolute curvature, we build a curve
composed of straight line segments (with zero curvature) and
circle arcs (with constant curvature), connected in such a way
that continuity of the tangent vector is ensured everywhere.



pi−1

pi+2

βi pi+1

βi+1

pi `i

`i+1

r

Fig. 2. Segments tangent to a common circle

On such a curve, the curvature can be expressed as a
piecewise constant function with respect to traveled distance.

We construct such a curve by computing, for each pair of
adjacent segments ([pi−1, pi], [pi, pi+1]) a value `i specifying
the distance from pi at which the curve transitions from the
segments to a circle arc. In other words, `i corresponds to
the distance between pi and each point of tangency between
that circle arc and the segments.

Of course, in order to clear obstacles, it is necessary
to have `i ≤ ci for all i ∈ [1, n − 1]. We compute
`i by applying the following principle: If three or more
consecutive segments are all tangent to a common circle, then
the arcs that interpolate these segments must belong to that
circle, provided that they are located within safe zones. This
solution has the desirable property of keeping the curvature
constant across two or more interpolation steps.

We now show how to carry out this computation. Consider
a path in which all segments are tangent to a common circle
of radius r. This situation is illustrated in Figure 2. At the
points pi and pi+1, one has respectively `i = r| tan(βi/2)|
and `i+1 = r| tan(βi+1/2)|. Since, in this case, the constraint
`i + `i+1 = |pipi+1| is satisfied, we obtain

`i =
τi |pipi+1|
τi + τi+1

(1)

`i+1 =
τi+1 |pipi+1|
τi + τi+1

, (2)

where τi = | tan(βi/2)| for all i. Note that these expressions
do not involve r, and that Equation (1) can be rewritten at
the point pi into

`i =
τi |pi−1pi|
τi−1 + τi

. (3)

For general paths, successive segments are not tangent to
a common circle, and Equations (1) and (3) then provide
different values for `i. Our strategy is, for all i ∈ [1, n− 1],
to define `i as the smallest value among those expressed by
Equations (1) and (3), and the clearance parameter ci. This
solution also applies to pairs of adjacent segments that turn
in opposite directions; in such a case, small values of |βi|
(which represent small changes of direction) lead to small
circle arcs, and large values of |βi| to large arcs, which is
geometrically sound.

B. Bounding Curvature Variations

We now turn to the problem of modifying the path
produced at the previous step, which has a curvature that

is piecewise constant, into one in which the rate of varia-
tion of curvature with respect to traveled distance remains
bounded. Clearing obstacles is achieved by constraining the
interpolation to remain within safe zones. The resulting path
must have a curvature that is continuous, bounded, and of
bounded slope, at all points.

We construct such curves out of clothoids, which cor-
respond to the paths followed by differential-drive robots
when their wheels are driven at respectively their minimum
and maximum acceleration (as a result, for instance, of
bang-bang control). Clothoids are formally defined as curves
with a curvature that varies linearly with traveled distance.
The coordinates of the points visited by a clothoid are
expressed in terms of Fresnel integrals, which cannot be
evaluated analytically, but for which very efficient numerical
approximations are known [12].

Consider a circle arc with curvature κC , interpolating two
successive line segments [pi−1, pi] and [pi, pi+1] within their
safe zone. Assuming w.l.o.g. κC > 0 (the case κC < 0 is
handled symmetrically), we have established the following
result.

Theorem 1: For every curvatures κ1, κ2 such that 0 ≤
κ1 < κC and 0 ≤ κ2 < κC , there exist two clothoids
arcs moving respectively from the curvatures κ1 to κM
and from κM to κ2, with κM > κC , the concatenation of
which interpolates the path from pi−1 to pi+1 within the safe
zone, with continuity of the tangent vector at the junction
point between the two curves. The parameters of these two
clothoids arcs are uniquely determined by κ1, κ2, κC , and
the rotation angle βi.

Our method for characterizing the two clothoid arcs con-
sists in reasoning on a diagram expressing the curvature
of the interpolated path as a function of traveled distance.
The problem is illustrated in Figure 3 (exaggerating the
curvatures in order to make the interpolated path stand out
from the circle arc). Let sM denote the distance traveled
along the first arc, and sF the total distance traveled over
both arcs. The linear rate of variation of curvature for
these arcs are respectively denoted by d1 and −d2. In the
graph depicted in Figure 3(b), the area below the curvature
line must be equal to βi. Note that sM and κM can be
expressed in terms of the other variables, since one has
κM = κ1 + d1sM = κ2 + d2(sF − sM ).

It thus remains to compute d1, d2 and sF given κ1, κ2 and
βi. We solve this problem numerically, observing empirically
that the initial estimate

sF
sM

= 1 +
κC − κ1
κC − κ2

leads to very fast convergence with Newton-Raphson’s
method. In practice, we first perform a variable change
operation by defining

a =
d1 − d2
d1 + d2

and d =
d1 + d2

2
,

and then carry out the search over the variables sF , a, and
d. Intuitively, a is a measure of the asymmetry between
the two clothoids arcs, and remains small when κ1 and κ2
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Fig. 3. Interpolation with two clothoid arcs

are reasonably balanced. The value of sF is confined to an
interval with a lower bound βi/κC equal to the distance
traveled on the circle arc. Its upper bound corresponds to
the minimum value among

2

κC
tan

βi
2

and
βi

min(κ1, κ2)
,

which respectively correspond to the combined length of the
line segments, and the largest distance that can be traveled
without lowering the curvature below κ1 and κ2. It is also
worth mentioning that, in the particular case κ1 = κ2 = 0,
this procedure can be simplified into one that does not rely on
approximations [1], except for evaluating Fresnel integrals.

Finally, in order to apply Theorem 1, it remains to choose
values for κ1 and κ2 at the extremities of interpolated curves.
We use the following strategy:
• At the junction between a straight line segment and an

arc, or between two arcs turning in opposite directions,
a natural choice is κi = 0.

• If we need to connect two arcs turning in the same
direction, with respective curvatures κC1 and κC2 which
we assume w.l.o.g. to be positive, we have to choose a
curvature κi that satisfies κi < min(κC1, κC2). This
can be achieved by defining κi = f min(κC1, κC2),
where 0 < f < 1 is a reduction factor that can be
arbitrarily chosen. For the Eurobot application, we have
observed that selecting f = 0.70 leads to paths along
which both the curvature and variation of curvature stay
within acceptable bounds.

IV. SPEED PROFILE COMPUTATION

Before addressing the computation of a speed profile for
a given path, we need to define the formalism in which
such paths are represented. As explained in Section II-B,
a discretized path takes the form of a sequence (x0, y0, θ0),

(x1, y1, θ1), . . . , (xm, ym, θm) of successive configurations
of the robot sampled at indices ranging from 0 to m. The
discretization step between these configurations is usually
much finer than for specifying the broken lines that are
input to the interpolation procedure described in Section III.
(In the Eurobot application, the clothoid arcs synthesized
by this procedure are each typically discretized into dozens
of intermediate configurations.) This strategy differs from
methods such as [7] and [13], in which curves are represented
in analytic form. The advantages of our approach are that dis-
cretized trajectories can be handled with much simpler data
structures, are not limited to curves that admit an analytic
form, and are less subject to numerical issues. We stress the
fact that the speed profile computation algorithm discussed
in this section is not restricted to the paths considered in
Section III, but is applicable to arbitrary curves, in particular
to those produced by techniques such as [13].

Let us now discuss the precise semantics of discretized
paths. Between a configuration (xi, yi, θi) and its succes-
sor (xi+1, yi+1, θi+1), we consider that the robot moves
along a circle arc, increasing its orientation by the angle
δi = θi+1 − θi, which is usually small in the case of fine
discretization. This circle arc is fully characterized by the
angle δi together with the chord length

λi =
√
(xi+1 − xi)2 + (yi+1 − yi)2.

The curvature κi at this step thus satisfies

κi =
2

λi
sin

δi
2
.

For the sake of simplicity, and in order to be able to easily
chain paths together, we impose this curvature to be zero at
the origin and endpoint of all paths.

Recall that the aim is to obtain a speed profile for a
given path that minimizes the total time needed for following
this path. We build such a profile by computing the largest
possible value for the speed of the robot at each index
from 0 to m. This speed can potentially be measured at
various locations on the robot, such as its center of mass, its
wheels, . . . For differential-drive, tricycle or car-like robots,
all those speeds can be expressed as functions of a single
parameter and the geometry of the path. A natural choice
would be to define this parameter as the speed of the robot
measured at its center which, in the case of differential-drive
robot, is defined as the midpoint of the line segment linking
the two locomotion wheels. This solution turns out to be
problematic for reasoning about parts of paths where the
absolute curvature is high, which intuitively corresponds to
rotations of the robot around its center. In such a case, even
though the robot is in motion, its center moves only slowly,
or not at all.

We choose instead to express all speeds of interest in terms
of a parameter zi that we call the velocity at the current
index i of the path, defined as the quadratic mean of the
respective speeds vLi and vRi of the left and right wheels of



the differential drive:

zi =

√
v2Li + v2Ri

2
.

This parameter has the advantage of being always positive,
and nonzero whenever the robot is not stationary. Knowing
the geometry of the robot, one can easily compute the speeds
at its center, center of mass, individual wheels, or other
locations of interest, from the velocity zi and the curvature
κi at the current path index. When the curvature is zero, such
as at the extremities of paths, all those speeds become equal
to zi.

This reduces the speed profile computation problem to
determining, for each index i, the highest possible velocity
zi at that point. Note that one cannot realistically assume
that this velocity remains constant when the robot follows
the circle arc from (xi, yi, θi) to (xi+1, yi+1, θi+1). Indeed,
the speed of the robot would then be discontinuous at
the junction points between adjacent arcs, which would
complicate the handling of acceleration constraints.

A better solution is to consider that, between the indices
i and i+1, the velocity varies linearly from zi to zi+1 with
respect to traveled distance. With this assumption, all the
accelerations of interest (such as those measured at individual
wheels, at the center of mass or other locations, in the
tangential or radial directions, . . . ) can be derived from the
values of zi, zi+1, and κi, and take at all locations values
that accurately approximate those of the underlying (undis-
cretized) curve, assuming a sufficiently fine discretization.

The physical constraints imposed on the robot can be
classified in two groups. We first have constraints that
translate into an upper bound on the velocity zi at a path
index i. Let us illustrate this situation with a simple example.
Assume that the speeds vRi and vLi measured at respectively
the right and the left wheels of the differential drive (in the
forward direction) are constrained to belong to the interval
[−vimax , vimax ] at the path index i, with vimax > 0.
Expressing the wheel speeds in terms of zi, we obtain
vRi = zi

√
2 sinωi and vLi = zi

√
2 cosωi, where ωi is

defined as the angle that satisfies

tanωi =
1 + eκi

2

1− eκi
2

, − π

4
< ωi <

3π

4
,

and e is the distance between the wheels. The relations
between vRi, vLi, zi and ωi are illustrated in Figure 4. Our
constraint then gives out the upper bound

zi ≤
vimax√
2 sinωi

if π
4 < ωi <

3π
4 ,

zi ≤
vimax√
2 cosωi

if −π4 < ωi <
π
4 .

The second group of constraints contains those that involve
the velocities zi and zi+1 at two successive indices i and
i + 1. This group notably includes constraints expressed in
terms of accelerations. Let us give an example. The tangential
acceleration experienced at the center of a differential-drive

ωi

right wheel speed vRi

zi
√

2

forward
motion

left wheel speed vLi

ωi = 3π
4

ωi = −π
4

motion
backward

Fig. 4. Relations between speeds

robot during step i is given by

aTi =
v2i+1 − v2i

2si
,

where vi denotes the speed measured at the center at the path
index i, and si = δi/κi is the distance driven during step i.
Since we have vi = (vRi + vLi)/2 for all i, this expression
becomes

aTi =
(sinωi+1 + cosωi+1)

2z2i+1 − (sinωi + cosωi)
2z2i

4si
,

where ωi is defined as in the previous example. One easily
sees that imposing bounds on this acceleration amounts to
enforcing a constraint over both zi and zi+1. At all every
path index i ∈ [0,m − 1], we denote by φi(zi, zi+1) the
conjunction of all physical constraints that jointly involve
zi and zi+1. Note that constraints in both groups may be
context-sensitive: The constraints involving zi and zj at
two different locations i and j can differ, or be expressed
with respect to different values of parameters. This makes it
possible, for instance, to impose tighter speed limits in the
close vicinity of obstacles.

We are now ready to describe our procedure for computing
the fastest physically-feasible speed profile for a given path.
This procedure has originally been introduced in [11]. It
differs from [2], [7] by the much broader range of physical
constraints that it supports. The algorithm proceeds in three
stages. In the first one, it computes for every index i, the
largest possible value zimax allowed by the constraints of
the first group at that point. It is also essential to make sure
that the constraints that belong to the second group remain
satisfiable: if zimax is such that the constraint φi(zimax , zi+1)
does not hold for at least one zi+1 ≤ zi+1max , then zimax has
to be lowered into the largest value that makes the constraint
satisfiable. In the same way, zimax must be sufficiently small
for the constraint φi−1(zi−1, zimax ) to be satisfiable in zi−1.
These operations can be carried out numerically, a simple
strategy being to perform a binary search until the required
precision is reached.

After a suitable value of zimax has been obtained at all
indices i, the second stage assigns a tentative value to zi for



increasing values of i. The initial velocity z0 is fixed by the
speed of the robot specified at the origin of the path. Then
for i = 1, 2, . . ., we successively compute the largest value
of zi that is less than or equal to the upper bound zimax at
the index i, and that satisfies the constraint φi−1(zi−1, zi)
(with the value of zi−1 obtained at the previous step).

The third and last stage performs a similar operation for
decreasing values of i, starting from the last index m of the
path and moving towards its origin. Before the first iteration,
the velocity zm at the end of the path has possibly to be
lowered in order to satisfy the upper bound imposed on the
final speed of the robot. Then, for i = m − 1,m − 2, . . .,
one successively adjusts the current value of zi (by lowering
it or leaving it unchanged) so as to satisfy the constraint
φi(zi, zi+1).

After completing this stage, the computed values of zi
at all path indices are such that constraints of both groups
are satisfied, and it remains to check that the computed
initial velocity z0 corresponds to the initial speed of the
robot. In the case of a mismatch (meaning that z0 had to be
lowered during third stage), it is impossible to follow the path
with the specified initial speed while satisfying all physical
constraints, and the speed profile computation returns an
error. Otherwise, one can straightforwardly compute, from
the value of zi at all indices and the geometry of the path,
the instant ti at which the corresponding configurations will
be reached.

This technique yields a time-optimal speed profile, since
increasing the speed of the robot at any location on the path
would lead to violating at least one physical constraint. The
computational cost is linear in the number of path steps,
provided that all constraints can be solved in bounded time.

V. CONCLUSIONS

In this paper, we have addressed the problem of inter-
polating a path expressed as a sequence of straight line
segments into a trajectory that can be followed as fast as
possible by a nonholonomic robot, taking into account the
physical constraints of the robot. This problem has been well
studied in the literature [9], [4], [10], [13], [8], [7], but our
motivation for developing an original solution was prompted
by the particular requirements of the Eurobot contest. In
this setting, it is crucial to be able to plan trajectories that
can be generated with very low computational cost, to take
into account complex physical constraints such as those
governing traction at individual wheels or ensuring stability
in turns, and to provide accurate spatial and temporal advance
information about the visited configurations. To the best of
our knowledge, our solution is the first one that meets all
those requirements. Compared with methods such as [14],
[13] that also rely on clothoids for interpolating paths, our
approach of joining only two arcs of clothoids for moving
from one curvature to another has the advantage of being
simpler and computationally cheaper, the trade-off being that
the generated curves are not guaranteed to be optimal.

The path interpolation and speed profile computation algo-
rithms discussed in this paper have been implemented in the

Discretized Synthesis Discretization Speed profile Total
points time time time time
292 15.2 µs 33.4 µs 140.9 µs 189.5 µs
520 29.6 µs 53.6 µs 239.0 µs 322.2 µs
632 30.8 µs 72.7 µs 303.5 µs 407.0 µs
656 23.1 µs 77.9 µs 319.1 µs 420.1 µs

Fig. 5. Experimental results

robots built for Eurobot at the University of Liège since 2008,
together with an original path planning algorithm. In this
setting, they have been successfully validated on hundreds
of thousands of trajectories, considering 16 distinct physical
constraints of robots with differential as well as tricycle
drive, some of them being context-sensitive: lower and upper
bounds on the speed and acceleration of locomotion and
steering wheels, on the speed, angular speed, tangential
and radial accelerations at the center of mass, and on the
angular rate of steering. In order to illustrate the efficiency
of our method, we report in Figure 5 the time needed
for running the interpolation and speed profile algorithms
on a few sample trajectories experienced in the Eurobot
application. We distinguish the costs of the curve synthesis,
path discretization, and speed profile computation steps. The
total computational cost typically amounts to less than half a
millisecond of CPU time on a i5-460M processor running at
2.53 GHz, which is several orders of magnitude faster than
techniques such as [7].
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