Strengthening linear reformulations of pseudo-Boolean optimization problems

Elisabeth Rodriguez-Heck and Yves Crama

QuantOM, HEC Management School, University of Liège
Partially supported by Belspo - IAP Project COMEX

July 2015, Glasgow, EURO 2015

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a multilinear polynomial (Hammer, Rosenberg, Rudeanu [4]).

Example:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=9 x_{1} x_{2} x_{3}+8 x_{1} x_{2}-6 x_{2} x_{3}+x_{1}-2 x_{2}+x_{3}
$$

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

- Optimization is $\mathcal{N} \mathcal{P}$-hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Approaches:
- Linearization: standard approach to solve non-linear optimization.
- Quadratization: Much progress has been done for the quadratic case (exact algorithms, heuristics, polyhedral results...).

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

- Optimization is $\mathcal{N} \mathcal{P}$-hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Approaches:
- Linearization: standard approach to solve non-linear optimization.
- Quadratization: Much progress has been done for the quadratic case (exact algorithms, heuristics, polyhedral results...).

Standard linearization (SL)

$$
\min _{\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k},
$$

$$
\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{S} \neq 0\right\} \text { (non-constant monomials) }
$$

1. Substitute monomials

$$
\begin{array}{lr}
\min & \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
\text { s.t. } & z_{S}=\prod_{k \in S} x_{k}, \\
& \quad \forall S \in \mathcal{S} \\
& z_{S} \in\{0,1\}, \\
& x_{k} \in\{0,1\}, \quad \forall k=1, \ldots, n
\end{array}
$$

Standard linearization (SL)

$$
\min _{\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k},
$$

$\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{S} \neq 0\right\}$ (non-constant monomials)

1. Substitute monomials

$$
\begin{array}{lr}
\min & \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
\text { s.t. } & z_{S}=\prod_{k \in S} x_{k}, \\
& \forall S \in \mathcal{S} \\
z_{S} \in\{0,1\}, & \forall S \in \mathcal{S} \\
& x_{k} \in\{0,1\}, \quad \forall k=1, \ldots, n
\end{array}
$$

2. Linearize constraints

$z_{S} \in\{0,1\}$,
$x_{k} \in\{0,1\}$,
$\forall k=1, \ldots, n$

Standard linearization (SL)

$$
\min _{\{0, \mathbf{1}\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}
$$

$\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{S} \neq 0\right\}$ (non-constant monomials)

1. Substitute monomials

2. Linearize constraints

$$
\begin{array}{lr}
\min & \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
\text { s.t. } & z_{S}=\prod_{k \in S} x_{k}, \\
& \forall S \in \mathcal{S} \\
& z_{S} \in\{0,1\}, \\
& x_{k} \in\{0,1\}, \quad \forall k=1, \ldots, n
\end{array}
$$

$\min \sum_{S \in \mathcal{S}} a_{S} z_{S}$
s.t. $z_{S} \leq x_{k}, \quad \forall k \in S, \forall S \in \mathcal{S}$

$$
z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1), \quad \forall S \in \mathcal{S}
$$

$$
\begin{array}{lr}
z_{S} \in\{0,1\}, & \forall S \in \mathcal{S} \\
x_{k} \in\{0,1\}, & \forall k=1, \ldots, n
\end{array}
$$

Standard linearization (SL)

$$
\min _{\{0, \mathbf{1}\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}
$$

$\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{S} \neq 0\right\}$ (non-constant monomials)

1. Substitute monomials

3. Linear relaxation

$$
\begin{array}{lr}
\min & \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
\text { s.t. } & z_{S}=\prod_{k \in S} x_{k}, \\
& \quad \forall S \in \mathcal{S} \\
z_{S} \in\{0,1\}, & \forall S \in \mathcal{S} \\
& x_{k} \in\{0,1\}, \quad \forall k=1, \ldots, n
\end{array}
$$

$\min \sum_{S \in \mathcal{S}} a_{S} z_{S}$
s.t. $z_{S} \leq x_{k}, \quad \forall k \in S, \forall S \in \mathcal{S}$

$$
z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1), \quad \forall S \in \mathcal{S}
$$

$$
\begin{array}{lr}
0 \leq z_{S} \leq 1, & \forall S \in \mathcal{S} \\
0 \leq x_{k} \leq 1, & \forall k=1, \ldots, n
\end{array}
$$

Intermediate substitutions (IS) (one monomial)

SL substitution
SL linearization

$$
z_{S}=\prod_{k \in S} x_{k}
$$

$$
\begin{aligned}
& z_{S} \leq x_{k}, \\
& z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)
\end{aligned}
$$

$$
\forall k \in S
$$

$$
\begin{aligned}
& z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} \\
& z_{A}=\prod_{k \in A} x_{k}
\end{aligned}
$$

Intermediate substitutions (IS) (one monomial)

SL substitution

$$
z_{S}=\prod_{k \in S} x_{k}
$$

$$
\begin{aligned}
& z_{S} \leq x_{k}, \\
& z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)
\end{aligned} \quad \forall k \in S
$$

SL linearization

$$
\begin{aligned}
& z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} \\
& z_{A}=\prod_{k \in A} x_{k}
\end{aligned}
$$

IS substitution

IS linearization

$z_{A} \leq x_{k}$,
$\forall k \in A$
$z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1)$.

Intermediate substitutions (IS) (one monomial)

SL substitution

$$
z_{S}=\prod_{k \in S} x_{k}
$$

SL linearization

$$
\begin{aligned}
& z_{S} \leq x_{k}, \\
& z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)
\end{aligned} \quad \forall k \in S
$$

IS linearization

$$
\begin{aligned}
& z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} \\
& z_{A}=\prod_{k \in A} x_{k}
\end{aligned}
$$

$$
\begin{array}{lr}
z_{S} \leq x_{k}, & \forall k \in S \backslash A \\
z_{S} \leq z_{A}, & \\
z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A|, & \\
z_{A} \leq x_{k}, & \forall k \in A \\
z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) . &
\end{array}
$$

Intermediate Substitutions (IS) (one monomial)

Polytope $P_{S L, 1} \subseteq \mathbb{R}^{n+1}$

$$
\begin{array}{lll}
z_{S} \leq x_{k}, & \forall k \in S & z_{S} \leq x_{k}, \\
z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1) & & \forall k \in S \backslash A \\
0 \leq x_{k} \leq 1, & \forall k=1, \ldots, n & \\
0 \leq z_{S} \leq 1, & z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A|, & \\
& \forall S \in \mathcal{S} & z_{A} \leq x_{k}, \\
& z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) . & \forall k \in A \\
& 0 \leq x_{k} \leq 1, & \forall k=1, \ldots, n \\
& 0 \leq z_{S} \leq 1, & \forall S \in \mathcal{S}
\end{array}
$$

Calculating projections: Fourier-Motzkin Elimination

Notation

$\mathbb{P}_{n, s}$: projection over the space of variables z_{S} and $x_{k}, k=1, \ldots, n$.

We calculate $\mathbb{P}_{n, S}\left(P_{I S, 1}\right)$ using the Fourier-Motzkin Elimination:

$$
\begin{aligned}
z_{S} & \leq z_{A} & z_{A} & \leq x_{k}, \\
\sum_{k \in A} x_{k}-(|A|-1) & \leq z_{A} & z_{A} & \leq z_{S}-\sum_{k \in S \backslash A} x_{k}+|S \backslash A| .
\end{aligned} \quad \forall k \in A
$$

We also take into account the inequalities of $P_{I S, 1}$ that do not involve z_{A}

$$
z_{S} \leq x_{k}, \forall k \in S \backslash A
$$

Single monomials

Theorem

$$
\mathbb{P}_{n, S}\left(P_{I S, 1}\right)=P_{S L, 1}
$$

Theorem holds for disjoint several monomials:

$$
\begin{array}{rlrl}
z_{S}=\prod_{k \in S} x_{k}, z_{T}=\prod_{k \in T} x_{k}, \text { take } A \subseteq S, B \subseteq T \\
z_{S} & =z_{A}^{S} \prod_{k \in S \backslash A} x_{k} & z_{T}=z_{B}^{T} \prod_{k \in T \backslash B} x_{k} \\
z_{A}^{S}=\prod_{k \in A} x_{k} & z_{B}^{T}=\prod_{k \in B} x_{k}
\end{array}
$$

Linearize, and apply Fourier-Motzkin as before (constraints never contain at the same time z_{A}^{S} and z_{B}^{T}).

Single monomials

Theorem

$$
\mathbb{P}_{n, S}\left(P_{I S, 1}\right)=P_{S L, 1}
$$

Theorem holds for disjoint several monomials:

$$
\begin{array}{rlrl}
z_{S}=\prod_{k \in S} x_{k}, z_{T}=\prod_{k \in T} x_{k}, \text { take } A \subseteq S, B \subseteq T \\
z_{S} & =z_{A}^{S} \prod_{k \in S \backslash A} x_{k} & z_{T}=z_{B}^{T} \prod_{k \in T \backslash B} x_{k} \\
z_{A}^{S}=\prod_{k \in A} x_{k} & z_{B}^{T}=\prod_{k \in B} x_{k}
\end{array}
$$

Linearize, and apply Fourier-Motzkin as before (constraints never contain at the same time z_{A}^{S} and z_{B}^{T}).

Several monomials with common intersection

What happens with non-disjoint monomials? $A \subseteq S \cap T,(|A| \geq 2)$.

$$
\begin{aligned}
& z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} \\
& z_{T}=z_{A} \prod_{k \in T \backslash A} x_{k} \\
& z_{A}=\prod_{k \in A} x_{k}
\end{aligned}
$$

Several monomials with common intersection

What happens with non-disjoint monomials? $A \subseteq S \cap T,(|A| \geq 2)$.

$$
\begin{array}{lll}
& z_{S} \leq x_{k}, & \forall k \in S \backslash A \\
z_{S} & \leq z_{A} \\
z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} & z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A| & \\
z_{T}=z_{A} \prod_{k \in T \backslash A} x_{k} & z_{T} \leq x_{k}, & \\
z_{T} \leq z_{A} \\
z_{A}=\prod_{k \in A} x_{k}, & z_{T} \geq z_{A}+\sum_{k \in T \backslash A} x_{k}-|T \backslash A| \quad \forall k \in T \backslash A \\
& z_{A} \leq x_{k}, \\
z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) .
\end{array} \quad \forall k \in A
$$

Several monomials with common intersection

What happens with non-disjoint monomials? $A \subseteq S \cap T,(|A| \geq 2)$.

$$
\begin{array}{lll}
& z_{S} \leq x_{k}, & \forall k \in S \backslash A \\
z_{S} & \leq z_{A} & \\
z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} & z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A| & \\
z_{T}=z_{A} \prod_{k \in T \backslash A} x_{k} & z_{T} \leq x_{k}, & \\
z_{T} \leq z_{A} & \\
z_{A}=\prod_{k \in A} x_{k}, & z_{T} \geq z_{A}+\sum_{k \in T \backslash A} x_{k}-|T \backslash A| & \\
& z_{A} \leq x_{k}, & \\
& z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) . & \forall k \in A \\
& &
\end{array}
$$

Several monomials with common intersection

What happens with non-disjoint monomials? $A \subseteq S \cap T,(|A| \geq 2)$.

$$
\begin{array}{lll}
& z_{S} \leq x_{k}, & \forall k \in S \backslash A \\
z_{S} \leq z_{A} & \\
z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} & z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A| & \\
z_{T}=z_{A} \prod_{k \in T \backslash A} x_{k} & z_{T} \leq x_{k}, & \forall k \in T \backslash A \\
z_{A}=\prod_{T \in A} x_{k}, & z_{T} \geq z_{A}+\sum_{k \in T \backslash A} x_{k}-|T \backslash A| & \\
& z_{A} \leq x_{k}, & \\
& z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) . & \forall k \in A
\end{array}
$$

Several monomials with common intersection

What happens with non-disjoint monomials? $A \subseteq S \cap T,(|A| \geq 2)$.

$$
\begin{array}{lrl}
z_{S} \leq x_{k}, & \forall k \in S \backslash A \\
z_{S} \leq z_{A} & & \\
z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A| & & \\
z_{T} \leq x_{k}, & \forall k \in T \backslash A \\
z_{T} \leq z_{A} & & \\
z_{T} \geq z_{A}+\sum_{k \in T \backslash A} x_{k}-|T \backslash A| & & \\
z_{A} \leq x_{k}, & & \\
z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) . & &
\end{array}
$$

Several monomials with common intersection

Theorem

$$
\mathbb{P}_{n, S, T}\left(P_{I S}\right) \subset P_{S L}
$$

Proof:
(1) Fourier-Motzkin gives:

$$
\begin{align*}
& \mathbf{z}_{\mathbf{S}} \leq \mathbf{z}_{\mathbf{T}}-\sum_{\mathbf{k} \in \mathbf{T} \backslash \mathbf{A}} \mathbf{x}_{\mathbf{k}}+|\mathbf{T} \backslash \mathbf{A}|, \tag{1}\\
& \mathbf{z}_{\mathbf{T}} \leq \mathbf{z}_{\mathbf{S}}-\sum_{\mathbf{k} \in \mathbf{S} \backslash \mathbf{A}} \mathbf{x}_{\mathbf{k}}+|\mathbf{S} \backslash \mathbf{A}|, \tag{2}
\end{align*}
$$

(2) $\mathbb{P}_{n, S, T}\left(P_{I S}\right)=P_{S L} \cap\left\{\left(x_{k}, z_{S}, z_{T}\right) \mid(1),(2)\right.$ are satisfied $\}$
(3) Point $x_{k}=1$ for $k \notin A, x_{k}=\frac{1}{2}$ for $k \in A, z_{S}=0, z_{T}=\frac{1}{2}$, is in $P_{S L}$ but does not satisfy (2).

Larger subset substitutions are better

Consider $B \subset A \subseteq S \cap T,|B| \geq 2$.
(1) Take the first cut for both subsets:

$$
\begin{aligned}
& z_{s} \leq z_{T}-\sum_{k \in T \backslash A} x_{k}+|T \backslash A|, \\
& z_{S} \leq z_{T}-\sum_{k \in T \backslash B} x_{k}+|T \backslash B|,
\end{aligned}
$$

(2)

$$
\begin{aligned}
z_{S} & \leq z_{T}-\sum_{k \in T \backslash A} x_{k}+|T \backslash A| \leq \\
& \leq z_{T}-\sum_{k \in T \backslash A} x_{k}+|T \backslash A|- \\
& =z_{T}-\sum_{k \in T \backslash B} x_{k}+|T \backslash B| .
\end{aligned}
$$

$$
\left.\leq z_{T}-\sum_{k \in T \backslash A} x_{k}+|T \backslash A|-\sum_{k \in A \backslash B} x_{k}+|A \backslash B|=(\mathrm{A} \quad \mathrm{~A}) \mathrm{A}\right)
$$

Larger subset substitutions are better

Theorem

$$
\mathbb{P}_{n, S, T}\left(P_{I S}^{A}\right) \subset \mathbb{P}_{n, S, T}\left(P_{I S}^{B}\right)
$$

(Point $x_{k}=1$ for $k \notin A, x_{k}=\frac{1}{2}$ for $k \in A \backslash B, k \in B, z_{T}=0, z_{S}=\frac{1}{2}$ satisfies cut for B but not for A.)

Definition: 2-link inequalities

$$
\begin{aligned}
& z_{S} \leq z_{T}-\sum_{k \in T \backslash S} x_{k}+|T \backslash S| \\
& z_{T} \leq z_{S}-\sum_{k \in S \backslash T} x_{k}+|S \backslash T|
\end{aligned}
$$

Larger subset substitutions are better

Theorem

$$
\mathbb{P}_{n, S, T}\left(P_{I S}^{A}\right) \subset \mathbb{P}_{n, S, T}\left(P_{I S}^{B}\right)
$$

(Point $x_{k}=1$ for $k \notin A, x_{k}=\frac{1}{2}$ for $k \in A \backslash B, k \in B, z_{T}=0, z_{S}=\frac{1}{2}$ satisfies cut for B but not for A.)

Definition: 2-link inequalities

$$
\begin{aligned}
& z_{S} \leq z_{T}-\sum_{k \in T \backslash S} x_{k}+|T \backslash S| \\
& z_{T} \leq z_{S}-\sum_{k \in S \backslash T} x_{k}+|S \backslash T|
\end{aligned}
$$

Larger subset substitutions are better

Theorem

$$
\mathbb{P}_{n, S, T}\left(P_{I S}^{A}\right) \subset \mathbb{P}_{n, S, T}\left(P_{I S}^{B}\right)
$$

(Point $x_{k}=1$ for $k \notin A, x_{k}=\frac{1}{2}$ for $k \in A \backslash B, k \in B, z_{T}=0, z_{S}=\frac{1}{2}$ satisfies cut for B but not for A.)

Definition: 2-link inequalities

$$
\begin{aligned}
& z_{S} \leq z_{T}-\sum_{k \in T \backslash S} x_{k}+|T \backslash S| \\
& z_{T} \leq z_{S}-\sum_{k \in S \backslash T} x_{k}+|S \backslash T|
\end{aligned}
$$

Larger subset substitutions are better

Corollary

Consider three monomials R, S, T, with intersections $R \cap S=A$, $S \cap T=B, R \cap T=C,(|A|,|B|,|C| \geq 2)$. Then it is better to do intermediate substitutions of the two-by-two intersections, than a single intermediate substitution of the common intersection $A \cap B \cap C$.

Improving the SL formulation: 2-links

SL relaxation with 2-links

$$
\begin{array}{lr}
\min \sum_{S \in \mathcal{S}} a_{S} z_{S} & \\
\text { s.t. } z_{S} \leq x_{k}, & \forall k \in S, \forall S \in \mathcal{S} \\
z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1), & \forall S \in \mathcal{S} \\
\mathbf{z}_{\mathbf{S}} \leq \mathbf{z}_{\mathbf{T}}-\sum_{\mathbf{k} \in \mathbf{T} \backslash \mathbf{S}} \mathbf{x}_{\mathbf{k}}+|\mathbf{T} \backslash \mathbf{S}| & \forall \mathbf{S}, \mathbf{T},|\mathbf{S} \cap \mathbf{T}| \geq \mathbf{2} \\
\mathbf{z}_{\mathbf{T}} \leq \mathbf{z}_{\mathbf{S}}-\sum_{\mathbf{k} \in \mathbf{S} \backslash \mathbf{T}} \mathbf{x}_{\mathbf{k}}+|\mathbf{S} \backslash \mathbf{T}| & \forall \mathbf{S}, \mathbf{T},|\mathbf{S} \cap \mathbf{T}| \geq \mathbf{2} \\
0 \leq z_{S} \leq 1, & \forall S \in \mathcal{S} \\
0 \leq x_{k} \leq 1 & \forall k=1, \ldots, n
\end{array}
$$

How strong are the 2 -links?

Standard linearization polytope:

$$
\begin{aligned}
P_{S L}^{c o n v} & =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S}=\prod_{i \in S} x_{i}, \forall S \in \mathcal{S}\right\} \\
& =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\},
\end{aligned}
$$

with linear relaxation

$$
P_{S L}=\left\{\left(x, y_{S}\right) \in[0,1]^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\}
$$

- Question 1: Are the 2-links facet-defining for $P_{S L}^{\text {conv }}$?

How strong are the 2 -links?
Standard linearization polytope:

$$
\begin{aligned}
P_{S L}^{c o n v} & =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S}=\prod_{i \in S} x_{i}, \forall S \in \mathcal{S}\right\} \\
& =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\},
\end{aligned}
$$

with linear relaxation

$$
P_{S L}=\left\{\left(x, y_{S}\right) \in[0,1]^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\}
$$

- Question 1: Are the 2-links facet-defining for $P_{S L}^{\text {conv }}$?
- Question 2: Is there some case for which we obtain the convex hull $P_{S L}^{\text {conv }}$ when adding the 2-links to $P_{S L}$?

How strong are the 2 -links?

Standard linearization polytope:

$$
\begin{aligned}
P_{S L}^{c o n v} & =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S}=\prod_{i \in S} x_{i}, \forall S \in \mathcal{S}\right\} \\
& =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\}
\end{aligned}
$$

with linear relaxation

$$
P_{S L}=\left\{\left(x, y_{S}\right) \in[0,1]^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\}
$$

- Question 1: Are the 2-links facet-defining for $P_{S L}^{\text {conv }}$?
- Question 2: Is there some case for which we obtain the convex hull $P_{S L}^{\text {conv }}$ when adding the 2-links to $P_{S L}$?

Facet-defining cuts (2 monomials)

Theorem: 2-term objective function
The 2-links are facet-defining for $P_{S L, 2}^{\text {conv }}$:

$$
\begin{aligned}
& z_{S} \leq z_{T}-\sum_{k \in T \backslash S} x_{k}+|T \backslash S| \\
& z_{T} \leq z_{S}-\sum_{k \in S \backslash T} x_{k}+|S \backslash T|
\end{aligned}
$$

Facet-defining cuts (2 monomials)

Special forms of the cuts in some cases:
(1) If $S \subseteq T$,

$$
\begin{aligned}
& z_{S} \leq z_{T}-\sum_{k \in T \backslash S} x_{k}+|T \backslash S| \\
& z_{T} \leq z_{S}
\end{aligned}
$$

(2) If $T=\emptyset$ (and setting by definition $z_{\emptyset}=1$),

$$
\begin{aligned}
z_{S} & \leq 1 \\
1 & \leq z_{S}-\sum_{i \in S} x_{i}+|S|
\end{aligned}
$$

Conjecture on the convex hull (2 monomials)

Conjecture

Consider a pseudo-Boolean function consisting of two terms, its standard linearization polytope $P_{S L, 2}^{c o n v}$ and its linear relaxation $P_{S L, 2}$. Then,

$$
P_{S L, 2}^{\text {conv }}=P_{S L, 2} \cap\left\{\left(x, y_{S}, y_{T}\right) \in[0,1]^{n+2} \mid \text { 2-links are satisfied }\right\} .
$$

Facet-defining cuts (nested monomials)

Theorem: Nested sequence of terms

Consider a pseudo-Boolean function $f(x)=\sum_{l \in L} a_{S^{(1)}} \prod_{i \in S^{(I)}} x_{i}$, such that $S^{(1)} \subseteq S^{(2)} \subseteq \cdots \subseteq S^{(|L|)}$, and its standard linearization polytope $P_{S L, \text { nest }}^{\text {conv }}$. The 2-links

$$
\begin{aligned}
& z_{S^{(1)}} \leq z_{S^{(l+1)}}-\sum_{k \in S^{(1+1)} \backslash S^{(l)}} x_{k}+\left|S^{(I+1)} \backslash S^{(I)}\right| \\
& z_{S^{(1+1)}} \leq z_{S^{(l)}},
\end{aligned}
$$

are facet-defining for $P_{S L, n e s t}^{c o n v}$ for two consecutive monomials in the nest (and cuts are redundant for non-consecutive monomials).

Conjectures for m monomials

Conjecture: facet-defining
The 2-links are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-links and standard linearization inequalities are not enough to define the convex hull $P_{S L}^{\text {conv }}$ (otherwise we could solve an $\mathcal{N} \mathcal{P}$-hard problem efficiently...).

Conjectures for m monomials

Conjecture: facet-defining
The 2-links are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-links and standard linearization inequalities are not enough to define the convex hull $P_{S L}^{\text {conv }}$ (otherwise we could solve an $\mathcal{N} \mathcal{P}$-hard problem efficiently...).

- $m=3$, set of 3 monomials for which there exists an objective function which has a fractional optimal solution on $P_{S L} \cap\{2$-links $\}$: $\left\{x_{1} x_{2} x_{4}, x_{1} x_{3} x_{4}, x_{1} x_{2} x_{3}\right\}$

Conjectures for m monomials

Conjecture: facet-defining

The 2-links are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-links and standard linearization inequalities are not enough to define the convex hull $P_{S L}^{\text {conv }}$ (otherwise we could solve an $\mathcal{N} \mathcal{P}$-hard problem efficiently...).

- $m=3$, set of 3 monomials for which there exists an objective function which has a fractional optimal solution on $P_{S L} \cap\{2$-links $\}$: $\left\{x_{1} x_{2} x_{4}, x_{1} x_{3} x_{4}, x_{1} x_{2} x_{3}\right\}$

The difficulty of describing the general convex hull

The difficulty of describing the general convex hull

The difficulty of describing the general convex hull

The difficulty of describing the general convex hull

Introduction Linearizations Perspectives

The difficulty of describing the general convex hull

Introduction Linearizations Perspectives

The difficulty of describing the general convex hull

Introduction Linearizations Perspectives

The difficulty of describing the general convex hull

A short summary and some ideas

- We have obtained interesting cuts for $P_{S L}$ by applying intermediate substitutions for subsets of size ≥ 2.
- We could apply iteratively these intermediate substitutions, the last substitution step has only quadratic constraints

$$
\begin{aligned}
& z_{i j}=x_{i} x_{j} \\
& z_{i J}=x_{i} z_{J} \\
& z_{I J}=z_{I} z_{J}
\end{aligned}
$$

x : original variables, z : variables that are already substitutions of other subsets.

A short summary and some ideas

- We have obtained interesting cuts for $P_{S L}$ by applying intermediate substitutions for subsets of size ≥ 2.
- We could apply iteratively these intermediate substitutions, the last substitution step has only quadratic constraints

$$
\begin{aligned}
z_{i j} & =x_{i} x_{j}, \\
z_{i J} & =x_{i} z_{J}, \\
z_{I J} & =z_{l} z_{J},
\end{aligned}
$$

x : original variables, z : variables that are already substitutions of other subsets.

- Open questions:
- How many intermediate substitutions provide practical improvements?
- Relationship of this quadratically constrained program with quadratizations.

A short summary and some ideas

- We have obtained interesting cuts for $P_{S L}$ by applying intermediate substitutions for subsets of size ≥ 2.
- We could apply iteratively these intermediate substitutions, the last substitution step has only quadratic constraints

$$
\begin{aligned}
z_{i j} & =x_{i} x_{j}, \\
z_{i J} & =x_{i} z_{J}, \\
z_{I J} & =z_{l} z_{J},
\end{aligned}
$$

x : original variables, z : variables that are already substitutions of other subsets.

- Open questions:
- How many intermediate substitutions provide practical improvements?
- Relationship of this quadratically constrained program with quadratizations.

Perspectives

- Well-defined conjectures on the strength of 2-links
- 2 monomials: convex hull.

Perspectives

- Well-defined conjectures on the strength of 2-links
- 2 monomials: convex hull.
- m monomials: 2-links are facet-defining (but not enough).

Perspectives

- Well-defined conjectures on the strength of 2-links
- 2 monomials: convex hull.
- m monomials: 2-links are facet-defining (but not enough).
- Measure computational improvements of 2-links.

Perspectives

- Well-defined conjectures on the strength of 2-links
- 2 monomials: convex hull.
- m monomials: 2-links are facet-defining (but not enough).
- Measure computational improvements of 2-links.
- Iterate intermediate substitutions: relationship to quadratizations?

Perspectives

- Well-defined conjectures on the strength of 2-links
- 2 monomials: convex hull.
- m monomials: 2-links are facet-defining (but not enough).
- Measure computational improvements of 2-links.
- Iterate intermediate substitutions: relationship to quadratizations?

Some references I

M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of nonlinear binary optimization problems. Working paper, 2014.C. Buchheim and G. Rinaldi. Efficient reduction of polynomial zero-one optimization to the quadratic case. SIAM Journal on Optimization, 18(4):1398-1413, 2007.
C. De Simone. The cut polytope and the boolean quadric polytope. Discrete Mathematics, 79(1):71-75, 1990.
P. L. Hammer, I. Rosenberg, and S. Rudeanu. On the determination of the minima of pseudo-boolean functions. Studii si Cercetari Matematice, 14:359-364, 1963. in Romanian.
I. G. Rosenberg. Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d'Etudes de Recherche Opérationnelle, 17:71-74, 1975.

