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Abstract 

 
The framework of the present work supports the numerical analysis of the 
Single Point Incremental Forming (SPIF) process resorting to a numerical 
tool based on adaptive remeshing procedure based on the FEM. Mainly, this 
analysis concerns the computation time reduction from the implicit scheme
and the adaptation of a solid-shell finite element type chosen, in particular 
the Reduced Enhanced Solid Shell (RESS). The main focus of its choice 
was given to the element formulation due to its distinct feature based on 
arbitrary number of integration points through the thickness direction. As well 
as the use of only one Enhanced Assumed Strain (EAS) mode. Additionally, 
the advantages include the use of full constitutive laws and automatic 
consideration of double-sided contact, once it contains eighth physical 
nodes. 
 
Initially, a comprehensive literature review of the Incremental Sheet Forming 
(ISF) processes was performed. This review is focused on original 
contributions regarding recent developments, explanations for the increased 
formability and on the state of the art in finite elements simulations of SPIF.
Following, a description of the numerical formulation behind the numerical 
tools used throughout this research is presented, summarizing non-linear 
mechanics topics related with finite element in-house code named 
LAGAMINE, the elements formulation and constitutive laws. 
 
The main purpose of the present work is given to the application of an 
adaptive remeshing method combined with a solid-shell finite element type in 
order to improve the computational efficiency using the implicit scheme. The 
adaptive remeshing strategy is based on the dynamic refinement of the 
mesh locally in the tool vicinity and following its motion. This request is 
needed due to the necessity of very refined meshes to simulate accurately 
the SPIF simulations. An initially mesh refinement solution requires huge 
computation time and coarse mesh leads to an inconsistent results due to 
contact issues. Doing so, the adaptive remeshing avoids the initially 
refinement and subsequently the CPU time can be reduced.               
 
The numerical tests carried out are based on benchmark proposals and 
experiments purposely performed in University of Aveiro, Department of 
Mechanical engineering, resorting to an innovative prototype SPIF machine.   
As well, all simulations performed were validated resorting to experimental 
measurements in order to assess the level of accuracy between the 
numerical prediction and the experimental measurements. In general, the 
accuracy and computational efficiency of the results are achieved.        
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Chapter 1 

Introduction  

Sheet metal forming is a widely used and well-developed manufacturing process 

nowadays. Finished products have good quality, are geometrically accurate and 

parts are ready to be used. Additionally, it is used for large batches which amortize 

the tools cost, producing large quantities of components during a short time 

interval. However, the possibility to use conventional stamping processes to build 

low production of batches or personalized prototypes is naturally very expensive.  

In R&D processes, prototype manufacturing is an important step in product 

development. Consequently, it is important to shorten the product’s life-cycle and 

costs in its initial development. As a result, the Incremental Sheet Forming (ISF) 

technology appears as a new possibility to decrease the cost problem in small 

volume production. It introduces the use of metallic sheet for small batches 

production in an economic way without the need of expensive or dedicated tools. In 

fact, the study and development of this process have been growing over the last 

years. 

The next sections in the current chapter will describe the ISF process and its 

variants. The thesis guidelines and main objectives are also presented.  

 

1.1 Incremental Sheet Forming (ISF) 

The designation of “incremental forming” covers several techniques with 

common features. This initial section will focus on the generality of the process as 

well as on its definition. The following explanation will describe the similarities 

between different alternatives of Incremental Sheet Forming (ISF).  

The conventional spinning and shear spinning are forming processes closely 

related to ISF, but there are some fundamental differences. In general, with the 
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spinning concept the workpiece is clamped to a rotating mandrel while the spinning 

tool movement deforms it by means of several increments (Emmens et al., 2010). 

This process is appropriate for axisymmetric products only. In the conventional 

spinning the component is formed through a series of extensive strokes with a 

forming tool. Shear spinning is similar, however the basic distinction is the fact that 

the tool is in permanent contact with the workpiece (Jeswiet et al., 2005). Other 

consideration which distinguishes both variants of spinning is the final sheet 

thickness. In conventional spinning the final thickness is kept constant while in 

shear spinning the thickness is considerably reduced due to stretching mechanisms 

(Wong et al., 2003; Emmens et al., 2010). The final produced component using the 

spinning method is always axisymmetric and the mould in the rotating mandrel 

determines the final shape.  

Since the 20th century until nowadays, many patents and developments have 

been performed on the ISF topic. The interest has been growing due to its 

advantageous applications, focused on the flexibility offered by the process. 

Nevertheless, the preliminary idea of ISF with a single tool was firstly mentioned in 

the patent of Leszak (Leszak, 1967). The real approximation to the well-known 

current ISF was reviewed by Mason in 1978 (Emmens et al., 2010) for application 

on small batches of customized parts. The concept proposes the use of a single 

spherical tool with numerical control in three axes. The use of this method was 

possible with the advance of technology, more specifically with the appearance of 

numerical control machines. Later, the work of Mason was continued in Japan and 

it gave rise to new patents (Emmens et al., 2010). 

The ISF processes evolved more intensively since the 90’s and new variants 

were developed and patented (Emmens et al., 2010). In the literature, ISF processes 

are referenced as belonging to a group called Asymmetric Incremental Sheet 

Forming (AISF). 

The AISF concept can include different configurations (Jeswiet et al., 2005), 

as shown Figure 1.1. Its variants allow producing complex sheet components by 

CNC drive system of a simple tool, with or without the combined use of simple 

dies. The main common aspect in these variants is the use of a hemispherical 

forming tool in constant contact with the workpiece. The sheet is also clamped at 

its edges using a blank holder (Figure 1.1). During forming, the tool travels along 

the workpiece, following a specific trajectory determined by the user. 

  



3 

 

 

 

Figure 1.1: Asymmetric incremental sheet forming variants. 

 

The Single Point Incremental Forming (SPIF) (Figure 1.1.a) variant can be 

considered as the real dieless forming technology as envisioned by Leszak (1967). 

The backing plate is used to create an angle transition near the clamped region. 

Within the AISF process group classification, the SPIF method is also called 

“negative forming” (Park and Kim, 2003). In SPIF process, the external surface 

does not contact with any mould or support.  

The Two Point Incremental Forming (TPIF), also referred as “positive 

incremental forming”, was first presented by Matsura in 1993 (Echrif and Hrairi, 

2011). Its basic designation is due to the simultaneous contact between two points 

with both sheet surfaces. The pressure applied between the forming tool and the 

mould deforms the internal and external surfaces. The TPIF method can be divided 

in two categories: using a partial die (Figure 1.1.c) or using a full die (Figure 1.1.d) 

(Attanasio et al., 2008). The partial die (c) is used as a static support to create 

strength support, influencing the final geometry accuracy. The TPIF with full die 

(d) uses a mould with the final component shape, located at the opposite surface of 

the metallic sheet. The mould is normally made using a cheap disposable material, 

which can be either a negative or a positive die (Reddy and Cao, 2014; Crowson, 

and Walker, 2015). This technique reduces the springback effect and increases 

geometrical accuracy (Attanasio et al., 2006 and Callegari et al., 2006). The blank 

holder device has a vertical displacement through guided columns during the 

forming process. 

The incremental forming with counter tool (see Figure 1.1.b) is named as 

Double-Sided Incremental Forming (DSIF). It is a variant of TPIF process with an 
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addition of a second forming tool on the opposite surface, independently controlled, 

instead of a full or partial die. This particularity provides further flexibility to the 

process and reduces many limitations associated to the remaining variants. Another 

particularity is the fact that it does not use any backing plate. The main use given 

to this variant is to the production of highly complex parts (Jeswiet et al., 2005; 

Malhotra et al., 2012a; Ndip-Agbor et al., 2015). 

The purpose of this section was to introduce a brief description on the ISF 

process variants. A detailed review on technical developments in the last years can 

be found in the work of Emmens et al. (2010), Nimbalkar et al. (2013), Reddy and 

Cao (2014) and, recently, by Crowson, and Walker, 2015. In the present work, 

particular attention is devoted to the Single Point Incremental Forming (SPIF) 

variant (Figure 1.1.a) and the next section presents a more detailed description 

concerning this variant.   

    

1.2 Single Point Incremental Sheet Forming (SPIF) 

The SPIF concept represents a breakpoint with traditional forming processes. 

The classic press-stamping process generally deforms the sheet metal in only one 

stroke (even if multiple steps can occur). The sheet is forced by a punch against a 

mould, stretching the blank to the desired shape, while the edges are restrained by 

a blank holder, allowing however some sliding. In the SPIF process, on the other 

hand, the sheet is gradually deformed by a localized force. In any case, the external 

surface does not contact with any die or support. The final part is obtained by a 

toolpath strategy according to the desired final shape. Schematically, Figure 1.2 

illustrates the SPIF process setup. 

 

Clamping frame Tool

Backing Plate

Die

Sheet

 
Figure 1.2: Single Point Incremental Forming (SPIF) setup (Sena et al., 2011). 
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The sheet is previously clamped along its edges using a clamping frame 

(blank holder). A backing plate is necessary to provide an angle change at clamped 

region and decrease the springback effect during the forming progress. Springback 

phenomena can also be reduced using a compensatory algorithm (Allwood et al., 

2010). The tool is guided through a numerical control system, which defines the 

toolpath according to the desired final shape. The toolpath can be controlled by 

using a CAD/CAM software, where a change in the final shape can be fast and 

inexpensive. The pre-programmed contour combines the continuous contact of the 

tool along the sheet surface with successive small downward displacements. After 

each vertical increment, a new contour starts in the next horizontal plane. The 

component is constructed layer by layer (Figure 1.3.a). However, using a spiral 

toolpath (Figure 1.3.b) the tool gradually moves down and completes the 

downward movement equal to the incremental depth every time the tool completes 

360º motion along the spiral. Figure 1.3 exhibits different toolpath strategies to 

perform a conical shape. 

 

 

 
Figure 1.3: Contour a) and spiral b) toolpaths. 

 

In general, the main practical setup of the SPIF method consists in the 

following steps: first, the final product is modelled by a CAD (Computer Aided 

Design) software, which allows creating a neutral file selected by the user. Next, the 

neutral file is exported to a CAM (Computer Aided Manufacturing) package. The 

first step for CAM package is to check the CAD file to visualise potential errors 

and then the toolpath is created (Jeswiet et al., 2005). Next, the sheet is rigidly 

fixed on the frame, and the forming tool is controlled with a three-axis CNC 
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(Computer Numerical Control) software machine. Afterwards, during the process, 

the forming tool is in permanent contact with the sheet surface and moves 

vertically in each contour. Finally, the spherical tool repeats all these operations 

until the end of the toolpath, to obtain the final product. 

Jeswiet et al. (2005) and (Hirt et al., 2006) summarize the SPIF process 

advantages and limitations. The advantages are: 

 the component can be directly formed from the CAD software;  

 the process can be used in rapid prototyping to produce small number 

of parts in sheet metal and in polymers;  

 it does not require expensive tools, i.e., punch and die. However, a 

backing plate can be necessary to create an angle change near the 

clamped region; 

 a conventional CNC milling machine can be adopted for this process;  

 the component sizes are limited to the machine table size; 

 the operation is quiet and relatively without noise; 

 the nature of the process involves deformation mechanisms that 

increase the material formability; 

 the changes on the component design can be rapidly accommodated 

changing the CAM file. 

The limitations are: 

 a large forming time compared with the conventional stamping process; 

 process limited to small production batches or prototypes;  

 it is mandatory the use of multistage forming for steep wall angles, 

increasing the manufacturing time; 

 some springback can occur after unclamping the component;  

 lower geometric accuracy, particularly near the convex radii and 

bending edges areas. 

A number of authors have studied the final product in order to analyse the 

influence of several parameters involved in the SPIF process. In summary, the 

following forming parameters are important in SPIF: the geometry of the forming 

tool, the sheet material, the sheet thickness, the toolpath, the stepdown increment 

size, the forming speeds (rotation and relative motion) and lubrication (Kim and 

Park, 2002; Kopac and Kampus, 2005; Cerro et al., 2006; Duflou et al., 2007b; 

Durante et al., 2009; Ambrogio et al., 2010b). Just a few studies from literature on 

the SPIF parameters influence are presented below. 
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1.2.1 Forming tool  

Typically in SPIF process the tool tip is spherical and ensures a continuous 

contact point across the metal sheet surface. The relevant variables to the forming 

tool are its dimension, material and shape. This variable combination affects the 

time production, the surface quality and the geometry limitation of the final 

component.  

In most applications, the spherical tip is solid and made out of steel. 

However, to reduce friction and increase tool lifetime can be used other options, 

such as, surface coating or a free rotating ball tool tip. The application of a 

polymeric material on the tool tip is used to avoid chemistry reactions or to 

improve surface quality. There is a wide range of tool diameters, from 4 mm, until 

a large spherical diameter as 100 mm. The spherical tool diameter values usually 

are between 4 mm to 15 mm (Jeswiet et al., 2005). Therefore, the optimum tool 

depends of the product shape, the type of material and the depth at which the 

spherical tool will work.  

The diameter depends also on component dimension and the negative slope 

(concave shape) of the wall angle. In the wall angle of the component ( ) there is 

a point from which the tool diameter contact is maximum (Figure 1.4). This 

instant occurs when the contact point is tangent to the spherical surface. Figure 1.4 

illustrates the tangential wall limit with a spherical tool. 

 

 
Figure 1.4: Wall contact with the forming tool. 

 

To achieve a piece with a steep wall angle, it is necessary to select a forming 

tool with larger diameter than the sphere body support. The objective is to avoid 

contact between the sheet wall and the sphere support, as presented in Figure 

1.4.A. The body support of the hemispherical head is used to mount the tool on the 

CNC milling machine shaft. Figure 1.4.B presents a tool configuration used to build 

a part with a small slope wall. Experiments have demonstrated that smaller 

diameter tools allow higher metal sheet formability than the use of tools with large 

diameter (Kim and Park, 2002; Jeswiet et al., 2005; Bhattacharya et al., 2011).  
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Ham and Jeswiet (2006) have studied the influence of the spherical diameter 

on the maximum wall slope angle. The research work demonstrated a significant 

increase on the maximum wall angle when tools with smaller diameters are used. 

The high formability with small diameter tools is a consequence of the force 

concentration and strains on a small area. The factor restricting the use of a small 

diameter is the tool resistance under bending fatigue effect. 

 

1.2.2 Material and sheet thickness      

The material and the sheet thickness may limit the forming process forces. 

The forming force involved is the result of the sheet characteristics, its material and 

its geometry.  

Fratini et al. (2004) have investigated the influence of material proprieties 

on the formability. The tensile test was used for each selected material to determine 

its parameters. The material parameters were the following ones: strength 

coefficient (K), strain hardening coefficient1 (n), Lankford coefficient ( rn ), ultimate 

tensile strength (UTS) and the elongation percentage (A%). From their SPIF 

experiments, for each material and using statistical analysis, they determined the 

influence of the above cited material proprieties. Their analysis concluded that the 

interaction between the strength coefficient (K) and strain hardening coefficients 

(n) had the highest influence on formability. Generally, higher hardening 

coefficients will provide higher formability.   

Ham and Jeswiet (2006) have performed a research about the influence of 

the sheet thickness on the maximum wall angle and showed that increasing the 

thickness contributes to increase the wall angle. The maximum wall angle defines 

an indicator of formability. In this work, the interaction between the increasing 

thickness and the tool size decrease was analysed. The research showed a significant 

improvement in the wall angle when the tool diameter decreases and the sheet 

thickness increases. 

 

                                        

1 Stress ( ) strain (  ) curve expressed by an equation such as   nK . 
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1.2.3 Forming speed      

The tool rotation speed and the travel velocity over the sheet surface 

influence the sliding friction and the frictional heating at the tool/sheet interface.  

The process time and the final surface quality of the part are the final results which 

evaluate process performance. The tool relative motion over the sheet is directly 

proportional to the heat generated by friction. Increasing the speed improves the 

material formability due to the heating. However, there are negative effects, like 

higher speed rate, generates higher surface roughness, increases the tool wear and 

the lubricant film disappears faster. The high rotational velocity increases the 

probability to develop marks on the sheet surface (Jeswiet et al., 2005; Ambrogio et 

al., 2010b; Hamilton and Jeswiet, 2010).      

      

1.2.4 Toolpath and vertical increment     

Many experimental studies have been performed to find an optimum 

toolpath which gives the best results in terms of surface quality. The toolpath and 

the vertical increment are defined together on the CAM package. These parameters 

have direct impact on the dimensional accuracy, surface finish, formability, 

thickness variation and processing time. A number of researchers have discussed 

their effects and different conclusions were found.  

Ham and Jeswiet (2006) have used the forming maximum angle to measure 

the material formability of AA3003. In their work, they have analysed the influence 

of the vertical step in the maximum wall angle and it was concluded that there is 

no significant effect on the final wall angle. Hence, it was shown that the vertical 

increment has an insignificant influence on the formability.  

Many attempts have been performed to analyse various toolpath strategies, 

such as contour, spiral, radial and multiple-stages. The most common toolpaths are 

contours or spirals (Figure 1.3) with increasing depth, following the shape profile of 

the final product.  

Attanasio and collaborators (Attanasio et al., 2006; Attanasio et al., 2008) 

have performed two different toolpaths. In the first experiment the tool followed a 

series of consecutive contours using a constant vertical step ( Z ), Figure 1.5.a. 

With this strategy, the sheet is marked at the transition point between consecutive 

toolpath contours. The surface quality is poor when the vertical step has a high 

value. The second toolpath type tested an experiment with constant “scallop 
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height” (h), Figure 1.5.b. The tool follows a series of consecutive contours with a 

variable vertical step ( Z ) in order to keep a constant value of scallop height (h). 

This strategy avoids the marked transition points and improves the final surface 

quality.   

  

 
Figure 1.5: Schematic representation of a) constant vertical incremental ( Z ) and b) constant scallop 

height (h).  

 

The vertical step size tends to be related with the wall angle and roughness 

at the sheet surface. A small step size requires more process time to form the 

component but the surface quality improves. These experimental tests 

demonstrated how relevant is the toolpath with a variable step depth (depending 

on the part geometry). In particular, a correct value of the maximum step depth 

( Z ) and the scallop height (h) must be chosen in order to obtain good results in 

terms of surface quality, geometric accuracy and thickness of a final component. 

  

1.2.5 Lubrication      

The necessity of lubrication is related to the temperature generated at the 

tool/sheet interface, surface roughness and the forming tool wear (Kopac and 

Kampus, 2005; Azevedo et al., 2015). The products obtained using the SPIF process 

are normally functional at its finished shape and, in this sense, the state of the 

surface is a significant subject. For that reason, the use of lubricants is common. 

 Kim and Park (2002) have tested two different types of tools, a tool with a 

free rotation ball at the tool tip and a standard tool with hemispherical tip. Both 

tools were tested with and without lubrication, which was grease. The authors have 

observed for the same conditions that the tool with rolling ball on the tip achieves 
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higher formability than the tool with standard tip. Additionally, the results showed 

that using a standard hemispheric tip without lubrication, it provided occurrence of 

scratches over the sheet. Finally, using a tool with a free ball on the tip without 

lubrication was considered the most ideal solution to increase formability. The 

friction between tool/sheet interfaces increases the tool pressure, lowering the stress 

state in the sheet. For this reason, damage is delayed and formability increases. A 

controlled friction at the tool/sheet interface helps to improve the formability. 

However, if friction increases significantly, it could result in fracture.     

 

1.3 Machinery used in SPIF   

Equipment intended for SPIF covers different topologies of machines used in 

the industry and in academic research. The execution of SPIF process presents 

essential aspects: it uses a simple spherical tip to build different shapes and the 

main process feature is the numerical control of the tool axis. The axis control 

depends of the degrees of freedom (DOF) available on the machine. There are 

different equipments to produce a component using the SPIF method, such as 

adopting a CNC milling machine, a robotic arm or a purposely built machine. 

The most common applications to perform SPIF experiments has been 

carried out using an adapted CNC milling machine. Their advantages are the easy 

upgrade to work as SPIF machine, easily found in industry, considerable stiffness 

and large productivity rate. On the other hand, it offers a limited number of DOF 

(Jeswiet et al., 2005). For instance, this choice is the one of Shim and Park (2001), 

Filice et al. (2002), Jeswiet et al. (2002), Fratini et al. (2004), Ceretti et al. (2004), 

Ambrogio et al. (2005; 2010a; b), Kopac and Kampus (2005), Araghi et al. (2009), 

Dejardin et al. (2010), just to mention some research groups. 

Similarly, the industrial robotic arm appears as an alternative for many 

authors, such as Schafer and Schraft, 2005; Duflou et al., 2005; Meier et al., 2005; 

Lamminen et al., 2005, as summarized by Callegari et al., 2006. They have 

implemented this solution due to the flexibility given by the available six axes. It 

allows the tool positioning at different angles relatively to the sheet surface and 

gives the possibility to combine multiple steps with a single tool. The robotic arm 

has a large working volume and fast operation. The major drawbacks are the low 
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stiffness and a very low maximum force, which leads to a less accurate tool 

position, especially under high loading conditions (Jeswiet et al., 2005). 

Nowadays, purposely built machines for SPIF process are commercially 

available, such as the one developed by the Amino Corporation (Amino et al. 

2002). However, a number of academic research groups have developed their own 

machine to perform the SPIF process. As examples, the machine from Julian 

Allwood’s group at University of Cambridge (Allwood et al. 2005) and  the 

innovative prototype machine called SPIF-A at University of Aveiro (Alves de 

Sousa et al., 2014). This last referred SPIF machine introduced a Stewart platform 

(Yau, 2001) adaptation, allowing six independent degrees of freedom. Figure 1.6 

exhibits the innovative prototype machine developed at University of Aveiro based 

on Stewart platform purposely adopted for SPIF. 

 

 
Figure 1.6: Prototype machine for SPIF from University of Aveiro.  

 

Among these different equipment options, the use of CAD/CAM software is 

the common feature between them to obtain a toolpath. The CAD model of a 

component is converted into a neutral file (STL) containing the geometric 

information. Afterward, the CAD model is sliced into horizontal layers through the 

CAM software and converted into a toolpath. Figure 1.7 exhibits the standard 

strategy to build a toolpath.    
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Figure 1.7: Standard strategy to build a toolpath for SPIF.  

 

A brief overview of the SPIF process has been given based on the available 

literature. In this context, previous sections introduced a general understanding of 

SPIF process which will be the focus of the present work study. Section 1.4 presents 

the thesis scope and motivation, while Section 1.5 summarizes its contents. 

 

1.4 Motivation and Scope 

Many issues appear when simulating the SPIF process by the Finite Element 

Method (FEM). As always, a compromise between accuracy and CPU efficiency is 

necessary. Accuracy from the results of numerical simulations, specially related to 

the prediction of the forming forces, is important since it contributes to the 

protection of the tool and the machinery used in the process.  

The present work aims to give a relevant contribution to the state-of-the-art 

and knowledge level of the SPIF process, from both academic and industrial 

standpoints, thus increasing the process feasibility in the numerical simulation field.  

In this topic, since the tool/sheet contact status changes continuously and only a 

small area is plastically deformed at each time increment, common methodologies 

resorting Finite Element Method (FEM) codes lose efficiency. The time increments 

become small and consequently the simulations take huge CPU time.   

The work will focus on the numerical simulation performance based on the 

FEM, in order to reduce the high computational time of SPIF simulation. The main 

task includes the implementation of the Finite Element technology, with new 

elements such as those related to solid-shell finite element formulations and 
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remeshing algorithms. Solid-shell finite elements allow the automatic consideration 

of thickness variations taking into account 3D stress analysis. The use of different 

constitutive laws cover applications with distinct materials, such as aluminium and 

steel alloys, to assess the numerical accuracy.  

An improved numerical simulation within the SPIF framework combined 

with accurate material modelling can be seen as the final objective. Benchmark 

proposals are used as case-studies to evaluate the numerical simulation predictions 

compared with experimental measurements. 

 

1.5 Main objectives     

The framework of this thesis is the numerical simulation of asymmetric and 

axisymmetric component shapes incrementally made using SPIF process based on 

FEM supported by experimental validation. The numerical simulations include the 

adaptive remeshing method combined with a hexahedral finite element, more 

properly the use of the RESS (Reduced Enhanced Solid-Shell). More details on this 

solid-shell element can be found in the series of works from Alves de Sousa et al. 

(2005; 2006; 2007). The choice of a solid-shell formulation to simulate sheet metal 

forming operations is also based on the possibility to use a general 3D constitutive 

law behaviour, while classical shell finite elements are implicitly based on plane 

stress/strain assumptions. Additionally, thickness variations and double-sided 

contact conditions are easily and automatically considered with solid-shell finite 

elements. 

The main goals aim the implementation of the RESS finite element, especially 

designed for sheet metal forming, in the in-house FEM code named LAGAMINE 

(Cescotto and Grober, 1985). The extension of the adaptive remeshing technique, 

currently available in LAGAMINE code for a shell element (Lequesne et al., 2008), to 

use it with the mentioned solid-shell element. These features are not available in 

common commercial FEM codes. Implicit analysis is used to perform the numerical 

simulations. It is worth noting that no previous work has been carried out using 

remeshing strategies with hexahedral elements on SPIF, which makes this work 

innovative. 
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1.6 Reading structure  

The present dissertation is divided into six chapters.  

The current chapter, Chapter 1 (Introduction), provides a summarized review 

on the field of Incremental Sheet Forming (ISF) and its variants. The process 

concept is introduced and practical aspects are described for each variant. A 

detailed description is given on the SPIF process. The main research topics are here 

defined along with the research objectives.  

The second chapter (State of the art: A review) presents an updated literature 

review of the state of the art of SPIF process. It aims a review based on the 

experimental developments and an in-depth lecture in the numerical simulation 

analysis. The results presented are from recently published works.  

The third chapter (Topics in nonlinear formulation) gives a brief review on 

nonlinear continuum mechanics. It presents also a description concerning the 

software used in the numerical simulations. The implicit scheme is the choice 

performed in the numerical simulation analysis. The theoretical aspects of a 

Reduced Enhanced Solid Shell (RESS) finite element, and alternative formulations 

that can be implemented, are referred.  

The fourth chapter (Remeshing for SPIF: Description) describes the adaptive 

remeshing technique and presents its application combined with the solid-shell 

finite element. The line test benchmark is used to demonstrate the advantages, 

comparing results with and without remeshing use.  

The fifth chapter (Numerical tests) focuses on the demonstrative case studies 

of SPIF process. The main objectives are to achieve accurate and fast numerical 

simulation results of SPIF.                     

Finally, the sixth chapter (Conclusion) ends the research work with the final 

considerations, including perspectives for future research works. 
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Chapter 2 

State of the art: A review  

Single point incremental forming (SPIF) is an emerging technique within sheet 

metal prototyping and small batch production, as previously outlined. Research 

interest has grown over the last years, both experimentally and numerically. 

According to the current state of the art review, it can cover a range of relevant 

topics presented in distinct sections below.     

The present literature review deals with the state of the art on the experimental 

and numerical developments of SPIF process. In Section 2.1, the overview is 

focused on experimental studies. The literature review gives, in Section 2.2, more 

emphasis to research developments on numerical simulations, with the aim of 

providing a better understanding of the process and its peculiarities. Finally in 

Section 2.3, an overview is presented on the deformation mechanisms suggested in 

literature.   

  

2.1 Experimental research and developments 

In the last years, the SPIF process was intensively investigated and 

experimental evolutions allowed achieving accuracies at industrial level. The 

following experimental development overview includes the process optimization and 

the understanding of its physical characteristics, which influence the forming 

process. 
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2.1.1 Influence of SPIF parameters on the axial force  

A number of researchers have performed experimental analysis on the 

forming forces by forming simple shapes using SPIF process, such as, Jeswiet et al. 

(2005), Jeswiet and Szekeres (2005), Duflou et al. (2007b), Filice et al. (2006); 

Ambrogio et al. (2007); Aerens et al. (2009); Henrard et al. (2010), just to mention 

a few. Globally, they have claimed that the forming forces increase with the tool 

diameter, the wall angle, the incremental step size and the sheet thickness. 

Duflou et al. (2007b) have studied the influence of four main process 

parameters on the forming forces required to form a sheet metal part using SPIF. 

These were the tool diameter, the vertical step size, the steepness of the wall angle 

and the thickness of the sheet metal. The experiments were carried out using a 3-

axis CNC milling machine. The investigated materials were different aluminium 

alloys, 3003-O and 3103-O, with different thickness values. The selected shapes for 

the experimental analysis were the pyramidal and conical shapes. The total forming 

force obtained for a pyramid shape was in the same order of force magnitudes to 

form a cone shape with identical process parameters. However, the individual 

analysis of each force components (Fx, Fy, Fz) exhibited different patterns. 

According to the results, increasing the vertical step size, tool diameter, wall angle 

or sheet thickness, the forces increased. Among these parameters and exploring 

their limits, the vertical step size revealed more significant effect. The combination 

of tool diameter in function of vertical step size revealed a linear fit approximation 

of forces. The relation found between sheet thickness and wall angle provided an 

accurate analytical approximation of force trends through a quadratic fit. From 

experimental measurements the force curves for wall angles above 60º revealed a 

considerable force decrease after reaching an evident peak value. The noticeable 

decreasing of force can be considered a failure indicator explained due to the 

occurrence of localized necking. Figure 2.1 schematically represents the force peak 

and force valley profile occurrence for large wall angle shapes. 
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Figure 2.1: Variation of force curve for large wall angle values. 

 

According to these authors, usually the peak value occurs in components 

with wall angles near the failure. After reaching the minimum force level, slowly it 

increases again. The thickness has decreased when the force decreased, and the 

minimum thickness value corresponds to the minimum force level. Several cone 

shapes were built with high wall angles above its critical value and some specimens 

failed. However, when the shapes around the critical wall angle value fractured, and 

their forming were repeated, some shapes were formed without fracture of the sheet. 

These results can be explained by localised material defects and/or small variation 

of the sheet thickness. The failure prediction can be supported observing the fast 

decrease of force. The pattern of the force curve between the peak and the 

minimum force can be used as a failure indicator.  

Petek et al. (2009b) have experimentally analysed different process 

parameters, which affect the magnitude of forming forces and deformation. The 

analysed parameters were the wall angle, the tool rotation, the vertical step size, 

the tool diameter and the lubrication. Simple conical shapes were used and the 

material chosen was steel DC05 with 1 mm of thickness. The experiments are 

carried out for different wall angles. It was established that the maximum 

achievable wall angle in forming of the cone shape, before the crack occurrence, was 

70°. At the wall angle of 71° the fracture already occurred. The deformation was 

measured using the graphometric analysis based on the size and directions of the 

major and minor strains. Circular grids are printed on the specimens before the 

forming process to evaluate the local deformation. After deformation, the grid 

circles were distorted into ellipses and the strains are measured in radial direction 

(major strain) and perpendicular to radial direction (minor strain) for each ellipse 
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along radial direction of the shape. Figure 2.2 exhibits the measurement directions 

of the circular grids.  

 
Figure 2.2: Grid circles distorted into ellipses and measurements orientation (Ambrogio et al., 2008). 

 

A significant difference was observed for wall angle values higher than 50º, a 

prominent axial force peak appeared, as similarly exhibited in Figure 2.1. This peak 

value could be noticed in the region where the fracture occurred at the maximum 

wall angle. In general, the experimental results of forces increase when the wall 

angle increases. Increasing the tool diameter and the vertical step size caused larger 

forces and deformations. The tool spindle rotation and the lubrication did not affect 

the force but they have strongly influenced the final quality of the component 

surface. 

The obtained results from Duflou et al. (2007b) and Petek et al. (2009b) for 

different materials described a similar behaviour in terms of force curve profile. 

However, for aluminium the evident force peak appears in shapes with wall angles 

higher than 40º while for shapes with DC05 steel it occurred in wall angles higher 

than 50º. 

Bagudanch et al. (2013) have studied the influence of several SPIF process 

parameters on forming forces. The parameters analysed were the tool diameter, the 

vertical step size and the spindle speed. The experiments were carried out on 

adopted 3-axis CNC milling machine. The material tested was stainless steel 

AISI304 with a sheet thickness of 0.8 mm. The experimental results demonstrate 

that the maximum axial force increases in function of tool diameter, due to the 

increase of contact zone between the tool and the sheet when higher tool diameters 

are used. Similarly, the increase of the vertical step size also provided an increase of 

the maximum force. Increasing the vertical step size, more material has to be 

pushed down in order to be deformed. On the other hand, increasing the tool 
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diameter could reduce the forming time and consequently higher vertical step size 

could be employed without compromising the surface finishing. The increase of the 

maximum forming force is not a desirable effect, it can be a limiting factor for the 

machinery used in the manufacturing process. Concerning the spindle speed 

influence, it decreases the maximum force value for higher spindle speeds, which 

can be explained due to the variation of the friction. In addition, the authors 

mentioned the effect of the spindle speed as being significant and it is not 

considered in the equation of Aerens et al. (2009) described in Section 2.1.2. 

However, a significant decrease of the temperature was observed when the tool 

rotates freely, but more force was needed to produce a given component. The 

control of the spindle speed mainly ensures the safe machinery operation and allows 

its application on hard materials. It generates heat and increases the formability of 

the material. 

Riadh et al. (2013) have proposed an optimization procedure based on finite 

element analysis, experiments, Response Surface Methodology (RSM) and Genetic 

Algorithms (GA) method. In this work, the main objective is to minimize the 

thinning rate and maximum load force, analysing some SPIF process parameters. 

The steps of optimization procedure included the response surface method to 

establish the mathematical models that represent the relationship between design 

factors and the objective functions. The GA is used to find the optimum solutions 

from the RSM. The sheet metal used in the numerical simulation of a conical shape 

was AA3003-O. A Box-Behnken experimental design was used to determine the 

effect of process parameters chosen on the considered response methodology. 

According to the results, the parameters with more significant influence in 

maximum tool load and sheet thinning were the initial thickness and the wall angle 

slope respectively. Concerning the tool diameter parameter, it showed more effect in 

the maximum tool load than in the sheet thinning. The sheet thinning exhibited 

more sensitivity to the vertical step size than to the tool diameter.  

Table 2.1 summarizes the influence of major process parameters on the axial 

force analysed by several authors chosen from literature review. Analogous analysis 

focused on the SPIF process parameters have been carried out by other authors, 

such as previously outlined in Section 1.2. 

 

 

 

 



22 

 

 

 

 

Table 2.1: Influence of SPIF process parameters on the axial force. 

Paper Shape Material  Process 

parameters 

Observation on axial 

force behaviour 

Duflou et al. 

(2007b) 

Cone AA3003-O 

AA3103-O 

Vertical step size 

increase 

Increase 

Tool diameter 

increase 

Sheet thickness 

increase 

Pyramid Wall angle slope 

increase 

Wall angle slope 

> 40º 

Increase / visible 

peak value 

Lubrication No significant 

influence 

Without 

Lubrication 

Premature failure 

occurrence  

Petek et al. 

(2009b) 

Cone DC05 Wall angle slope 

increase 

Increase 

Tool diameter 

increase 

Vertical step size 

increase 

Wall angle slope 

> 50º 

Increase / visible 

peak value 

Tool rotation 

 

Fix tool > Free tool 

> 40 rpm   

No significant 

influence 

Wall angle slope 

> 70º 

Crack occurrence 

Lubrication 

 

No significant 

influence 



23 

 

Bagudanch 

et al. (2013) 

Conical 

frustum  

Stainless 

steel 

AISI304 

Tool diameter 

increase 

Increase 

Vertical step size 

increase 

Tool rotation Free > 1000 rpm 

Riadh et al. 

(2013) 

Cone AA3003-O Wall angle slope Sheet thickness > 

Wall angle slope Sheet thickness 

Tool diameter Tool diameter > 

Vertical step size Vertical step size 

 

2.1.2 Force prediction  

Aerens et al. (2009) have established an analytical formulae allowing a 

prediction of force components during SPIF process. This study has been based on 

a large set of systematic experiments and on numerical simulation results by the 

Finite Element Method (FEM). It leaded to analytical formulae to compute the 

three main components of the force for five selected materials (AA3003, AA5754, 

DC01, AISI304, 65Cr2) in function of the working conditions (sheet thickness, wall 

angle, tool diameter, and vertical step). The analytical equations for the force 

components are partially obtained using regression techniques based on the physics 

of the process and Finite Element simulations. These equations are used to compute 

the axial and tangential components of forming force. For conical shapes, during 

the toolpath, the in-plane forces result from tangential and radial components. 

Preliminary, experiments were carried out to identify the relation between each 

parameter (sheet thickness, wall angle, tool diameter, and step down) and the three 

components of the force. Afterwards, the regression equations are obtained from the 

relation between the parameters and each selected material. The Finite Element 

simulations are performed to study the contact areas near the forming tool for 

different wall angles. Three scales of mesh models are used, 40º pie section called 

“global model” and two rectangular parts of the mesh with different sizes, 

mentioned as “large submodel” and “small submodel”. This strategy allowed the 

study of contact area between the tool and the sheet, and the distribution of the 

contact pressure, which demonstrated an acceptable precision.  Furthermore, a 

general model has been deduced, allowing an analytical value approximation of 

force for any material, based on knowledge of the tensile strength. 
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The analytical equation developed for axial forming force prediction of SPIF of 

Aerens et al. (2009) was compared with experimental results of SPIF under 

different working conditions selected by Pérez-Santiago et al. (2011). The formulae 

of Aerens et al. (2009) was applied to estimate the axial forming force of conical 

and pyramidal shapes with variable and constant wall angle slopes. For each 

selected case, they have presented the analytical force prediction and its error 

compared to the experimental measurements and FEM simulations. It was verified 

that the proposed analytical formula has been adequate for constant wall angle 

slopes but limited to predict the forming force of variable wall angle geometries. 

The FEM simulation predicted acceptable forming force for aluminium alloys. 

However, they have mentioned that more detailed constitutive modelling and 

characterization tests are necessary for other materials. Finally, the authors have 

claimed that the FEM models are the best choice to predict forming forces of 

variable wall angle components. 

 

2.1.3 Twist phenomena  

Twist, an undesirable deformation phenomenon occurring in ISF, was firstly 

observed by Matsubara (2001) during experiments performed using Two Point 

Incremental Forming (TPIF) process. It was found to be caused by uncontrolled 

rotation of the workpiece around the axial support structure as a result of 

tangential forces exercised on the workpiece by the tool. Similarly, Jadhav (2004) 

have explained twist effect in SPIF as being the result of tangential forces, which 

induced in-plane shear into the workpiece. Figure 2.3 exhibits twist phenomenon 

observed in different components shapes.  

 

 
Figure 2.3: Twist effect observed for cone and pyramid shapes (Vanhove et al., 2010).   
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Duflou et al. (2010) and Vanhove et al. (2010) have observed the twist effect 

in SPIF of pyramid and cone shapes using unidirectional toolpaths, as presented in 

Figure 2.3. They have quantified twist in terms of angle by drawing appropriate 

lines (radial lines in case of cone) before forming and measuring their deviations 

after forming. They classified the twist in two categories: the conventional one, 

which occurred at low wall angles, and the reverse one, occurring at high angles or 

near formability limits. At low wall angles, conventional twist occurred in toolpath 

direction until a wall angle of approximately 40º for an AA3103 with 1.5 mm of 

thickness. This can be explained by the reduction of wall thickness and 

approximately constant tangential force in function of the wall angle, as observed 

by Aerens et al. (2009). At high wall angles for pyramidal component, an 

asymmetric strain distribution, asymmetric thickness and force distribution became 

noticeable. Then, twist effect started to decrease in tool motion direction and 

reversing its effect into opposite direction. They also reported that the geometrical 

features, for instance, ribs and corners have significant influence on the twist. 

However, the authors found that the twist was independent of tool diameter, 

rotation speed of the tool, and tool feed rate. While with an increased vertical step 

size between contours a higher rate of twist was observed. Summarizing, the twist 

along tool motion direction increased with wall angle until a certain value, and then 

this tendency is reversed for further increase of wall angle.  

Later, Asghar et al. (2012) have carried out experimental and numerical 

analysis to study the effect of SPIF process parameters on twist. Their work was 

based on the study of twist in conical components. The authors concluded that the 

twist increased with the increase of incremental depth. However, they claimed that 

twist effect increases with the decreases of tool diameter and sheet thickness, while 

previous authors did not verified the effect of these parameters. Feed rate effects 

showed insignificant influence. The numerical predictions obtained good agreement 

with experimental results. 

 

2.1.4 Forming tool developments  

The majority of research works are focused on the use of a standard 

hemispherical tool to incrementally form the sheet into a final shape. Interesting 

alternative applications to replace the rigid tool have been explored, including the 

use of different typologies of roller ball tip, laser irradiation and water jet. Hereafter 

works found in literature are presented using these different forming tools. 
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a) Free rotation ball tip 

Shim and Park (2001) have developed a forming tool containing a freely 

rotating ball on the tool tip. Its main advantages are lower forming load, lower 

friction and, as a result, better surface finish. The authors used the tool with free-

ball tip to characterize the formability of AA1050 sheet in the forming of various 

shapes: triangle, square, pentagon, hexagon, octagon, circle and square with round 

corners. The analysis of these shapes were performed until crack occurrence. The 

major and minor strains of deformed grids were measured around cracks. Finite 

Element analysis was performed to understand the deformation of SPIF and 

compared with the experimental results. Their research results confirmed that the 

deformation is limited to the vicinity of the contact area of the tool. In general, 

from the results all the shapes, except the circle, confirmed that near equi-biaxial 

stretching occurred at the corner, while near plane-strain stretching occurred along 

straight side. The circular shape developed a much larger minor strain than any 

other shape. The crack has frequently happened at the corners due to its higher 

deformation than in straight side. The forming limit curve exhibited a singular 

forming behaviour, it appeared to be a straight line with a negative slope in the 

positive region of the minor strain (see Figure 2.8). 

b) Comparison of Oblique Roller Ball and Vertical Roller Ball 

Lu et al. (2014) have investigated a newly developed Oblique Roller Ball 

(ORB) tool. In order to examine the efficiency of the developed ORB tool, a series 

of tests have been carried out to access the final surface quality, formability and 

deformation behaviour. Different topologies of forming tools were experimentally 

compared, including the conventional rigid tool (a), the Vertical Roller Ball (VRB) 

tool (b) and the ORB tool (c). Figure 2.4 exhibits all tools experimentally tested. 

    

 
Figure 2.4: Different topologies of forming tools tested, (a) standard hemispherical rigid tool, (b) VRB and 

(c) ORB (Lu et al., 2014). 
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Concerning the material sheet, different aluminium alloys were used. The 

experimental results were explained based on the stress state analysis assuming an 

analytical membrane model approach similar to Silva et al. (2008). The tests were 

performed using a rigid tool with lubricant, VRB and ORB tools, both without 

lubricant. The experimental results revealed better final surface quality and lower 

friction condition with using roller-ball tools than a rigid tool. The friction 

reduction was more apparent when the pressure between the tool and sheet surface 

was increased to a specific level. The surfaces processed by ORB tool showed low 

roughness values, while those processed with a rigid tool have obtained the 

maximum roughness values. Comparing the VRB and ORB tools, it was found 

similar roughness values without significant difference. The frictional effect on SPIF 

formability was evaluated using the rigid and the ORB tools. The deformation 

behaviour suggests that friction between the tool and the sheet was the main factor 

which caused the Through-Thickness-Shear (TTS). Experimental results using the 

rigid tool showed stretching occurrence along the radial direction and larger TTS 

along the tool motion direction than using the ORB tool. The fracture depth of 

parts produced by using the rigid tool tip occurred at lower depths than using the 

ORB tool. Concerning the analytical approach, it was assumed that the increase of 

TTS results has two contrary effects. Firstly, the yielding of the sheet metal around 

contact zone increases deformation stability without necking occurrence. Secondly, 

increasing the stress triaxiality decreases the formability. In addition, the friction 

affected the surface roughness. The sheet surface exhibited scratches processed by 

the rigid tool. These scratches probably have reduced the formability of the sheet. 

However, it was difficult to assess quantitatively the influence of the final surface 

quality on the overall formability. This study considered TTS as a secondary effect 

and the source of the increased formability was largely due to Bending Under 

Tension (BUT) or other deformation mechanisms. Generally, the ORB tool 

demonstrated its advantages: it reduced the friction between the tool and the sheet 

surface, it decreased the forming load, increased the formability and improved the 

final surface quality even without lubricants. However, no matter what tool was 

used, the roughness of the formed part surface increased in comparison with the 

initial surface. The ORB tool has shown its advantages due to its use in a 3-axis 

CNC milling machine. As this machine has a limited number of degrees of freedom, 

its combination with the ORB tool, facilitates the forming of wall angles.  
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c) Laser forming process coupled with SPIF 

Laser Forming Process is based on thermal effect induced on the sheet by 

laser irradiation.  

Duflou et al. (2007a) have introduced the laser device in the SPIF process. 

The objective of its use was to heat locally the metal sheet on the opposite sheet 

surface of the tool application. The effectiveness of local dynamic heating was 

aimed to improve the material formability, dimensional accuracy and reduce the 

forces involved in the process. The local heating increased the material ductility 

reducing the most important parameters of material, i.e., the yield stress and the 

hardening coefficient locally. In the vicinity of the local heating area the material 

parameters have the initial values, which are high, ensuring a low springback effect 

increasing the final dimensional accuracy. Furthermore, it was demonstrated that 

the formability of different materials can be significantly extended. The elastic 

deformation during unclamping allowed concluding that appropriate settings of the 

local heating and cooling parameters leads to reduced residual stress levels. The 

localised heating was ensured by a good synchronization between the heat source 

(laser) and the forming tool. The power source and the laser diameter are the 

monitored parameters to ensure that the heating is limited to the contact area 

between the tool and sheet. 

d) Water jet as a tool  

In Water Jet forming (WJ) the forming tool is replaced by a water jet. The 

advantages found are: more flexibility, better surface integrity, less tooling 

requirements, lower equipment costs, less environmental impact and contact 

conditions. On the other hand, WJ is less accurate, consumes more energy and 

takes more time than other forming tool adopted (Jurisevic et al., 2005). 

Jurisevic et al. (2005) have introduced high-speed WJ as a tool for dieless 

ISF variants. For a better process characterization, the relative jet diameter (k) was 

introduced, which was defined as the ratio between the WJ diameter ( WJd ) and the 

sheet thickness (t). Relevant process parameters were identified and technological 

windows were phenomenological predicted, showing that WJ can be applied as an 

alternative solution of SPIF. Accordingly, two technological windows (operation 

regions) were defined by the water pressure ( Wp ) and the relative jet diameter (k), 

while a last process parameter was defined by the WJ distance ( SOh ). Figure 2.5 
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represents schematically both technological windows used for WJ process adopted 

for SPIF.   

 

 
Figure 2.5: Technological windows of WJ process. 

 

In all cases, a quantitative interpretation was performed through experiments. A 

first technological window (1) was limited on the top by the surface pressure at 

which erosion starts. In the bottom it was limited by the force of the WJ needed to 

induce plastic deformation into the blank of a given thickness (t). Both limit lines 

are dependent of the material and consequently, technological windows have to be 

found separately for each workpiece material. A second technological window (2) 

can also be defined according to the water pressure ( Wp ) and the distance between 

the forming WJ and the workpiece ( SOh ). Similarly, the technological window was 

defined as a function of the water pressure and the relative jet diameter. It can be 

observed that it was limited due to erosion, which takes place at higher water 

pressures and smaller distances. On the other hand, if the water pressure is too low 

and the distance is too high no plastic deformation occurs. The operation region of 

the process depends on the sheet material. 

Petek et al. (2009a) have also analysed WJ process. Their work aimed the 

study of the most influential parameters which affect the WJ and classical SPIF 

process. Experimental work was based on the forming of a simple pyramidal shape 

in aluminium sheet with 0.23 mm of thickness. It was observed that the two 

processes were complementary according to the optimal range of horizontal step 

and wall angle. From the experimental research carried out it could be concluded 

that, rigid tool was more appropriate in cases of bigger wall angles [44º to 60º] and 

smaller horizontal steps [0.2 mm to 0.8 mm]. The maximum wall angle obtained 

with rigid tool using the horizontal step size of 0.2 mm was 60º. Appling WJ, it was 

better at larger horizontal steps [0.8 mm to 1.6 mm] and smaller wall angles [22º to 

26º]. The controlling principle is the main difference between both forming tools. 

The main process parameter using rigid tool was the definition of the loads acting 
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on the work sheet surface. Using WJ the main parameters were the water pressure 

( Wp ) and the distance ( SOh ), which define the loads on the work sheet surface. 

They have concluded that the rigid tool enables higher process accuracy and 

shorter machining time than the WJ application. 

Besides these few descriptions of tooling used in SPIF process found in the 

literature review, the most widely used option continues to be a solid hemispherical 

rigid tool. Its main advantages are to keep the SPIF process simple and cheap.  

 

2.1.5 Tool trajectory 

Currently, the solutions available involve the process enhancement, already 

described in sections 1.3 and 2.1.4, as well as toolpath optimization strategies. In 

this sense, these solutions have been proposed in order to enhance SPIF 

performance at industrial level. In terms of toolpath strategy, it concerns the 

manufacture of products with high quality and accuracy, which are fundamental 

topics on which the interest of research groups are focused. According to the 

literature review, there are different proposals regarding the toolpath modification: 

real time toolpath optimization (Meier et al., 2009; Rauch et al., 2009), iterative 

toolpath correction (Fu et al., 2013; Hirt et al., 2004; Ndip-Agbor et al., 2015) and 

automatic toolpath generation methods, based on the behaviour of individual 

features, known as Feature-assisted Single Point Incremental Forming (FSPIF) 

(Verbert, 2010) and their interactions (Behera et al., 2014). 

Most of the researchers have used machining toolpaths available in 

commercial Computer Aided Manufacturing (CAM) packages for SPIF. Some 

efforts were made to specifically generate toolpaths for incremental forming from 

STL files. Typically, the toolpath generation is defined by a fixed or variable 

vertical pitch size (Δz) between consecutive separated contours (see Figure 1.3a). 

This is also the most common technique used. Mainly, the disadvantages are 

scratches left at the transition points between each contour, giving origin to force 

peaks experimentally observed. Many authors have tested techniques to avoid the 

vertical step down at each contour and optimize the contours.  

Blaga et al. (2011) have investigated the influence of spiral and contour 

toolpaths on strain distribution, relative thinning and forces in SPIF. The material 

chosen to produce parts was DC04 steel, with 0.7 mm thicknesses. They have 

observed homogeneous strain distribution and lower strain values with spiral 
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toolpath than using other toolpath. The forces were also more homogeneous with 

spiral toolpath without local peaks and valleys (see Figure 2.1). 

Azaouzi and Lebaal (2012) have optimised spiral toolpath using FEM 

combined with Response Surface Method (RMS) and Sequential Quadratic 

Programming (SQP) algorithm. Their objective was to reduce the manufacturing 

time and homogenize thickness distribution of an asymmetric part. The proposed 

strategy provided an optimal toolpath after 27 FEM calculations and the new 

trajectory length was reduced by 60 % in comparison to initial toolpath. The 

optimal solution has provided an improvement around 7 % of the sheet thickness 

distribution, due to the decrease of reaction forces. However, in order to find the 

shortest toolpath, the accuracy and the final surface quality of the component were 

deteriorated. 

    

2.2 Numerical simulation developments 

Nowadays, metal forming FEM simulation has been intensively used in R&D 

processes to better predict the structural behaviour during any component forming 

and its final geometry. 

Numerical simulation of SPIF process can be very demanding and time 

consuming, mainly due to high nonlinearities: small contact area constantly 

changing between the tool and the sheet surface, as well as the nonlinear material 

behaviour combined with non-monotonic strain paths (Eyckens et al., 2007). 

 An accurate estimation from the numerical simulation results, specially 

related to the prediction of the forces during the forming process, is important as it 

contributes to the safe use of the hardware. Also, the forming forces prediction is 

particularly important in the case of using adapted machinery not designed for the 

SPIF process. For instance, the CNC milling machine adopted which does not 

support high axial forces. In the following, a review of numerical studies about 

different aspects of the simulation, found in the literature is presented. 

 

 



32 

 

2.2.1 Integration algorithms: Explicit and Implicit  

The FEM is an approximation technique which computes the solution of 

algebraic equation systems, based on equilibrium equations, which depend on the 

problem type which can be static or dynamic. The integration of these equations 

over time can be based on two different integration schemes: explicit or implicit. 

Both solution procedures are commonly available in commercial FEM codes, having 

been investigated for SPIF process simulation in the literature.  

The explicit integration is a dynamic approach which gives the equation 

system solution without request of an iterative procedure. The algorithm scheme 

uses a diagonalzed mass matrix and the final force balance is not checked. The 

differences between the internal and external forces are used to calculate the nodal 

acceleration, velocity and the displacement. For this integration scheme to be 

computationally efficient, the mass matrix has to be easily inverted. This situation 

happens if the mass matrix is diagonal. However, if out of diagonal terms exist, it is 

necessary to use a mathematic strategy to artificially transform the mass matrix 

into a diagonal matrix. The nodal positions at the end of the step are extrapolated 

using the initial nodal position and acceleration field. The equilibrium is never 

completely satisfied. This method is conditionally stable, which means that there is 

no check of unbalanced forces and the solution converges as long as the increment 

size is smaller than the critical value. The most important advantage of the 

dynamic explicit scheme is the fact that it is not necessary to check the unbalanced 

forces due to no convergence control. Consequently, the computational efficiency 

increases, the memory requirement and the programming complexity are lower than 

with the static implicit scheme. However, the disadvantages are: the explicit time 

integration solution converges if the mass matrix is diagonal and the simulation 

performance depends of the number of elements in the mesh. It is claimed that the 

error introduced by the diagonalized mass matrix can be compensated by the type 

of integration scheme of the element. This approach can leads to an inconsistent 

computation of stress and springback (Tekkaya, 2000). 

In the implicit approach, the static equilibrium of the algebraic equations is 

satisfied at the unknown final configuration of a time increment. This method 

enables a full static solution of the deformation problem with convergence control. 

Implicit method can also be applied for dynamic loading, however this case is not 

discussed. Theoretically the increment sizes can be very large, but they can be 

limited due to the contact conditions. The Finite Element equation solution in 
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implicit integration scheme involves an iterative procedure to achieve the 

convergence criterion at each increment. This iterative procedure is based on the 

Newton-Raphson method. It is the most used method in static FEM programming 

to perform the iterative procedure on equilibrium equations and where the inertia is 

not included. The major advantage of the implicit method is its unconditional 

stability: It can provide a correct solution independently of the time 

step/increment. The size of the increment used in the implicit method is larger 

than the increment size in the explicit method. The increment size is limited by the 

accuracy requirement and robustness of the Newton-Raphson procedure.     

After this brief introduction of the main integration time schemes, it is 

presented below SPIF simulations carried out by several researchers using both 

mentioned integration schemes.     

Bambach et al. (2007) have carried out FEM analysis of SPIF process with 

ABAQUS/Explicit, for optimizing the toolpath. Those authors compared the values 

of sheet thickness and geometry accuracy with the experimental results, along a 

radial section of a conical shapes. The blank was modelled with shell finite elements 

and five analyses with varying friction coefficients, from 0.0 to 0.5 on the contact 

surface between tool and sheet. As a result, the authors have shown that no 

considerable influence on the prediction of geometry and thickness was found, 

regarding the five different values of friction coefficients chosen. Resorting to an 

explicit scheme combined with mass-scaling (with a time step of -510 s), the results 

did not considerably deteriorate. However, the calculation time increased from 30 

minutes to more than three hours. A direct comparison of the predicted thickness 

using the explicit and implicit analyses demonstrated that the maximum difference 

between both schemes occurred at the vertical pitch. This observation was due to 

the high kinetic energy transmitted through the tool during the sudden change 

from the in-plane movement to the vertical increment (Bambach et al., 2007). The 

obtained force also had a deviation when this vertical displacement was performed. 

To avoid the vertical pitch influence, the helical toolpath was tested. The tool 

forces obtained by the explicit scheme were in good agreement with previous results 

computed by implicit scheme. 

Yamashita et al. (2008) have used the dynamic explicit finite element code 

LS-DYNA to perform a quadrangular pyramid with variations in its height. Several 

types of toolpaths were tested in order to find their effect on the deformation 

behaviour. The thickness strain distribution and the force acting during the tool 

travel were evaluated. According to the results, the density of the sheet material 
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and the travelling speed of the tool cause inertial effect on deformation. They were 

pre-examined and optimised to determine the computational condition to use in the 

simulations in LS-DYNA, to reduce the computational time. The conclusion was 

that numerical simulations using explicit scheme might be used for the toolpath 

optimization of the SPIF process. 

Henrard (2008) has developed a strategy to perform SPIF simulations with 

dynamic explicit integration time scheme with an in-house code called LAGAMINE 

(Cescotto and Grober, 1985). The simulations were applied to a line test 

benchmark, and the mesh model was built with the COQJ4 shell element (Jetteur 

and Cescotto, 1991; Li, 1995). Initially, the line test simulation was run without 

mass-scaling and using different diagonal mass matrices. However, the results were 

not satisfactory due to poor shape accuracy when compared with implicit strategies. 

The mass-scaling value increased the largest stable time step and speeds up the 

simulation. The computation time with a mass-scaling factor of 410  was around 

50% of the computation time of the implicit scheme. However, a mass-scaling factor 

of 310  guarantees the stability but the CPU time does not decrease and the use of 

dynamic explicit strategy introduces inertia terms into the equilibrium equations. 

The choice of the mass-scaling factor affects the compromise between accuracy and 

the computation time. The explicit strategy was shown to be more unstable than 

the implicit approach. This instability of the explicit scheme is due to the mesh 

sensitivity in terms of aspect ratio of the elements, between the thickness and the 

length of the elements. 

 

2.2.2 Finite element types 

Bambach and Hirt (2005) have tested the performance of different Finite 

Element types available in ABAQUS software package. The finite elements used 

were all types of solid elements available and a shell element named S4R. The 

difference between all brick elements are the choice of anti-hourglass and anti-

shear-locking modes. The finite element S4R is a shell element with reduced 

integration. More details of the finite elements chosen can be found in the user 

manuals of ABAQUS elements library (ABAQUS 6.5). The numerical simulations 

were performed varying the elements types on the benchmark part, which consisted 

into an axisymmetric cup made of 1.5 mm DC04 steel. The toolpath consisted into 

five circles with a vertical step of 5 mm, which described a cone opening from the 

centre of the toolpath with a d=0 mm at z=0 mm to d=115 mm at z=-25 mm. 
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Figure 2.6 exhibits schematically an alternative toolpath for a vertical wall angle 

cone.    

 
Figure 2.6: Schematic representation of an alternative toolpath (Bambach and Hirt, 2005). 

 

The number of elements used in the in-plane mesh discretisation was kept 

constant for all simulations performed with different element formulations. For 

solid elements meshes, only two layers in the sheet thickness direction were used 

which is a minimum for modelling the bending state present in SPIF. With such a 

choice it is without surprise that the results showed that the finite element with the 

best results in terms of shape accuracy were the simulations performed using shell 

element S4R (plane stress). Besides, it presented the fastest CPU time within the 

tested solid elements, the reduced integrated solids with an hourglass control and 

based on enhanced assumed strains exhibited the best overall performance in terms 

of shape accuracy and CPU time. In general, the solid element results showed a 

considerable increase of computational costs. The poor performance obtained using 

brick elements was probably due to the use of only two elements over the sheet 

thickness, which created inaccurate bending stiffness.   

Sena et al. (2011) have validated the results coming from numerical 

simulations of SPIF process using the reduced enhanced solid-shell (RESS) 

formulation (Alves de Sousa et al., 2007), and compared it with results from solid 

finite elements available in ABAQUS software (ABAQUS, 2005). In this 

preliminary work, isotropic hardening and implicit analysis were considered. The 

experimental results were used as reference to assess the effectiveness of several 

finite element formulations: the RESS formulation and a set of hexahedral finite 

element options, namely C3D8 (full integration), C3D8R (reduced integration) and 

C3D8I (full integration with incompatible deformation modes) available in 

ABAQUS. From the user point of view the main differences between ABAQUS 

solid elements and the RESS element was the possibility to vary the number of 

integration points through the sheet thickness, in the latter formulation. For 

ABAQUS solid elements, the number of layers through the thickness direction must 
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be increased in order to have more than one (C3D8R) or two (C3D8/C3D8I) 

integration points per layer in this direction. With the RESS formulation, on the 

other hand, the number of integration points can be unlimitedly increased within a 

single layer. Concerning the role of the finite elements adopted here, it was 

concluded that reduced integrated solid element (four layers through the thickness 

were adopted) has significant error when simulating the SPIF process (Sena et al., 

2011). 

Henrard et al. (2010) have analysed the factors which influenced the accuracy 

of Finite Element simulation in the prediction of the tool force during the SPIF 

process. This work analysed the influence of three factors: the finite element type, 

the constitutive law and the identification of the material parameters. However, in 

the current section it is discussed only the influence of the finite element type. 

Afterward, in Section 2.2.3 it is described the influence of the constitutive law in 

the simulations performed in this work. The authors have compared two finite 

elements codes: the in-house research code LAGAMINE and ABAQUS/Standard 

(implicit integration scheme) software. The finite elements used were: the solid 

finite element called BW3D with one integration point and hourglass control 

(Wang and Wagoner, 2004; Duchêne, et al., 2007) and a shell element called 

COQJ4, 3D quadrilateral finite element of four nodes. All of these elements are 

from LAGAMINE in-house code. The sheet mesh in ABAQUS was modelled using 

the reduced integration solid element C3D8R distributed in three layers. The tool 

was modelled as a rigid body and the friction coefficient used was equal to 0.05 for 

all simulations. The tool rotation was not imposed in all numerical simulations and 

the experimental toolpath was simulated. Two cone shapes were analysed with 

different wall angles, 20º and 60º. These cases were chosen due to the observations 

of Eyckens et al. (2008) underlying by experiments the different strain distributions 

present (presence or not of through thickness shear). In order to identify material 

parameters, the line test benchmark from the work of Bouffioux et al. (2008a) was 

chosen due to the similar stress and strain states occurrence during SPIF process. 

The line test exhibited a localised strain gradient and through thickness shear 

which do not occurred in classic tests (tensile test, the monotonic and cyclic shear 

test). The accurate material data parameters were obtained through the inverse 

method procedure using the classics tests and the first step of line test 

corresponding to indentation. The simulations performed using LAGAMINE with a 

shell element with five integration points in thickness direction provided a slightly 

better modelling of bending behaviour occurring than the simulations performed 
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using three layers of solid elements. However, the Through Thickness Shear (TTS) 

cannot be taken into account in shell element. This fact results in problems to 

accurately simulate both 20º and 60º cones for shell element. The numerical 

simulations performed with a solid element named C3D8R from ABAQUS software, 

provided a solution for the shear locking problem.  However, the rank-deficiency of 

the stiffness matrix leaded to hourglass phenomenon occurrence. The authors 

concluded that the choice of the material parameters cannot be made separately 

from the element type, as “artificially modified material parameters” can hide the 

element inability to model some mechanism as TTS. 

 

2.2.3 Constitutive laws 

Bambach and Hirt (2005) have tested two different hardening laws in 

simulations of a cylindrical component described in Section 2.2.2. The authors have 

used isotropic and mixed (isotropic/kinematic) hardening laws, in order to verify its 

results sensitivity. Results obtained with the mixed hardening law presented a more 

accurate prediction than using a simple isotropic hardening law. As mentioned in 

Section 2.2.2, the toolpath used a very large vertical step increment. Decreasing its 

size, the effects of the cyclic loading with mixed hardening law would be even 

larger. The use of an advanced constitutive law was recommended due to the cyclic 

toolpath. However, it depends on the material sensitivity to Bauchinger effect. 

Consequently, a complex law requires a large number of parameters which can be 

difficult to identify. The accuracy of the material parameter set has a huge 

influence on the numerical results. 

He et al. (2005) have studied several aspects associated with FEM 

simulation choices as well as the material and process parameters of the SPIF 

process. The comparison between the simulation results and the experimental 

measurements was based on a 50º wall angle cone shape analysis. Two FEM codes, 

named LAGAMINE in-house code and ABAQUS, were used in this comparison 

study. They have suggested that the difference between both codes in terms of force 

predicted can be explained due to the effect of too stiff behaviour of the solid 

element selected and too high penalty coefficient used in the LAGAMINE contact 

model. Besides, both friction coefficients tested showed no significant influence on 

the cone shape or on the reaction force. Regarding the numerical results using Hill 

48 and von Mises yield criteria, clearly almost no difference appeared when the 

anisotropic yield criterion were applied. As the outside edges along the perimeter of 
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the sheet mesh are clamped, the deformation of the material in plane directions 

were strongly constrained, which could explain this result. 

Bouffioux et al. (2008 a; b; 2010) have used a specific inverse method for 

adjusting the material parameters with the experimental measurements. The main 

concept consisted in FEM simulations of simple tests involving the SPIF 

specificities. The inverse method was coupled to an in-house code named 

LAGAMINE in order to fit the material data and the material used was AA3103-O. 

Firstly, a set of material parameters were adjusted by inverse method using 

classical tests, tensile, monotonic shear and cyclic shear tests. The Swift hardening 

law was coupled with a Hill yield locus. The material parameters found with 

classical tests were tested using a line test benchmark. The results obtained 

exhibited a gap between the predicted and experimental forces. A new identification 

procedure adjusted the material data using both, tensile test and an indent test 

corresponding to the first step of the line test. The results of the line test 

simulations, using two different kinematic hardening models, showed an acceptable 

good correlation between the predicted and measured tool force, especially for the 

first two steps of the line test. From the comparison between LAGAMINE in-house 

code and implicit scheme of ABAQUS software, they demonstrated that the 

material parameters identified depended on the stiffness of the solid element. Also 

the number of solid elements in thickness direction influenced the results. Both 

codes presented similar levels of force prediction for tensile test and line test. 

However, the authors claimed that the identification method of material data was 

far from being trivial. The use of the classical methods by a combination of tensile 

and cyclic shear tests to identify material data for SPIF process seems not adapted.  

Eyckens et al. (2010) have analysed numerically SPIF process based on 

different finite elements to model the sheet. Different plastic behaviours are 

considered, isotropic and anisotropic yield criteria combined with either isotropic or 

kinematic hardening. The simulations using the shell element (COQJ4) are 

performed with LAGAMINE in-house code. The solid finite elements meshes are 

modelled in ABAQUS software (ABAQUS 6.5) using a reduced integration solid 

element (C3D8R). These meshes are modelled using three elements through the 

sheet thickness. The experimental geometry was a truncated cone of AA3103-O. All 

the simulations were carried out using static implicit scheme. Regarding the effects 

of the adopted constitutive behaviour in the shell model, it predicted almost 

identical results for the different strain components using von Mises or Hill yield 

criteria. The hardening law, Swift or Armstrong-Frederic, leaded to a low difference 
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in strains. However, in all cases, the authors have mentioned this fact as being a 

forming process displacement-controlled, which means the strains are independent 

of the adopted material behaviour. In terms of forming force prediction, the 

dependence on the type of hardening law is more pronounced than the choice of 

yield criterion. 

Henrard et al. (2010) have analysed the influence of plastic behaviour on the 

accuracy of force prediction by FEM simulations. These comparisons include the 

use of Swift and Voce hardening laws, isotropic or kinematic hardening models, 

isotropic von Mises and anisotropic Hill yield criteria. Also, different types of finite 

elements were used in this study, as described in Section 2.2.2. The material used 

was AA3003-O. The simulation analysis was based on two cone shapes with 

different wall angles, 20º and 60º and corresponding submodels from the centre zone 

of the 40º pie-model. The simulations and experiments carried out showed different 

material flow for 20º and 60º cones, resulting in different stress and strain states. In 

the 20º cone, both finite elements types provided a similar accuracy of axial force 

prediction when using the material model taking into account both isotropic and 

kinematic hardening. For the 60◦ cone, a submodel with a more refined mesh 

showed more accurate force prediction and the shear dependency of the mesh 

density. This large wall angle cone demonstrated that a saturating hardening law of 

Voce is essential for accurate force prediction. A less significant improvement in 

force prediction was obtained when taking into account kinematic hardening. 

Globally, the highest accuracy was reached using solid elements combined with a 

fine mesh, which used the isotropic yield locus of von Mises and the mixed 

isotropic–kinematic hardening model of Voce–Ziegler. The identification procedure 

based on the work of Bouffioux et al. (2008 a; b) proved that the choice of the 

material parameters set cannot be made separately from the element type. 

Moreover, in the forming force predictions, the dependence on the type of 

hardening law was more pronounced than the choice of yield criterion. 

 

2.2.4 Interaction between tool and sheet 

Eyckens et al. (2008) and Eyckens (2010) have used ABAQUS/Standard 

implicit for FEM simulation of SPIF. The authors performed Finite Element 

analysis of three different mesh model scales for each of the four cone shapes with 

different wall angles, 20º and 60º, using AA3003-O sheet. The first sheet mesh scale 

is referred as the global model (GL) modelling only a sheet section of 40º and using 
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a relative coarse mesh with 3 layers of elements through thickness. The second 

large Sub-model (S1) considered only a small section from the central region of GL, 

also using 3 layers of elements. Finally, the small sub-model (S2) is located at the 

centre of S1 sub-model, and consisted in 5 layers of elements. All scales were 

modelled with a reduced integration brick element named C3D8R from ABAQUS 

package. The material was considered isotropic described by Swift hardening law in 

combination with the isotropic von Mises yield criterion. The simulated contact 

pressure area between the tool and the sheet exhibited similar oscillations as the 

force components. Both sub-models practically showed identical results, while the 

GL model presented considerably high values of contact pressure. It can be argued 

that the coarse mesh of this model results in an over prediction of the contact area. 

The distribution of the contact pressure observed under different working 

conditions revealed that the contact can generally be divided into two parts. 

Firstly, the contact with the cone wall is well approximated as a line contact at 

larger wall angles, while it diminished at small wall angles. Secondly, the contact on 

the cone bottom appeared to be “sickle-shaped”. This can be attributed to the 

presence of a contact groove in the sheet material, formed during the previous 

contour of the tool. It makes an important contribution to the overall contact, even 

when the wall angle was large as 60°. At very low wall angles, such as 20°, it was 

responsible for the radial components of the forming forces to become nearly zero or 

even negative, which means that the tool was pushed outwards instead of in the 

direction of the cone centre. The sub modelling strategy improved the modelling of 

the plastic deformation zone in the SPIF simulation. However, the authors 

mentioned that the constitutive model of the sheet was too simple to accurately 

predict the forming force components, the quality of the forming force predictions 

was improved through the use of finer meshes. 

Delamézière et al. (2011) have developed a simplified approach modelling to 

simulate the contact between the tool and the sheet in order to reduce the CPU 

time of SPIF simulation. This work was continued later by Ben Ayed et al. (2014). 

In this model, the contact/friction with the rigid tools was replaced by imposed 

nodal displacements and it was used a geometrical assumption for the successive 

local deformed shapes. An algorithm was developed to find the nodes supposed to 

be in contact with the tool and to estimate their imposed displacements during a 

tool displacement increment. This was done by taking into account the geometry of 

the sheet at the beginning of that increment and according to the geometric 

assumptions. The simplified approach procedure is composed of three main steps: 
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the determination of the nodes in contact with the tool, definition of the nodes 

direction and management of different toolpath increments. To determine the nodes 

on the tool contact area to impose the displacements, it was proposed to limit the 

tool contact area. If all the nodes in the interpenetration zone are considered in 

contact the sheet deformed cannot be in conformity with experiments. In this case, 

a parameter named “imposed displacement radius” ( impR ) was proposed to limit 

the contact area and it depends on distance L. The value of the distance L from the 

tool centre was based on several benchmark tests, this distance was limited to 5 

times the tool radius. Then impR  can be determined as a function of the position of 

the tool centre, radius and a user parameter called Ɵ. Figure 2.7 schematically 

shows the geometric assumption of the parameters L and impR . 

 

 
Figure 2.7: Geometrical assumption, parameter L limited to 5x times the tool radius. 

 

Numerical results were compared with experimental data of pyramidal and 

square box benchmarks. The material used was AA1050 and the isotropic 

hardening behaviour was modelled by Swift law. The numerical results were 

obtained using the commercial finite element code ABAQUS, in order to validate 

the simplified approach. The simplified contact algorithm was assessed with 

different sizes of vertical steps down chosen by the user. The thickness distribution, 

compared with experimental result was globally acceptable and the CPU time was 

significantly reduced when compared with a classical simulation performed in 

ABAQUS implicit. 

The local plastic deformation characteristic of the SPIF process simulation 

requires a fine meshing discretization due to the contact interface between tool and 

sheet modelling. However, refining entire part with a fine mesh would increase 

tremendously the CPU time. In order to overcome this issue alternative numerical 

strategies appeared, such as adaptive re-meshing or domain decomposition methods 

for saving computation time. These approaches have been implemented to speed up 

implicit integration scheme simulations. 
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2.2.5 Domain decomposition methods 

Sebastiani et al. (2007) have applied a decoupling algorithm to reduce 

computing time in Finite Element analysis of incremental sheet forming (ISF) 

processes. The decoupling algorithm consists into divide a Finite Element model 

discretization in an elastic and an elastoplastic deformation zones. These two 

separated systems are alternately solved resorting to an algorithm which results in 

a partial model providing boundary conditions for the other system. The decoupled 

simulation involves several subsequent simulations which dependent on each other. 

The boundary condition includes degrees of freedom and a number of elastic 

elements representing the elastic reaction of the remaining structure. The 

mentioned elastic elements were modelled as spring elements constants based on the 

reaction forces and displacements of the boundary nodes. Several strategies of 

elastic boundary conditions at the boundary of the plastic forming zone were also 

investigated in order to predict the spring constants. The implementation of this 

decoupling method for enhancing the calculation performance notably reduced the 

system size. However, all approximations are still subject to a severe amplification 

of initial errors once the entire elastoplastic region is decoupled. 

Hadoush and van den Boogaard (2009; 2012) have proposed a substructuring 

method to reduce the computation time of SPIF simulations using implicit 

integration scheme. This proposal consisted into dividing the Finite Element mesh 

in regions with different computation treatments. The hypothesis is that plastic 

deformation is localised and restricted to the tool vicinity, while elastic deformation 

region is considered in the rest of the sheet mesh due to a low geometrical 

nonlinearity. The strong nonlinearity requires the use of the standard Newton 

method, but it was not efficient to use in large elastic deformation part. Using a 

relatively less expensive iterative procedure, as the modified Newton method, 

reduces the cost of the tangent stiffness matrix and the internal force vector update 

at iteration level. The difference between Newton method and the modified Newton 

method is the treatment of the tangent stiffness matrix (Zienkiewicz and Taylor, 

2005). To reduce the computation time, different domain approaches are applied for 

the treatment of each mesh zones.  

The two domain approach divides the mesh into two zones. In the first part 

containing the strong nonlinearity on the vicinity of the tool, the Newton method is 

applied. In the other sheet mesh zone considered elastically deformed, the modified 
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Newton method or the pseudo-linear approach is applied incrementally. At the 

beginning of each increment, the stiffness matrix and internal force vector are 

calculated as nonlinear, including the material and the geometrical nonlinearities of 

the previous increment.  

Later, Hadoush (2010) have extended the basic idea of the two domain 

method to three domain approach. The new region added in this approach was the 

split of the pseudo-linear treatment of the elastic deformation zone into two parts. 

The first and second zones are similarly performed as two domain approach and the 

third zone was assumed as being multi-incremental in pseudo-linear domain instead 

of one increment. In terms of performance, the three domain approach achieved the 

best speed factor for standard Newton-Rapson of 1.63 and, consequently, less CPU 

time. However, the authors mentioned that the size of the plastic region has to be 

carefully selected for an accurate modelling of SPIF simulation. 

 

2.2.6 Adaptive refinement strategies 

Lequesne et al. (2008) have modelled the SPIF process using LAGAMINE. 

In order to decrease the simulation time of SPIF simulation combined with an 

implicit integration scheme, a new method using adaptive remeshing procedure was 

developed. The sheet mesh was modelled with 4-node shell element implemented in 

the code, called COQJ4. The contact surface uses the node connectivity of the shell 

finite element combined with classical penalty method (Habraken and Cescotto, 

1998). The spherical tool was modelled as a rigid body. As the present thesis deals 

with the extension of this method from shell to solid-shell elements, its detailed 

description is given in Chapter 4. The validation of adaptive remeshing in SPIF 

process for shell elements was performed using a line test simulation from the work 

of Bouffioux et al. (2008a). 

Hadoush and van den Boogaard (2008) have proposed an implementation of 

a mesh Refinement/Derefinement (RD) approach to reduce the computing time of 

SPIF process simulation. The RD approach consists in a refined mesh in the 

vicinity of the tool since there is a small contact area between the tool and the 

sheet metal, while the rest of the sheet was described by a coarse mesh. During the 

process simulation, the mesh connectivity is continuously changing, because of the 

tool motion. This approach was implemented in an in-house implicit Finite Element 

package. The finite element type used was a triangular shell element and each 

coarse element was divided in four new refined equal elements when it is in the tool 
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neighbourhood. The mesh can only be refined once during the refinement 

procedure. The main goal of this approach was to keep the number of elements as 

low as possible during the simulation. The numerical simulation was applied to the 

forming process of a pyramid with 45º of wall slope. The state variables, when the 

new refined elements are generated, are transferred from the old coarse element to 

the new smaller elements. To conclude, the RD approach reduced the computing 

time compared to no refinement case by approximately 50%. The predicted 

equivalent plastic strain with this approach showed a good agreement with the 

reference model. 

The main differences between the remeshing procedure of Lequesne et al. 

(2008) and the one proposed by Hadoush and van den Boogaard (2008) are the 

mesh compatibility, the finite elements type used and the refinement/derefinement 

criterion. In this last approach, the refinement criterion is fulfilled if the geometrical 

error exceeds an indicator value. It measures the variation of the geometry within 

the blank. This variation was based on a set of tangent axes determined for each 

element. The variation of these sets of tangents from each element to its 

neighbourhood elements indicates the geometry variation. A nodal averaging 

technique was used to quantify this variation. The derefinement occurs if the 

variation within the group of refined elements decreases and is less than a user 

input value. Consequently, the coarse element is reactivated. Additionally, their 

refinement/derefinement technique allows preserving the mesh compatibility 

between refined and coarse elements due to the usage of a triangular shell element.     

Suresh and Regalla (2014) have studied the effects of finite element size and 

an adaptive remeshing technique in numerical simulations. Such effects were 

analysed on the plastic strain, punch force and deformed shape accuracy. The 

simulations were performed using the explicit dynamic finite element code LS-

DYNA. Its adaptive remeshing procedure has two types of indicators/criteria based 

on angle change and thickness change. In case of angle indicator, the angle between 

the in-plane and out of plane is measured, and if it is higher than a value chosen by 

the user, the mesh is refined. In case of thickness indicator, the mesh is refined if 

the thickness of the blank reaches the specified value chosen by the user. The mesh 

refinement was set to a maximum number of 3 levels during a refinement 

procedure. The sheet mesh was discretised using Belytschko-Tsay shell element 

with two integration points in thickness direction. The effect of four different 

meshes were tested with element edge length of 1 mm, 2 mm, 4 mm (coarse mesh) 

and 4 mm combined with an adaptive remeshing method. The effects on plastic 
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strain, punch force and deformed cross-section shape using adaptive remeshing were 

similar as the fine mesh with element edge length of 1 mm. While the force 

prediction using element edge length of 2 mm presented slightly deviation. The 

strain distribution of the coarse mesh results showed higher deviation than the 

other mesh topologies. The estimation of force and deformed shape using coarse 

mesh have shown a higher deviation than the results obtained with edge lengths of 

1 mm and 2 mm. Additionally, the force prediction with a coarse mesh presented a 

lower force level and larger force peaks than fine mesh. The computational time 

was reduced by 50% applying adaptive remeshing technique. 

Giraud-Moreau et al. (2013) have analysed SPIF using a remeshing method 

based on refinement and coarsening strategies in order to decrease the time 

simulation. The numerical results were calculated with the dynamic explicit solver 

of ABAQUS software coupled with the remeshing method. The finite element used 

to mesh the sheet was S4R shell element with 4 nodes and reduced integration. The 

validation of the numerical results have been carried out through the comparison of 

geometrical profile and thickness profile. The comparison was based on the 

experimental measurements of a 45° wall angle cone in AA1050 sheet. Only the 

shell elements close to the tool could be refined. The coarsening strategy was 

applied to the elements when the tool moves away from these elements. The 

remeshing criteria were based on the geometrical and physical error estimators. The 

geometrical estimator measures the maximum angular gap between the normal to 

the element and the normal to its vertices. If the angular gap is greater than a limit 

value, the element is curved and it is considered close to the tool. The physical 

criterion is used to refine the mesh with respect of the physical field distribution, 

the equivalent plastic strain. The refinement was defined by the distance between 

the curved element and the spherical tool. If this distance is less than a limit value, 

then the element must be refined in a uniform subdivision into four new elements. 

To preserve the mesh compatibility, the refined elements on the vicinity of the 

coarse elements are divided into three or four triangular elements. The mesh can be 

refined more than once during a refinement procedure, which is contrary to the 

strategies proposed by Hadoush et al. (2008) and Lequesne et al. (2008). The 

coarsening method is the reverse operation of the refinement technique. It can only 

be applied to refined elements. Globally, a good agreement has been observed 

between numerical and experimental results showing the efficiency of the proposed 

method.  
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Bambach (2014) has introduced an approach based on dynamic explicit 

Finite Element simulation analysis of ISF combining adaptive remeshing and 

subcycling methods, in order to reduce the computing time. This proposal allows 

the decrease of the CPU time by different ways: increasing the tool velocity or 

applying mass-scaling, use of parallel computation, reduction of the number of 

elements by adaptive remeshing and additionally, integration of the elements with 

different time steps through subcycling. The simulations were modelled with shell 

element with reduced integration (S4R). Concerning the adaptive remeshing, three 

methods of h-, p- and r-adaptivity are feasible: h-adaptivity refers to subdividing 

elements into smaller ones; p-adaptivity is based on increasing the polynomial order 

of the shape functions and r-adaptivity refers to relocating the mesh nodes 

according to gradients in the solution. From these three possibilities h-adaptivity is 

the most common strategy adopted by many authors that used adaptive remeshing 

in SPIF simulations, such as previously described. The subcycling is applied to the 

coarse elements integrated with a larger time step than the refined elements in the 

deformation region. The numerical simulations carried out with only adaptive 

remeshing reduced 28.8% of the time needed for a globally refined mesh. Applying 

adaptive remeshing combined with subcycling with a factor of 2 reduced the CPU 

time to 24.8% and to 12% for a factor of 10. This combination of adaptive 

remeshing with subcycling demonstrated tremendous reduction of CPU time. 

However, at large subcycling factors, the error in von Mises stress increases, it 

exceeds 10% for a subcycling factor of 4 and reaches 25% for a very large factor of 

10. For a subcycling factor of 8.3 in combination with adaptive remeshing, the 

stress results are poor. 

 

2.3 Formability and SPIF mechanisms 

In the literature review is claimed that formability on the SPIF process is 

higher than in conventional sheet forming process. In conventional stamping 

operations, the metallic sheet is considered subjected to an in-plane and bending 

deformation with, occurrence of necking. However, the deformation mechanisms on 

SPIF process are still a questionable subject among different metal forming research 

groups.  



47 

 

The limit of sheet metal forming processes is defined as the maximum 

deformation level achieved before fracture. The most common procedure to 

determine the forming limit of sheet metal forming can be named as Forming Limit 

Diagram (FLD) also known as a Forming Limit Curve (FLC). It consists into 

plotting the major principal strain and minor principal strain showing the safe and 

the failure zones. These curves are experimentally established, providing the values 

of major and minor principal strains, for various loading patterns, such as, equi-

biaxial, biaxial, plane strain and uniaxial. Figure 2.8 exhibits a schematic 

comparison between the FLC of conventional forming (stamping/deep drawing) 

and SPIF.  

 

Pure shear
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, Major StrainƐ1

 
Figure 2.8: Schematic representation of FLC in SPIF against conventional forming. 

 

The SPIF FLC is generally a straight line with a negative slope in the 

positive region of minor strain, whereas the conventional stamping is presented in 

both regions of minor strain, as shown in Figure 2.8. In the literature, several 

studies of SPIF parameters concerning their influence on the formability can be 

found. For the effects of tool type, tool size, vertical pitch size, feed rate, friction at 

the contact interface of tool/sheet surface and plane-anisotropy of sheet. Kim and 

Park (2002) have summarised the effects of different parameters on the formability 

of AA1050 sheet. The use of freely rotating ball tool tip enhances the formability 

and reduces the friction at the tool/sheet interface. The formability decreases when 

increasing the tool diameter and vertical increment, and the best formability is 



48 

 

obtained with a tool of 10 mm. Due to plane-anisotropy, the formability differs 

according to the direction of the tool motion.  

Formability in SPIF process can be analysed using the maximum forming 

wall angle as being an indicator. It can be the first step to know the formability 

limits of the material. For instance, Ham and Jeswiet (2006) have analysed several 

SPIF parameters and their combined influence on the maximum wall slope angle. 

Similarly, Malwad and Nandedkar (2014) have performed experiments to study the 

combined influence of wall angle, step size and tool diameter on formability. The 

formability analysis of AA8011 was performed using conical shapes with different 

wall angles, at 55º, 65º and 75º. Afterwards, a multistage test with continuous 

variation of wall angle from 35º to 90º was carried out to assess the maximum 

forming wall angle achieved in function of depth. From their experimental work, it 

was observed that the thickness reduction was possible at large wall angle, but 

uniform thickness distribution along the wall was found for angles smaller than 65º. 

Concerning the wall angle, when it was increased, the occurrence of stretching was 

more significant than shearing. For smaller wall angles the deformation mainly 

occurred by shearing. Using constant wall angle shapes, the cone forming achieved 

the target final depth without fracture occurrence. However, using multistage 

(variable wall angle) tests the fracture occurred earlier than using constant wall 

angle shapes. 

Many authors have tried to present analytical, experimental and numerical 

analysis to understand and validate the peculiarities of deformation mechanisms 

which occurred in the SPIF process. Localised deformation was attributed as an 

essential characteristic of SPIF process and different mechanisms were proposed as 

being the local stabilizers before occurrence of fracture.  

Emmens and van den Boogaard (2009) have presented a literature review of 

mechanisms that have been suggested to explain the enhanced formability in ISF 

processes. In their review, several mechanisms were mentioned: contact stress, 

bending-under-tension, stretching, shear, cyclic straining, necking stabilization and 

hydrostatic pressure. The mechanism explanations were based on theoretical 

considerations and some of them have been experimentally validated (Martins et 

al., 2008; Silva et al., 2008). They claimed that the identification of a single 

mechanism occurrence in ISF cannot be imposed or generalised as being the main 

mechanism. Recently, Nimbalkar and Nandedkar (2013) have updated the review of 

deformation mechanisms in ISF and included the membrane analysis and noodle 

theory. Besides the mechanisms mentioned previously, other researchers have 



49 

 

proposed the forming mechanism as being a combination of in-plane deformation, 

Through-Thickness Shear (TTS) and stretch instead of shear. In the following 

sections, the main mechanisms found in the literature review are described in detail.  

  

2.3.1 Analytical analyses 

Martins et al. (2008) and Silva et al. (2008) have presented an analytical 

model of SPIF based on the experimental observation of contact interaction 

between forming tool and sheet surface. A similar examination was performed for 

material failure at the transition regions between the inclined wall and the corner 

radius of the shape. Their analytical membrane theory model proposes the 

fundaments of the process and it was explained through experimental and 

numerical results.  

Martins et al. (2008) have presented a theoretical model based on membrane 

analysis with bi-directional in-plane contact friction focused on the deformation 

modes commonly found in SPIF. It was explained by experimental and numerical 

results available in the literature. The formability limits of the process are analysed 

by combining the proposed membrane analysis with ductile damage mechanics. The 

analytical model approach was only focused on three modes of deformation: a) the 

flat surfaces under plane strain stretching conditions; b) rotational symmetric 

surfaces under plane stretching conditions; and c) corners under bi-axial stretching 

conditions. These modes were considered in order to explain the high formability of 

the process. The explanation of the increased formability of SPIF was compared 

with conventional stamping operations through the Fracture Forming Limit 

Diagram (FFLD) based on the onset of fracture instead of FLD based on the onset 

of necking. The evolution of thickness with depth along two meridional cross 

sections revealed that plastic deformation takes place by uniform thinning until 

fracture. From their experimental observations, the authors claimed that there is no 

evidence of necking before the failure occurrence in the component. The crack 

propagates under tensile meridional stresses acting under stretching modes of 

deformation.  

Silva et al. (2008) have provided a reviewed theoretical model for rotational 

symmetric SPIF, which was employed under membrane model analysis considering 

bi-directional in-plane contact friction forces. The main purpose of their analysis 

was the understanding of state of stress and strain in the localized deformation and 

the material fracture initiation during SPIF process. A schematic representation of 
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the shell element details the acting stresses in the meridional, circumferential and in 

thickness directions. The contact stress was introduced in this model by stretching 

of the sheet around the punch radius. The contact stress in SPIF occurred due to 

the bending of the sheet around the punch. It can be assumed that the stress 

increased with increasing sheet thickness and decreasing punch radius. This would 

mean that the formability also increased in agreement with general observations. 

Fracture in SPIF was claimed as being happened by meridional tensile stress and 

not by in-plane shearing stress. 

Fang et al. (2014) have developed an analytical approach for SPIF process 

to describe the localised deformation mechanism. In their work, they assumed a 

plane strain condition in the analytical model, which is only the material 

deformation in the plane perpendicular to the tool motion direction. The localised 

deformation region was divided into sub deformation regions: the first one, the 

contact area between the tool and the sheet, and the second one, the wall of the 

formed part on the neighbourhood of the first region. In each one, the state of 

stress and strain was analysed through the thickness direction to include the 

bending effect. In addition, the stretching effects were also considered by 

calculating the thickness strain and, finally, the strain hardening was assessed. In 

order to validate the theoretical study, simulations and experiments of a cone shape 

were performed. The results confirmed the accuracy of the analytical model using 

both Finite Element simulation and experiments. The experimental validation was 

performed by measuring the circumferential and meridional strain variations, the 

growth of crack and morphological analysis of the fractured region. The measured 

meridional strain was larger than the circumferential strain, which confirmed the 

plane strain assumption used in the analytical modelling. The analytical evaluation 

revealed that the deformation occurred not only in the contact zone, but also in the 

inclined wall in the vicinity of the contact zone. The deformation in the non-

contact area may affect the geometrical accuracy. Finally, the results also suggested 

that the fracture tends to appear at the transitional zone between the contact area 

and formed wall. In addition, the authors mentioned a model limitation: the plane 

strain assumption in the theoretical analysis validation would be validated only for 

axisymmetric components. 

 

 



51 

 

2.3.2 Combination of stretch, bending and shear 

Emmens and van den Boogaard (2009) have mentioned in their review that 

simple shear is responsible for the lack of necking appearance, as no tensile force is 

applied in the plane of the sheet. An additional shear stress decreases the yield 

stress in tension. It was observed as occurring in ISF as referred in Emmens and 

van den Boogaard (2007). Figure 2.9 exhibits the lateral cut section view of 

different deformation modes: bending, stretching and shearing in the orientation of 

the original vertical cross-sections (XZ plane). 

 
Figure 2.9: Difference between forming by stretch (left) and forming by shear (right).  

 

In forming by stretching, the initial section lines normal to the surface of the 

sheet material remain perpendicular to the surface, while in forming by shear they 

keep their original orientation. 

Jackson and Allwood (2009) have experimentally examined the deformation 

mechanisms of two variants of ISF: TPIF and SPIF, and compared them for a 

forming process of an identical geometry. In addition, a second aim was to evaluate 

the accuracy of the sine law prediction of wall thickness, and relate the measured 

thickness to the deformation mechanisms. The strain distribution through the 

thickness of the sheet was measured for the cooper C101 sheet formed into a 

truncated cone with a wall angle of 30º shaped using each forming method. A sheet 

thickness of 3.1-3.3 mm was used to allow a longitudinal gridline printing along the 

cross-section to indicate the variation of strains through the thickness. Their 

observation analysis brought three significant results. In both SPIF and TPIF the 

deformation was a combination of stretching and shear that increased on successive 

contours. Shear was the most significant strain component in the tool direction, it 

was a result of friction between the tool and workpiece. Also, shear occurred 

perpendicularly to the tool direction in both SPIF and TPIF, it was more 

significant in SPIF resulting in piling up of the material at the centre of the plate.  



52 

 

Finally, the deformation mechanism was inherently different for SPIF and 

TPIF, they both differ from a pure shear mechanism. High stretching and shear 

perpendicular to the tool direction provided differences between the sine law 

prediction and measured wall thickness for both SPIF and TPIF. It was due to the 

radial displacement of the material. The conventional forming process exhibited no 

stretching occurrences anywhere along the cross-section. This was due to the 

material sliding under the blank holder minimizing stretching. Whereas, the 

localised stretching occurred under the tool indentation in both ISF processes, due 

to the material draw-in from the sheet borders restricted by the rigid clamping.  

In order to validate their observations, the authors performed an evaluation 

of their experimental results by comparing them with other typical ISF 

experiments. The comparison includes main similarities from results of previous 

experiments of different researchers. It was important due to the material, sheet 

thickness and geometry used in their experiments. Concerning the unusual choice of 

material and sheet thickness used in the experiments, they resulted in strains that 

have some differences to more typical ISF experiments. However, some similarities 

were found and some results can be transferable to typical ISF experiments. 

Specifically, the through-thickness shear is assumed greater for the copper plate 

than thinner sheets, but, it has a similar evolution in strains in successive contours 

in experiments using thinner sheets. 

Malhotra et al. (2012b) have developed a fracture model combined with 

Finite Element analysis in order to predict the occurrence of fracture in SPIF using 

two conical shapes. Experiments were performed to validate the predictions from 

Finite Element analysis in terms of forming forces, thinning and fracture depths. It 

was reported that fracture in SPIF was controlled by both local bending and shear. 

Local stretching and bending of sheet on the tool vicinity originated higher plastic 

strain on the outside surface of the sheet increasing damage as compared to the 

inner surface. Additionally, the deformation mechanism in SPIF was compared to 

conventional forming process using the deformation history obtained from Finite 

Element analysis. The shear effect in SPIF delayed damage accumulation while 

high local bending of the sheet around the tool caused greater damage accumulation 

in SPIF than in conventional forming. These facts explain the increased formability 

in SPIF in comparison to conventional forming. It was claimed that both through-

the-thickness shear and local bending of the sheet around the tool play a role in 

fracture in SPIF process. 
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2.3.3 Through Thickness Shear (TTS) 

Eyckens (2010) has discussed the occurrence of Through-Thickness Shear 

(TTS) in SPIF. The author demonstrated TTS, also known as out-of-plane shear, 

through numerical and experimental supports. Firstly, resorting to FEM by 

modelling the sheet with solid finite elements which provided a suitable validation. 

Secondly, direct experimental measurement based on the deformation of small holes 

drilled in the sheet (Eyckens et al., 2009b). Finally, the third method, also an 

experimental validation was performed based on the crystallographic deformation 

texture (Eyckens et al., 2011).   

Eyckens et al. (2009a) have extended the Marciniak–Kuczynski (MK) 

forming limit model in order to predict the localised necking in sheet metal forming 

operations in which TTS occurs. The FLD of a purely plastic, isotropic hardening 

material with von Mises yield locus was discussed, for monotonic deformation paths 

that include TTS. Formability increases based on TTS was explained through a 

detailed study of some selected deformation modes. The case study showed that the 

presence of TTS in the plane is related to the critical groove direction in MK 

model. TTS allowed a change of strain mode resulting in a delayed of necking. 

Eyckens et al. (2009b) have carried out experimental measurements of the 

TTS. The direct experimental measurement method of the total TTS was proposed 

based on the deformation of small drilled holes. From this method, statistically 

non-zero TTS angles were measured for a low carbon steel sheet (DC01), subjected 

to different levels of deformation. The experiments have showed the existence of 

TTS in SPIF in cone shapes with different wall angles, from 40º to 67º. The 

formability prediction was presented using a MK type of forming limit model 

(Eyckens et al., 2009a) which can take into account the TTS. The observed TTS 

along the cone wall differed from the one that would follow a pure shear mechanism 

in SPIF and it increased in magnitude with increasing wall angles. However, the 

TTS in the circumferential direction of the cone showed an insignificant 

dependency of the wall angle. From the MK model applied to a 65º wall angle cone, 

the TTS measurements used to study the localised necking demonstrated that the 

presence of TTS can indeed delay the onset of localised necking in SPIF. This 

observation present TTS as one the factors of very high formability during SPIF 

process.  

Eyckens et al. (2011) have extended the MK model, taking into account 

TTS for generalised anisotropic material sheets. It was a continuation of previous 
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work from Eyckens et al. (2009a). The extension aimed the prediction of the onset 

of localised necking during forming and compared to a proposed alternative 

approach of Allwood and Shouler (2009). The combination of TTS with anisotropic 

plastic behaviour was not included in the MK model framework leading to two 

additional issues. Firstly, the local material frame from the work of Montleau et al. 

(2008) was included and the rotation of anisotropic properties was considered 

during shearing. Secondly, to describe anisotropic yielding for strain modes which 

have non-zero TTS components, the Facet method was used (Van Houtte et al., 

2009). From the textures of an aluminium alloy AA3103 sheet and a sheet of low 

carbon steel DC01, the Facet plastic potential was obtained through virtual tests of 

the Taylor–Bishop–Hill multilevel model. It revealed out-of-plane anisotropy which 

cannot be obtained using experimental tests. It was seen that the anisotropic yield 

state including TTS influenced the formability prediction for monotonic strain 

paths. For the aluminium texture, formability with anisotropy taken into account 

was higher compared to the one associated to isotropic von Mises yield locus, 

however this was not verified for the low carbon steel texture. The sheet orientation 

had a small influence on the improvement effects of TTS on the forming limit. 

Formability predictions were seen to be greatly affected by the direction of applied 

TTS in the major in-plane strain direction. This last result was in contrast to the 

results obtained with the model of Allwood and Shouler (2009) which predicts no 

effect of the direction of TTS on formability. 

 

2.3.4 Bending Under Tension (BUT) 

Emmens and van den Boogaard (2009) have described the Bending-Under-

Tension (BUT) as being the simultaneous bending and stretching of a sheet. The 

force needed to stretch the material is dependent on both quantity of bending and a 

quantity of stretching. In general, the BUT has a dynamic effect occurring when 

actually the material is moving around the cylindrical punch while at the same 

time it is bent and stretched. The simultaneous bending and stretching caused a 

non-uniform stress over the thickness. The comparison of its occurrence in ISF 

operation is difficult to directly establish. However, it is obvious that the material 

is being bent near the tool and being stretched at least in some directions. The 

BUT mechanism is proposed as an additional stabilizing effect. This effect leads to 

a proportionally increasing of sheet thickness and decreasing punch radius. 
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The Continuous Bending under Tension (CBT) test has an analogous 

feature as a common tensile test. However, during the tensile procedure, a set of 

three rolls are continuously moving up and down along the specimen repeatedly 

bending and unbending as in a three-point bending test. Emmens and van den 

Boogaard (2008) have analysed in detail the CBT. Particularly, experimental 

conditions have been studied: speed and bending angle. Several materials specimens 

are used, which were aluminium alloys and low carbon steel. 

Emmens and van den Boogaard (2009) have showed that CBT test was 

suitable for studying BUT as a mechanism in ISF, but the conditions should be 

changed to ensure a small bending radius. The experimental conditions, pulling 

speed and depth setting, have a significant effect on the final results, notably on the 

maximum level of stretch. At a fixed geometry, there is an optimal pulling speed 

for obtaining maximum uniform straining. Pulling at low speeds, the formability 

was reduced due to the increased number of bending-unbending cycles. The CBT 

test was performed with different materials showing different levels of formability. 

This means that, besides the deformation stability, there is a material effect at the 

same time. From these test results the highest reported uniform strain achieved 

corresponds to an elongation of 430% obtained for mild steel, DC04. On the other 

hand, the general performance of aluminium was found to be much worse than that 

of steel. Summarising, the results demonstrated the hypothesis that the material 

actually bent required a lower stretching force. The authors have concluded that 

the CBT was a critical factor affecting the localised deformation and the 

formability of ISF (Emmens and van den Boogaard, 2008). 

 

2.3.5 Cyclic strain effect 

During SPIF operation, the forming tool has a contact with a material point 

several times. Each path causes bending and unbending with possible strain 

reversal, so the material is subjected to cyclic straining. However, this cyclic effect 

should not be confused with the BUT. It involves repetitive bending but not 

necessarily cyclic and presents inhomogeneous stress distribution in the thickness 

direction. The stabilizing effect of cyclic loading, involves cyclic straining but not 

necessarily bending and the stress distribution over the thickness may be 

homogeneous. In a practical situation, these mechanisms will be hard to separate, 

but their effects are fundamentally different (Emmens and van den Boogaard, 

2009). 
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Eyckens et al. (2007, 2010) have showed the non-monotonic strain path of 

the material submitted to SPIF process, playing a role in the high formability, 

compared to the monotonic loading in the traditional FLC. They have analysed the 

deformation history retrieved from a Finite Element simulation of a 50º wall angle 

cone shape formed by SPIF using AA3003-O. The finite element simulation 

revealed complex deformations occurring during the SPIF process. To illustrate 

this, three elements along the thickness direction were selected in the centre of the 

inclined wall mesh. The strain paths consisted into a number of serrations. The 

physical meaning of the serrated strain paths was understood by a closer analysis of 

deformation during a single contour of the tool. The simulation showed that the 

final deformation at the cone wall was approximated by a plane strain deformation 

with elongation along the local radial direction, and this final deformation was 

reached incrementally by the forming tool. Along the direction of the tool motion, 

the sheet was repeatedly bent in one way by the moving tool, bent in the other 

way, and unbent. The usage of different constitutive models in this analysis showed 

that mixed hardening contributed to the delay of the onset of necking in SPIF 

process. Afterwards, the strain paths at three finite elements in thickness direction 

are used as input into a MK forming limit model. The large difference in the 

predicted forming limits obtained from the different layers indicated that an 

interaction between these layers should be taken into account for more accurate 

forming limit predictions of sheets subjected to SPIF. 

 

2.4 General remarks     

In general, the present chapter describes and summarizes the main subjects 

chosen from the state-of-art review of SPIF process. The main developments on 

experimental and numerical fields were presented in order to be a basis in further 

analysis performed in this research field.  

The experimental work description of different authors provide analyses that 

can be obtained and compared with FEM simulation predictions, such as the force 

prediction and twist occurrence. Tests showed that twist effect can not only be 

observed in rotational geometries, but it was also presented in non-rotational 

structures, for instance, pyramidal parts. Concerning the experimental parameters 

of SPIF and different toolpaths, they are mentioned due to their effects in the 
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process formability. As demonstrated in the work of Wu et al. (2012), they have 

numerically analysed the influence of different toolpaths on formability by FEM 

coupled with damage model.     

In terms of FEM simulation review, the state-of-art includes the 

computational aspects that must be taken into consideration. The SPIF process is 

commonly simulated to predict the tool force, the final geometry of a component 

and occasionally to predict rupture. The results obtained are based on user options: 

integration scheme, type of element, friction conditions between the tool and the 

sheet, hardening law and Boundary Conditions (BC). 

The simulation of SPIF process is a demanding task, due to its long 

computation time to model with implicit or explicit FEM codes, as previously 

outlined. Several authors have claimed the dynamic explicit scheme as being faster 

than the static implicit analysis. On the other hand, many authors reported 

problems associated to the dynamic explicit analysis, as described in Section 2.2.1. 

In this work, the chosen FEM code and its integration scheme are based on 

previous efficient results from Henrard (2008), resorting to the static implicit 

approach.  

Generally, these choices are effective to predict the final shape but regarding 

the tool force prediction, it provides an overestimated value. A number of authors 

have studied the ability of FEM to correctly predict the tool force during SPIF 

process. From the literature review is evident that the shell finite element type is 

the most widely used for SPIF simulation, as shown in Table 2.2. On the other 

hand, the material behaviour through the sheet thickness is neglected. Besides, as 

established by Eykens et al. (2011) to model TTS, the material behaviour through 

sheet thickness has a relevant importance. Moreover, Belchior et al. (2013; 2014) 

have presented a mixed mesh model as a solution, combining the advantages of 

shell elements and solid elements.   

Many other authors have analysed the influence of Finite Element type 

coupled with different hardening laws. The calibration of the hardening law 

parameters play an influent rule on the force level, as shown through a series of 

works from Bouffioux et al. (2008a, 2008b and 2010). Similarly, Eykens et al. (2010) 

and Henrard et al. (2010) analysed different hardening laws. Both authors have 

obtained similar observations regarding the simulation performed in ABAQUS 

using the same solid element of reduced integration (C3DR). In addition, both 

described the force prediction as being improved using a refined mesh submodel. 

Later, Sena et al. (2011) have performed SPIF simulations using the solid elements 
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available in ABAQUS software in order to assess the force prediction. From the 

comparison analysis, the reduced integration solid element (C3D8R) revealed to be 

not suitable for SPIF simulation due to its overestimation of tool force. In this 

sense, the observation of Eykens et al. 2010 and Henrard et al. (2010) cannot be 

associated only to a behaviour law, but also the hexahedral finite element chosen 

for SPIF simulation. In addition, the authors used several layer of finite elements in 

thickness direction which leads to well-known locking pathologies.  

Table 2.2 summarises a number of authors chosen from literature that have 

used different integration schemes combined with different types of finite elements. 

 

Table 2.2: Authors that used different integration schemes combined with types of finite elements. 

Explicit Implicit 

Shell Solid Shell Solid Solid-Shell 

Cerro et al. 

(2006); 

Bambach and 

Hirt (2007); 

Henrard (2008); 

Azaouzi and 

Lebaal (2012); 

Dejardin et al. 

(2010); 

Robert et al. 

(2012); 

Shanmuganatan 

and Senthil 

Kumar (2012); 

Cui et al. (2013); 

Mirnia et al., 

2014 

Bambach (2014); 

Malhotra et 

al. (2012b); 

Mohammadi 

et al. (2014); 

Ndip-Agbor et 

al. (2015); 

Henrard (2008); 

Lequesne et al. 

(2008) 

Hadoush and 

Boogaard 

(2009); 

Eyckens et al. 

(2010); 

Henrard et al. 

(2010); 

Bouffioux et al. 

(2011); 

Arfa et al. 

(2012); 

Guzmán et al. 

(2012); 

Li et al. (2012); 

Flores et al. 

(2007); 

Aerens et al. 

(2009); 

Eyckens et 

al. (2010); 

Henrard et 

al. (2010); 

Essa and 

Hartley 

(2010); 

 

Sena et al. 

(2011); 

Duchêne et al. 

(2013); 

Seong et al. 

(2014); 

Sena et al. 

(2015); 

 

The choice of RESS formulation can help to decrease the computational 

cost, given the special integration scheme employed, and that is the reason of its 

selection in the present work. The addition of Enhanced Assumed Strain (EAS) 

modes, as appearing in RESS formulation, was shown to improve the overall 
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quality of the results (Sena et al., 2011). A plausible explanation is that the 

bending-dominated deformation mechanism appearing during the forming process is 

better described using enhanced strain-based formulations. 

The optimal material behaviour model according to the results from the 

aluminium alloy considered in many studies presented in Section 2.2.3, is mainly 

isotropic hardening, as in this case the effect of the cyclic effect is low. 

The application of remeshing procedure confirmed a significant CPU time 

reduction and provided an acceptable result accuracy as clearly claimed by different 

authors that used different FEM codes. Hence, the use of a remeshing technique has 

an enormous advantage and provides an answer to the request of performing faster 

SPIF simulations.  

As a last topic on the numerical standpoint, the Boundary Conditions (BC) 

applied to the simulation, such as, symmetric conditions and clamping edges can 

also lead to an artificial stiffening of the model. Bouffioux et al. (2007) have 

remarked the force overestimation due to stationary BC. To avoid this 

overestimation the clamping system has been modelled by springs distributed along 

the sheet edges. In addition, Henrard et al. (2010) and Bouffioux et al. (2010) have 

used boundary conditions based on a link between displacements at both edges of a 

pie model in order to minimize the effect of missing material. The main purpose is 

due to the tendency of the sheet to twist which cannot be predicted using 

symmetric BC. 

The deformation modes in SPIF has been subject of controversy in the metal 

forming community. The increased formability of SPIF has been demonstrated as 

significantly higher compared with conventional sheet metal forming processes, such 

as stamping and deep drawing. Different explanations of forming limits of SPIF 

were presented in this review. These mechanisms are still not fully understood, 

although several mechanisms have been proposed in the literature review. Many 

authors claimed that the deformation occurs by stretching instead of shearing while 

others claimed the opposite. From experimental observation, the formability is 

limited by fracture without evidences of necking occurrence (Malhotra et al., 

2012b). Although the increase of formability can also be due to a large amount of 

TTS or, instead, due to serrated strain paths from cyclic plastic deformation and 

local plastic deformation. 
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Chapter 3 

Topics in Nonlinear Formulation  

In the present chapter the fundamental topics on nonlinear computational 

mechanics are summarized, particularly the kinematics of continuum bodies as well 

as strain and stress measures.  

A Lagrangian formulation is chosen regarding the Finite Element code adopted to 

perform the numerical analysis in the following chapters. The following sections 

focus on the major points of general solid mechanics and their application by the 

Finite Element Method (FEM). 

 

3.1 Principle of Virtual Work 

The Finite Element Method (FEM) is established in terms of a weak form of 

differential equations. The weak form is a re-formulation of the original Partial 

Differential Equations (PDE), also called a variational equation. This method 

actually does not solve the so-called strong form of the differential equation (Fish 

and Belytschko, 2007), it purely solves its integral over the volume or domain, the 

so-called weak form of the differential equation. The weak formulation is the basic 

requirement for the application of approximation methods. In this sense, there are 

three integral principle approaches commonly used: principle of virtual work, 

principle of the minimum of total potential and principle of virtual force.  

In order to develop the concept of stress, it is necessary to study the action 

of generic forces on a given body. Considering a generic three-dimensional 

deformable body defined by a volume V, with boundary S and in static equilibrium, 

a schematic representation can be given as shown in Figure 3.1. Also, assume that 

the body is under the action of external body forces bi  and tractions t  (per unit 
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area) acting on the boundary, with n as the normal vector to the contact surface. 

The volume domain V is limited by boundaries divided into DS  and NS . The 

boundary DS  is associated to prescribed displacements, representing the Dirichlet 

(essential) boundary conditions, such as supports (u1 ) or applied displacements. 

Prescribed surface tractions t  are applied on NS , defining the Neumann (Natural) 

boundary conditions. 

 
Figure 3.1: General three-dimensional body and Dirichlet and Neumann boundary conditions. 

 

The equilibrium equation of a deformable body can be given as (Bathe, 1996; Bonet 

and Wood, 2008; Teixeira-Dias, et al., 2010) 

div( ) + = 0 , b      (3.1) 

where div(.) is the divergence operator. In order to obtain the weak form of 

Equation 3.1, it is multiplied by an arbitrary virtual displacement, u , consistent 

with the given boundary conditions DS , and integrated over the volume, V 

 div( )+ d = 0 . u b
V

V     (3.2) 

The divergence (Gauss’ theorem) of the vector  u  is defined as  

( ) :

( ) :

div( ) div( )+

div( ) div( ) - 

u u u

u u u

  

  

       

       
   (3.3) 

where (.)  is the gradient operator. Decomposing Equation 3.2 and replacing 

Equation 3.3, in direct tensorial form gives 

( ) : d div( )d  d = 0 ,          u u u b 
V V V

V V V  (3.4) 

Furthermore, the Gauss theorem for the divergence of a first order tensor, applied 

to the volume integral gives 

div( )d  d  d  .
V S S

V S Su u n u t               (3.5) 
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Taking into account that D N S S S  and = 0u  in DS , Equation 3.4 can be 

rewritten as follows 

N

( ) : d  d  d = 0 .          u u t u b
V S V

V S V   (3.6) 

The strain measure is based on the gradient of the displacement vector,u , which 

may be divided into a symmetric part ( (sym) u ) and an anti-symmetric part 

(
(asy) u ) 

(sym) (asy)+ .  u u u     (3.7) 

Based on this split, the symmetric part defines the strain  

 T(sym) 1
= + ,

2
   u u u e     (3.8) 

the anti-symmetric part defines the spin 

 T(asy) 1
= =  .

2
  u u u-      (3.9) 

Based on this decomposition, the Green-Lagrange strain tensor (E) can be written 

in the following compact form 

 T .

(asy)

linear
nonlinear ( )

(sym) 1
= +

2


  


u

E u u u     (3.10) 

The first term in this equation is a linear part and the second term is nonlinear 

part of the displacement gradient, u . The nonlinear term affects the strain tensor 

only when the gradient of the displacement field is large. 

For a body that undergoes a displacement u(x) due to applied external 

forces, each material point displacement can be expressed through a virtual 

displacement, u , and the external forces generating virtual work, W. The virtual 

work for a set of virtual displacements, u , and its associated virtual strains, e , 

can also be expressed in indicial tensorial form as 

N

W e d b u d t u d = 0 .         ij ij i i i iV V S
V V S   (3.11) 

This equation establishes the equilibrium of a deformable body and becomes the 

basis for the Finite Element discretisation. In a body in equilibrium, the internal 

virtual work must be equal to the external virtual work, as described through the 

condition of Equation 3.11. The virtual strains from the compatible virtual 

displacements define the internal virtual work, intW  

 ,intW e dij ijV
V        (3.12) 
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where ij  is the Cauchy stress. The quantity e ij  is the infinitesimal strain tensor 

defined as 

uu1
e = +

2 x x

 
     

ji
ij

j i

.    (3.13) 

where u  is the virtual displacement related to the current coordinates x. 

Equation 3.13 is based on the assumption that the displacements are small, wearing 

that the initial and final positions of a particle are practically equal. If the external 

loads b and t  are applied at position x, and this point undergoes a virtual 

displacement, u( )x , the total external virtual work,  extW , is 

 
N

extW b u d t u d .     i i i iV S
V S     (3.14) 

Summarizing, the weak form of Equation 3.1, known as the Principle of Virtual 

Work (PVW), can also be rewritten taking into account the effect of concentrated 

forces, fk , acting on the body as 

 .
N

e d b u d t u d      ij ij i i i iV V S
V = V S   (3.15) 

Figure 3.2 exhibits the global relation between each component defined by 

the PVW. 

   

 
Figure 3.2: Connecting relations of fields in continuum mechanics. 
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3.2 Continuum Mechanics 

Consider a deformed body that undergoes large displacements, large 

rotations and large strains as exhibited in Figure 3.3. 

  

 
Figure 3.3: Position of a material point at different configurations. 

 

A general application of virtual strain carries a subscript meaning that it is 

a strain referred to a time configuration. In static analysis, time is transformed into 

pseudo-time, which only assists to characterise the state of deformation. So, this 

subscript can appear as t, t+  t or n, n+1. According to Equation 3.12, PVW at 

configuration t can be expressed as 

.e d b u d + t u d       t t t

t t t S
ij t ij i i i iV V S

V = V S   (3.16) 

The first part of the right-hand side of the equation corresponds to an integral over 

the volume of t b , and consists in the external applied forces at increment t, 

multiplied by the virtual displacement, u . The second part of the right-hand term 

is composed by the product of the external applied force per unit current area on 

surface, t t , with the virtual displacement uS  acting on the surface. This product 

is integrated over the total area of the body. The 
t
V  and 

t
S  are volume and 

surface area, respectively, at configuration t.  

Consider a particular material point P which has coordinates ix , 

corresponding to configurations, 0, t and t+  t defined as the left upper superscript. 

The right subscript i is equal to 1, 2, 3, referring to the coordinate axis. Regarding 

this notation, the Cartesian axis remains stationary in which the body motion is 

measured and the distance unit along the axes, Xi , are the same for x0
i , xt

i  and 
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xt+ t
i . In the Lagrangian method, a particle position is measured in a referential 

coordinates system attached to a stationary observer. Hence, the particle motion is 

always measured in the global frame. The material point motion is described by the 

coordinates defined as (Bathe and Bolourchi, 1979) 

 = + ,t 0 tx x u      (3.17) 

 = + . t+ t 0 t+ tx x u      (3.18) 

The unknown increment of displacement from time t to t+  t is obtained as 

 = , u u ut+ t t+ t t
t -      (3.19) 

where 0 x  is the coordinates at reference configuration, t+ t
t u  is the increment of 

displacement during  t, t u  and t+ t u  are the displacements at state t and t+  t, 

respectively. 

       Applying the PVW at configuration t+  t and assuming that the solution 

from the state 0 to state t is known, the internal virtual work, intW t+ t , becomes 

intW e d


 
   t+ t

t+ t t+ t
ij t+ t ijV

V ,         (3.20) 

where the external virtual work, extW t+ t  at increment t+  t is equal to   

extW b u d + t u d
 

     t+ t t+ t

t+ t t+ t t+ t
i i i iV S

= V S ,   (3.21) 

and the infinitesimal virtual strains, et+ t ij  

  

 
     

ji
t+ t ij t+ t t+ t

j i

uu1
e = +

2 x x
.    (3.22) 

Extending the PVW from the infinitesimal displacement description to large 

deformation analysis and large displacements is quite similar. However, when the 

displacements are large, the initial and final coordinates of a particle are 

distinguished. This difference is due to the fact that coordinates t+ t x  at current 

configuration, t+  t, are unknown. 

In order to use the PVW it is necessary to adapt it, as the integral of 

Equation 3.20 is computed over an unknown volume, t+ tV . As a result, the 

equation cannot be directly solved at current state, t+  t, since it is not possible to 

integrate over an unknown volume. Accordingly, it is not possible to directly work 

with increments in the Cauchy stress,  t+ t
ij , always referred to the current 

geometry. At this point, it is impossible to add a quantity that is referred to t into 

a quantity that is referred to t+  t, due to the reference area, that has changed. 

Appropriate stress and strain measures are required, which leads to choose two 
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well-known quantities from literature: the 2nd Piola-kirchhoff stress tensor, t
0 S  and 

its energy conjugate strain measure, that it the Green-Lagrange strain tensor, t
0 E . 

The upper left subscript t means the configuration in which the strain or stress is 

measured, and the lower subscript 0 means the configuration to what the measure 

is referred. The 2nd Piola-kirchhoff stress tensor definition in indicial notation can 

be expressed as  

TS F F





0
t 0 t 0
0 ij t im mn t njt

= ,    (3.23) 

where St0 ij  is the force per unit of undeformed area in current configuration, t, 

referred to reference configuration, 0, with ij being the stress tensor components, 





0

t
 is the mass density ratio, t mn  is the Cauchy stress, with (mn) ranging from 1 

to 3, -10
t F  is the inverse deformation gradient and, similarly, i, j, m and n runs from 

1 to 3. The Green-Lagrange strain tensor is defined as 

 t t t t t
0 ij 0 i,j 0 j,i 0 k,i 0 k,j

1
E = u + u + u u

2
,    (3.24) 

where, Et
0 ij  is the strain in configuration t referred to configuration 0, with ij being 

the strain tensor components, and t
0 u  is the displacement, that similarly i, j and k 

runs over all the possibilities from 1 to 3. The inverse deformation gradient, -1F0
t i,m , 

and displacement, ut
0 i,j , are defined as  

x
F

x





0
0 i
t im t

m

= ,  
u

u
x





t
t i
0 i,j 0

j

= .    (3.25) 

The original coordinates, x0
i , are given and the coordinates xt

m  at configuration t, 

are assumed to be given. Notice that xt
m  is obtained through the sum of x0

i  with 

the displacement that has occurred, as shown by Equation 3.17.  

 Using the 2nd Piola-kirchhoff stress and its conjugate Green-Lagrange 

strain, the PVW can be rewritten as 

0
S E d

t t
0 ij 0 ijV

V .     (3.26) 

Due to the difficulty to deal with the integration of Cauchy stress at current 

configuration, t, the product on the right-hand side is integrated over the original 

volume of the body, 0V . This approach is used to obtain an approximation to the 

Cauchy stress, as in general incremental analysis, the volume at increment t is 

unknown. At increment t, it was calculated the volume up to t-  t. This relation 

holds for the following configuration, t+  t. 
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The stress and strain measures are related either to the undeformed or 

deformed volume. It depends on whether the internal virtual work is integrated 

over the original or the deformed geometry. Table 3.1 summarizes different energy 

conjugate pairs of stress-strain to represent the stress and strain measures. 

  

Table 3.1: Work conjugacy of stress-strain pairs. 

Strain Stress Symmetry Volume Orientation 

Engineering Strain; 

True strain;  

Almansi strain 

Cauchy (True stress) Symmetric Deformed Spatial 

Engineering Strain;  

Almansi strain 

Kirchhoff Symmetric Original  Spatial 

Deformation gradient First Piola-Kirchhoff 

(Nominal Stress) 

Non-

Symmetric 

Original Mixed 

Green-Lagrange strain 2nd Piola-Kirchhoff  Symmetric Original Material 

In order to understand the properties of the 2nd Piola-kirchhoff stress tensor 

and the Green-Lagrange strain tensor, it is necessary to introduce the deformation 

gradient tensor (which already appear in Equation 3.23).  

 

3.2.1. Deformation Gradient 

 The deformation gradient tensor, Ft
0 ij , describes how a given point in the 

reference (or original state) 0, maps into a following state, t. Its computation is 

fundamental in continuous mechanics and it is defined as 

t
t
0 0

x
F

x





  or   
TT , t t

0 0F x    (3.27) 

where t
0  is the gradient operator.  

Regarding a known body, the motion from state 0 to t, and particularly at 

state t, the deformation gradient relates how the original configuration of a 

particular point will rotate and stretch to a current configuration, t. Its application 

is useful in Finite Element analysis. Besides those quantities described above, the 

calculation of the mass density ratio is also obtained. In other words, it is necessary 

to assess the mass density of the body, how it evolves through the space and time. 

For an infinitesimal volume dV , the mass should be preserved in the space and 

time 
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d = d t t 0 0V V ,     (3.28) 

where   is the mass density and dV  is the differential volume. The following 

equation demonstrates how the differential volume changes from reference 

configuration, 0, to current configuration, t       

d = det( ) dt t 0
0V VF ,    (3.29) 

in which det( )t
0 F  is a measure of the change in volume. The relation between 

equations 3.28 and 3.29 gives 

  det 0 t t
0= F .      (3.30) 

This equation shows how the mass density changes and provides the mass density 

ratio. The original orientation and length, 0d xi , in reference configuration is 

defined as  

1 1 2 2 3 3

1 0 0

d = 0 d ;  d = 1 d ;   d = 0 d ,

0 0 1

     
     
     
          

0 0 0x s x s x s   (3.31) 

hence the original differential volume at original state is given as 1 2 3d = d d d0 V s s s . 

However, recognising that  

d = d  ;t t 0
i 0 i   i = 1,2,3 x F x ,    (3.32) 

and   

      

d = d d d

= det( ) ds ds ds

= det( ) d

 t t t t
1 2 3

t 0
0 1 2 3

t 0
0

V ( )

     V

x x x

F

F

 .         (3.33) 

in which this relation proves Equation 3.29. 

 The inverse of deformation gradient mathematically can be seen as 

 
-1

=0 t
t 0F F ,     (3.34) 

where 

d d0 0 t
t=x F x .    (3.35) 

Replacing Equation 3.32 into Equation 3.35 leads to 

 
       

      

d = d

= d

= d

  

0 0 t 0
t 0

0 t 0
t 0

0

.

x F F x

F F x

I x

    (3.36) 

where I is the identity matrix. 
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3.2.2. Polar Decomposition  

The deformation gradient tensor, F, describes the stretches (change of 

shape) and the rigid body rotation, but does not include information of possible 

rigid body translation, which enables the following calculation. This theorem 

demonstrates that a non-singular second-order tensor can always be decomposed 

into the product of an orthogonal rotation matrix, R, and a symmetric stretch 

matrix, U. Applying the polar decomposition theorem results 

,=F RU = VR     (3.37) 

where R is the orthogonal rotation tensor, i.e. T R R I  with det( )=1R , U and V 

are the symmetric right and left stretch matrices, respectively. Also, through the 

deformation gradient, F, it is possible to define the right, C, and left, *b , Cauchy-

Green strain tensors 
T=C F F ,      (3.38) 

and  

* T= ,b FF      (3.39) 

respectively. The deformation gradient can be symmetric or non-symmetric. 

Usually, it is a non-symmetric matrix, but it is a symmetric matrix if there is no 

rigid body rotation. Notice that being a non-symmetric matrix transposed, TF , 

multiplied by itself, F , makes C a symmetric matrix. Replacing Equation 3.37 into 

Equation 3.38 gives       

     .
2T T= C U R RU U     (3.40) 

Since t
0 R  is orthogonal, it means that T =R R I  and C is independent of the 

rotation. 

 The presence of a rigid body motion is vanished in analysis of large rotations 

and/or large deformations. The definition of the Green-Lagrange strain measure 

used through the right Cauchy-Green strain tensor can be written into an 

equivalent form as 

 
1

= -
2

E C I  ,      (3.41) 

This definition allows for an easy use of the deformation gradient. For instance, if a 

given body is subjected to a rigid body motion only, between states 0 and t, the 

deformation gradient results in F=R and leads to 

T= = .C R R I      (3.42) 
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Replacing Equation 3.42 into Equation 3.41 gives 

   T1 1
= - = - = ,

2 2
 E R R I I I 0      (3.43) 

which proves that Equation 3.41 avoids the presence of rigid body motion. Another 

way to define the Green-Lagrange strain tensor is by replacing its terms by 

displacements, as previously shown in Equation 3.24. 

Summarizing all these definitions, the 2nd Piola-kirchhoff stress tensor, t
0 S , 

can be expressed by  

T T= = ( ) ( ) ,
 

 

0 0
0 0 0 0
t t t tt

t t t
0 t  S F F RU RU     (3.44) 

where 0
t F  is the inverse of the deformation gradient matrix (see Equation 3.34). 

Concerning its properties: t
0 S is a symmetric tensor, invariant under a rigid-body 

motion (translations and/or rotation), hence t
0 S  only changes when the material is 

deformed. The tensor t
0 S  has no direct physical interpretation, however it is linked 

to the Cauchy stress, t , as 

T



t
t t t t

0 0 00
= .F S F      (3.45) 

Considering small strains (unidimensional) or small stretches (multidimensional), 

large displacements and arbitrary rotations, the stretch tensor U can be 

approximately given as U I  and the determinant of deformation gradient turns 

det( )=1





0
t
0t
F . As well as the 2nd Piola-kirchhoff stress, St

0 , is approximately 

equal to the rotated Cauchy stress, t . For this reason, St
0  can be linked to the 

stress-strain law or co-rotational stress (Doghri, 2000). 

 The PVW cannot be directly applied due to the unknown variable values, 

more specifically the increment of displacement value, iu . To linearize it, it is 

necessary to choose a reference configuration, giving rise to two distinct approaches: 

Total Lagrangian formulation (TL), if the original state of a body is used as 

reference configuration, and the Updated Lagrangian formulation (UL), if the last 

converged configuration is used as reference. As the in-house Finite Element code 

named LAGAMINE (Cescotto and Grober, 1985) based on UL formulation is 

chosen, the following sections describe its main formulation topics.           
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3.2.3. Updated Lagrangian   

The Updated Lagrangian (UL) formulation uses the displacements, stresses 

and the strain measures referred to the immediately previous converged 

configuration of the body at state t. It means that this formulation deals with a 

integration over a known volume, tV . The incremental solution of the PVW 

applied for the configuration t+  t, using UL formulation gives the 2nd Piola-

kirchhoff stress, t+ t
t ijS , as 

extS E d = W  ,   t

t+ t t+ t t+ t
t ij t ijV

V    (3.46) 

and the equivalent for Cauchy stress,  t+ t
ij is written as 

exte d = W  .


 
  t+ t

t+ t t+ t
ij t+ t ijV

V     (3.47) 

This equation expresses the equilibrium, compatibility and stress-strain law at state 

t+  t. If the equilibrium is satisfied, it must hold for any virtual displacement that 

satisfies the displacement boundary condition. The virtual displacement, u t+ t
i , 

comes from the external virtual work term, extW t+ t , and t+ t ije  is the 

corresponding virtual strain. The compatibility enters in the internal virtual work, 

left-hand side term, due to the calculation of stress from compatible displacement. 

The stress-strain law enters in the calculation of the stress,  t+ t
ij , and applied at 

current state, t+  t.        

  Considering the solution at state t known, the incremental stress and strain 

decompositions for the UL formulation can directly be represented for the following 

configuration, t+  t, as shown 

S S S St+ t t t
t ij ij t ij ij t ij

        ,   (3.48) 


  

0=

E E E E E = E       t+ t t t+ t
t ij ij t ij t ij t ij t ij

 

,   (3.49) 

where t
ijS  and t

ijE  are known, and the increments of St ij  and Et ij  are 

unknown, if a displacement increment is considered. The known stress, St ij , is 

equal to Cauchy stress, t ij , applying Equation 3.48. The quantity t
ijE  is equal to 

zero since only the increment of displacement from state t to state t+  t is used, 

remaining the unknown term, Et ij . The last target configuration, once reached, 

becomes the next reference configuration. Strains and stresses are redefined as soon 

as the reference configuration is updated. 

The total strain, Et+ t
t ij

 , at state t+  t referred to t is given as  
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 1
E E = u + u + u u  ,

2
     t+ t t+ t t+ t t+ t t+ t
t ij t ij t i,j t j,i t k,i t k,j   (3.50) 

where 

  ( )
 

u u u
u ,

x x




   

 
 

t+ t t
i it+ t i

t i,j t t
j j

    (3.51) 

and Et ij  can be decomposed as 

 1 1
E = u + u + u u  .

2 2


 
t ij t i,j t j,i t k,i t k,j

Linear Nonlinear

   (3.52) 

Hence from this decomposition Et ij  and E t ij  are 

E = e  ,    t ij t ij t ij     (3.53) 

E = e  .    t ij t ij t ij      (3.54) 

where e t ij  and  t ij  are the linear and nonlinear increments, respectively, of the 

Green-Lagrange strain. Replacing directly equations 3.48 and 3.54 into the 

expression of PVW (Equation 3.46) and after manipulation, it becomes 

extS E d + d = W e d  .         t t t

t t+ t t
t ij t ij ij t ij ij t ijV V V

V V - V   (3.55) 

where S t ij  is the increment of stress, E t ij , is the variation of the increment 

Green-Lagrange strain, from t to t+  t, and  t ij  is the nonlinear strain increment 

corresponding to total Green-Lagrange strain increment. On the right hand side, 

extW t+ t  is the external virtual work and e t ij  is the linear strain increment 

corresponding to total Green-Lagrange strain increment. Finally, t ij  is the total 

Cauchy stress corresponding to state t. Notice that on the left-hand side are the 

unknown displacement variation increments, u i , and on the right-hand side are 

the known terms. 

 

3.2.4. Finite Element Linearization   

The PVW equation in general is a nonlinear function with the unknown 

displacement increments, ui . An approximate solution in Finite Element analysis is 

obtained by linearizing Equation 3.55, i.e., all higher-order terms in ui  are 

neglected and only linear terms remain. In detail, the linearization of each term is 

verified in order to know if it contains the unknown displacement increments. 

The term d  t

t
ij t ijV

V  is linear in ui : 
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  t ij  does not contain ui  ( t ij  is known quantity); 

       t ij t k,i t k,j t k,i t k,j

1 1
u u u u

2 2
 is linear in ui  (unknown), where 

 t k,ju  and  t k,iu  are constants for a given variation.     

The term S E d t ij t ijV
V

t
 contains linear and higher-order terms inui : 

 t ijS  is a nonlinear function of t ijE ; 

      t ij t ij t ijE e  is a linear function of ui . 

Multiplying these terms gives S Et ij t ij , which leads to an expression with 

higher-order terms in ui . Its linearization has the objective to compute an 

approximation t ijS  as a linear function of ui . The term  t ijE  contains only 

constants and linear terms in ui . The term t ijS  can be written as Taylor series  



 

 

     ( ) .

u

S
S E + 

E

S
e C e

E






   






i

t ij

t ij t rs

t rs t

t ij

t rs t rs t ijrs t rs

t rs t

    linear and
  quadratic in 

known

linear in u quadratic in u linearized termi i

higher order terms,

  (3.56) 

where t ijrsC  is the stress-strain derivation law corresponding to the constitutive 

relation 
S

E

t ij

t rs




. The higher order terms and t rs  are neglected.  

The stress-strain law basically relates the stress increment with the strain 

increment, tC . Substituting equations 3.54 and 3.56 into the term t ij t ijS E , its 

linearization is directly obtained as shown 

( )

              

              .

u u

S E C e e

C e e C e

C e e

     

    

 

 



i i

t ij t ij t ijrs t rs t ij t ij

t ijrs t rs t ij t ijrs t rs t ij

Linear in Quadratic in 

t ijrs t rs t ij

Linearized result

   (3.57) 

where  t ije  does not contain ui , it is constant,  t ij  and t rse  are linear in ui , 

which turns the right-hand term quadratic in ui , so it is neglected. 

 Summarizing, the final linearized Equation 3.57 is replaced into Equation 

3.55 and it gives 
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 

.

T

T

ext

C e e d + d

= W e d





 



   

  

 







t t

t

t

t+ t t

t
t ijrs t rs t ij ij t ijV V

t+ t t
ij t ijV

-

V V

- V

u K u

u P f

   (3.58) 

where t K  is the tangent stiffness matrix, which contains the material tensor, t ijrsC , 

as well the current stress. The incremental displacement, u , comes from a linear 

strain part, t rse , and from a nonlinear strain pair,  t ij . The virtual displacement 

vector, uT , comes from e t ij  and also from  t ij , which becomes equal to the 

identity matrix, u IT = . The external virtual work, extW t+ t , results into a vector 

of nodal external forces, t+ t P , and the term  t
ij t ije  results into the internal force 

vector, t f , corresponding to internal element stress. The calculation of t f  should be 

accurately achieved iteratively to provide the equilibrium with the external force 

vector, t+ t P . This equilibrium is interpreted as an “out-of-balance” virtual work 

term. The stiffness matrix t K  is used to obtain in the incremental solution the 

appropriate incremental displacement, u . An important assumption is 

e d  , t

t
ij t ijV

V      (3.59) 

which it is the virtual work of the internal stresses at state t introduced within the 

equilibrium relation   

extW e d  .     K u
t

t+ t t
ij t ijV

V    (3.60) 

In general, Equation 3.58 is solved by an iterative solution procedure based 

on the UL formulation 

.ext

C e e d + d

= W e d


 


    

  

 



t t

t+ t (k-1)

(k) t (k)
t ijrs t rs t ij ij t ijV V

t+ t t+ t (k-1) (k-1)
ij t+ t ijV

V V

- V
   (3.61) 

which is the weak form obtained for the development of Finite Element approach. 

The discretization of Equation 3.61 using FEM can be written as follows  

= -  , t (k) t+ t t+ t (k-1)

          (for k = 1,2,3...)

K u P f
   (3.62) 

where t+ t (k-1)f is the internal force computed from current displacements, 

 (k-1)t+ t
iu and t+ t P  is the nodal point vector that corresponds to the external applied 

forces. The initial condition is 
t+ t (0) t=f f  at k equal to 1 or generally the initial 
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solution for Newton-Raphson is always the last converged one. Analysing the term 

on the right-hand side of Equation 3.62, the nodal equilibrium is satisfied when 

0- .  r P f   t+ t t+ t (k-1)
    (3.63) 

which means that the equilibrium is achieved if the externally applied loads are 

approximately equal to nodal internal forces. The difference between them leads to 

a residual load vector, r, used to compute the nodal displacement increment, u . 

Subsequently, it is added to the nodal displacement from previous iteration (k-1) in 

order to obtain the updated nodal displacement, t+ t u , at t+  t 

= +  .  t+ t (k) t+ t (k-1) (k)u u u    (3.64) 

The initial condition for iterative procedure is 
t+ t (0) t=u u  at k equal to 1, which 

means that the initial solution for Newton-Raphson procedure is always the last 

converged one. The displacement update, t+ t (k)u , is performed at each iteration as 

  
k

t+ t (k) t (j)

j=1

k

.

        

u u+ u

(for = 1, 2, 3...)

=
    (3.65) 

The iterative procedure is repeated until the solution converges, i.e., when the 

equilibrium is satisfied,   t+ t t+ t (k-1)-P f 0  and the correct configuration is achieved 

for the Finite Element mesh. By replacing the initial conditions in the iterative 

subscripts of equations 3.62 and 3.64, they are reduced to the previous state t 

t t+ t t= -K u P f , 
  t+ t tu u u + .    (3.66) 

 

3.3 Approximate Solution: Finite Element Discretization  

Generalizing for a multidimensional example with any prescribed boundary 

condition value, S, and based on the Partial Differential Equation, the constitutive 

relation and boundary conditions are defined as follows (Teixeira-Dias, et al., 2010) 

.N

D

= :

=

=         

V

t       S   

S

C e    

n t

u u

 

 

 

     (3.67) 

Reorganising Equation 3.6 in direct tensorial form gives 
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N

( ) :  d  d   d ,
V V S

V V Su u b u t            (3.68) 

 and replacing the conditions expressed in Equation 3.67, one obtains 

N

( ) :  : d  d   d ,
V V S

V V Su C e u b u t            (3.69) 

On the other hand, regarding the strain-displacement relation defined in Equation 

3.8, and replacing it into the previous equation, it gives 

N

( ) : ( ): d  d   d  .
V V S

V V Su C u u b u t             (3.70) 

Resorting to the weak formulation, the unknown trial function, (x, y, z)u , is 

approximated as follows 

( ) (x, y, z) ,x,y,z u N d     (3.71) 

where (x, y, z)N  is the shape functions matrix used to interpolate the displacement 

and d  is the degrees of freedom vector. The trial function describes a possible 

candidate shape of the approximate solution and must satisfy the essential 

boundary conditions. The equilibrium resolution of Equation 3.70 requires its 

discretization, i.e. the division of the domain in elements. Similarly, for each 

element, subscript e, the candidate function is approximated by shape functions 

( ) (x, y, z) .e e ex,y,z u N d      (3.72) 

where ed  is given in terms of global nodal values for the element. Through 

Equation 3.8 we can obtain the following relation      

sym sym  .e e e e     e u N d  = B d    (3.73) 

where eB  is the strain-displacement operator which contains the derivatives of the 

element shape functions and  

(x, y, z)

(x, y, z)
(x, y, z) (x, y, z)

(x, y, z)

e

e
e e

e

x

y

z

             
          

N

N
N B

N

.  (3.74) 

The eB  operator is applied for each node of a finite element and it will be 

presented in detail in further sections. As demonstrated in previous sections, the 

PVW expresses the equilibrium between the internal forces and external applied 
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forces. The virtual displacements and virtual strains can be obtained through the 

virtual displacements,  ed , as 

 



e e e

e e e



 

u N d  

e B d
.    (3.75) 

Substituting Equation 3.75 in each term of the PVW equation provides the internal 

force work of each element as 

 
TT

intW ( ) d  ,   d B
eV

e e V     (3.76) 

where transposed terms are used due to matrices calculation compatibility. 

Similarly, for the work of external forces of each element in domain V and on 

boundary S is given by  

 
TT

extW ( ) d  ,   d N b 
eV

e e V     (3.77) 

and 

 
N

TT
ext SW ( ) d  .   d N t 

Se
e e S     (3.78) 

where N
eS  is the element boundary on the natural boundary. As the nodal virtual 

displacement, d , is independent of the spatial coordinates, it can be brought to 

outside of the integral. The equilibrium expressed by Equation 3.68 can be 

rewritten as  

       
N

T T TT T
S( ) d = ( ) d + d  ,  

    d B d N b N t 
V V Se e e

e e e e eV V S  (3.79) 

or, replacing Equation 3.73 into Equation 3.79, regarding the definition of   

expressed in Equation 3.67, it gives 

     
N

T T TT T
S( )  d = ( ) d + d  .  

    
 

K P

d B CB d d N b N t e

V V Se e e
e e e e e e

e e

V V S (3.80) 

Taking into account that the virtual displacement is an arbitrary quantity and 

always non-zero (with = 0de  in D
eS ), it is possible to avoid de

 from both terms 

of Equation 3.80. The generalization leads to a global equation defined as 

.=K d Pe e e
     (3.81) 

The element stiffness matrix, eK , and the element external forces vector, eP , are 

defined in FEM application as follows   
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 
T

d  , K B CB
Ve

e e e V     (3.82) 

S

) )
N

T T
S

V

( d  + ( d  .  
 

P P

P N b N t
V Se e

e e

e e e V  S    (3.83) 

where VPe  and SPe  are the element external body and boundary force vectors, 

respectively. These integrals are calculated for each element and assembled to a 

global matrix. For linear problems the solution of Equation 3.81 usually is 

straightforward, it can be achieved in one single step without a costly load 

increments and iterative schemes. 

In contrast, nonlinear problems that use implicit scheme need incremental 

and iterative procedures in order to correctly achieve the solution. Recovering 

Equation 3.62 and its corresponding terms described in Equation 3.58, the stiffness 

matrix, t K , can also be decomposed into linear and nonlinear terms as follows 

( )  t t (k) t+ t t+ t (k-1)K + K u P f  L NL = - ,    (3.84) 

where t KL  is the linear part of stiffness matrix and t KNL  is the stiffness component  

related with the nonlinear geometric of strain-displacement matrix. Individually, 

each term of Equation 3.84 can be obtained by (Bathe and Bolourchi, 1979)  

(  t t

t t t t t
t ijrs t rs t ij tV V

V VT
L L LC e e d   = ) d  ,K C BB   (3.85) 

 

  (    t t

t t t t t t t
ij t ijV V

V VT
NL NL NLd = ) d  ,K BB   (3.86) 

and finally 

  T
Le d = ( ) d  .   t t

t t t t t t
ij t ijV V

V Vf B    (3.87) 

in which L
t B  is the linear part of the strain-displacement operator, NL

t B  is the 

strain-displacement part related with the nonlinear geometric and t  is the Cauchy 

stress vector at state t. The geometric nonlinearity is described in Section 3.6.1.  

 

3.3.1. Isoparametric Space 

The governing Finite Element equations developed from the general 

continuum mechanics equations presented in the previous sections are now 

discretised for an isoparametric space. The basic assumption is the approximation 

of displacements and coordinates at any point of the element using appropriate 

interpolation functions. They are attached to each node and, thus, correspond to 



80 

 

the degree of freedom (DOF) of the discrete system. The interpolation functions, N, 

are the same for displacements and coordinates 

1

1

n
e j
i j i

j
n

e j
i j i

j













u N u  

x N x
.    (3.88) 

where e
i

u  and e
i

x  are the displacement and the coordinate of a generic element e 

from a discretised body (mesh) in the i direction, respectively. The j
i

u  and j
i

x  are 

the displacement and the coordinate of node j in the i direction, respectively, and 

j
N  is the interpolation function of node j. 

Standard FEM is based on local interpolation through shape functions that 

locally define polynomials within each element and being zero outside the 

considered element. The geometry description using shape functions are defined 

through a normalized natural coordinate system  , concerning a three-

dimensional geometry. All points inside a Finite Element are contained in the 

domain [ 1, 1] [ 1, 1] [ 1, 1]        , and the natural coordinates ( ,  ,  ) have 

their axis origin at the geometric centre of the element, as shown in Figure 3.4 

(right). The trilinear hexahedral Finite Element of 8 nodes, is widely used in three-

dimensional finite element analysis. Figure 3.4 schematically exhibits the 

representation of a general linear hexahedral element in the global and natural 

reference systems.   

 x = x( , , )

y = y( , , )

z = z( , , )

  

  

  

 = (x,y, z)

= (x,y,z)

= (x,y, z)

 

 

 

 
 

 

 
Figure 3.4: Linear 8 nodes hexahedral finite element in the global and local coordinate systems. 

  

The use of natural coordinates system is suitable to construct the shape 

functions to perform the numerical integration, through the Gauss-Legendre 

quadrature scheme. The shape functions for a given node j, with j=1…
n

n , of an 

isoparametric hexahedral element is defined as (Teixeira-Dias, et al., 2010)    

( , , ) ( ) ( ) ( ) ,
j j j j
     N N N N    (3.89) 
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where 

1,
( )  ,

n

l
j

l l j
j l

  


  


 


N     (3.90) 

1,
( )  ,

n

l
j

l l j
j l

  


  


 


N     (3.91) 

1,
( )  ,

n

l
j

l l j
j l

  


  


 


N     (3.92) 

in which n

, n


 and n


 are the number of nodes in the  ,   and   directions, 

respectively. The geometry of three-dimensional isoparametric elements, such as 8 

nodes element of Figure 3.4, can be written relative to the coordinate system as 

1
( , , ) (1 )(1 )(1 ),

8j j j j
        N       (3.93) 

where 
j
 , 

j
  and 

j
 are the components of the following vectors, given as 

 

 

 

-1 1 1 -1 -1 1 1 -1

-1 -1 1 1 -1 -1 1 1 .

-1 -1 -1 -1 1 1 1 1

T

T

T













  

  

    (3.94) 

The shape function derivatives in global coordinates (x, y, z) can be determined 

using the inverse Jacobian matrix, 1J . The mapping relation between the global 

and natural coordinate systems is obtained as   

1=  ,




 

 
 

 

jj

j j

j j

NN

x
N N

y
N N

z









                               
                             

J     (3.95) 

where the Jacobian matrix, J , is given by 

=  .

x y z

x y z

x y z

  

  

  

    
    
   
 
   
 
   
 
    

J      (3.96) 
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The Jacobian matrix can be rewritten using the isoparametric coordinate 

transformation, Equation 3.88, i.e. the shape functions in natural reference system 

and the Cartesian coordinates of each node , ,( )
j j j j

x y zx  as 

n

1

= ( , , )  
n j

j j
j

j

x x

y N y

zz

  


                   
              


n

1

=  .

j j j

j j j

n
j j j

j j j
i

j j j

j j j

N N N
x y z

N N N
x y z

N N N
x y y

  

  

  



    
 
   
    
 
   
    
 
    

J  (3.97) 

where 
n

n  is the total number of nodes. The strain-displacement operator, B, 

introduced in Equation 3.73, can be built using the derivatives of the shape 

functions with respect to global coordinates as  

n

...  ...  ,
1 2 j n

    
B B B B B     (3.98) 

with  

   

0 0
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 
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 
  
 
 
  
  
 
  
 
  
 
   

  
 
   

B  .                      (3.99) 

where j is the node number. 

The elemental stiffness matrix, eK , from equations 3.82, 3.85 and 3.86 can 

also be alternatively calculated in the natural domain as  

 

 

 

 

+1 +1 +1 T

-1 -1 -1

+1 +1 +1 T

NL NL NL-1 -1 -1

(det ) d d d ,

(det ) d d d ,

   

   

  

  

K B C B J

K B B J

ij i j

ij i j

e e e e

e e e e
  (3.100) 

in which i and j are submatrices subscripts for subsequent assemblage of stiffness 

matrix. 
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Generally, multi-dimensional integrals over product domains can be 

numerically evaluated using multiple summations. The stiffness matrix can also be 

approximated through its numerical integration using the Gauss-Legendre 

quadrature given as 

  

     

T

T

NL NL NL

  ,

,









K B C B J

K B B J
r s z

r s zn n n

ij i j

n n n

ij i j

r s z
r,s,z

r s z
r,s,z

e e e e

r=1s=1z=1

e e e e

r=1s=1z=1

w w w

w w w

 (3.101) 

where J  is the jacobian determinant, rn , sn  and zn  are the number of integration 

points in the O , O  and O  directions, respectively, and rw , sw  and zw  are the 

corresponding weights.  

Similarly for each term of Equation 3.83, the contribution of the external 

load Pe  over whole body volume in the natural domain is given as  

   
+1 +1 +1 T

V -1 -1 -1
(det ) d d d ,     P N b Je e    (3.102) 

and its numerical integration gives 

   T
V . P N b J

r s zn n n

   r s z
r,s,z

r=1 s=1 z=1

e e w w w    (3.103) 

For traction forces which are applied on the face of the element, the normal vector 

of the face must be determined first. Doing so, the tangential directions of the 

natural axis  ,   and   are required 

    1 2 3= ,  = , =   .

       
            
       
     
       

       
     
       

v v v

x x x

y y y

z z z

   (3.104) 

Comparing the tangential vectors with Equation 3.96, it can be seen that they 

correspond to the Jacobian matrix lines. The normal direction of the hexahedral 

element faces are calculated as  

v v v v
n n

v v v v
2 3 3 1

1 2 3 1 2

2 3 3 1

= ,  = ,  =   .
 


 

n n n   (3.105) 

where the normal in  is normal to the face where the load it  is applied and the 

applied traction force ti  is determined as 

(for = 1,2, 3)=    ,t ni i i  i  t     (3.106) 
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The equivalent nodal forces can be calculated according to the perpendicular 

direction 

 

 

 

, ,  

, 1,

, , 1
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-1 -1
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( 1 ) d d

( ) d d     .

( ) d d

 

     

     

     

 

 

 

f N n

f N n

f N n

S k k 1 1

S k k 2 2

S k k 3 3

e

e

e

t

t

t

   (3.107) 

where 
N

fS k
e  is the correspondent nodal force of node k.  

 

3.4 Incremental-Iterative Procedure  

Generally, in Finite Element analysis the basic step to solve a set of 

nonlinear equations of equilibrium is a linearized approximation of a small 

increment of force and corresponding increment of displacement. Figure 3.5 

schematically exhibited the incremental procedure to obtain an approximate 

solution.     

 
Figure 3.5: Incremental procedure. 

 

The load is divided into a set of small increments,P(i) , and increments of 

displacements, u(i) , are calculated 

= K u P(i-1) (i) (i) ,     (3.108) 

and an updated displacement, u(i) , is obtained as 
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= +u u u(i) (i-1) (i) .     (3.109) 

where the subscript i refers to the increment number, K(i-1)  and u(i-1)  are the 

tangent stiffness matrix and the displacement from previous increment, 

respectively. This procedure shows the difference between exact solution and FEM 

prediction which are gradually cumulated, i.e. solution error. To reduce this error, 

large number of small incremental steps have to be done, but it makes the 

procedure inefficient and consequently time consuming. On the other hand, division 

of loading process into sufficiently small increments is necessary to model load path 

dependent behaviour of a structure. In these problems, incremental method is 

usually combined with an iterative method. The following sections describe two 

iterative procedures usually applied in static analysis through FEM. 

 

3.4.1. Newton-Raphson  

The Newton-Raphson method (NR) starts with the evaluation of the out-of-

balance force vector, which it is the difference between the internal forces and the 

applied external loads. Then, the program performs a linear solution, using the out-

of-balance force (residual), and checks for convergence. If convergence criteria are 

not satisfied, the unbalanced force vector is re-evaluated, the stiffness matrix is 

updated, and a new solution is obtained. This iterative procedure continues until 

the problem achieves the convergence (Zienkiewicz and Taylor, 2005). Figure 3.6 

explains schematically the iterative method of Standard NR applied to an 

increment of P.   

 
Figure 3.6: Standard Newton-Raphson method. 
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The first guess of nodal displacements for load P is calculated by solving the 

algebraic equations, assuming that the initial displacements u(t)  are known 

= - K u P f(0) t+ t (1) t+ t t
,    (3.110) 

where  

= ( )K K u(0) t ,      (3.111) 

in which K(0)  is tangent stiffness matrix calculated for initial corresponding 

displacements, t u . As the displacements t+ t (1)u  are most probably not accurate at 

the first trial solution the equilibrium equation is not satisfied 

) ,  t+ t t+ t (1) t+ t (1)P f ( u       (3.112) 

which means that there are unbalanced (or residual) nodal forces  

0 = - )  .     t+ t (1) t+ t (1) t+ t t+ t (1) t+ t (1)r P f( u  r   (3.113) 

Computing the new tangent stiffness matrix   

= ( )K K u(1) t+ t (1) ,     (3.114) 

and solving a new set of algebraic equations 

= K u r(1) (2) t+ t (1) ,     (3.115) 

lead to an improved solution obtained as 

= +  t+ t (2) t+ t (1) (2)u u u ,    (3.116) 

If the equilibrium is not satisfied for this new trial solution 

= - ( )    t+ t (2) t+ t t+ t t+ t (2)r P f u 0 .   (3.117) 

the procedure is repeated until achievement of an accurate solution. This method is 

often combined with incremental method, in order to perform the Newton-Raphson 

procedure for each next load increments, P(i) .  

Generally, the Standard NR iteration scheme finds the equilibrium for each load 

increment by 

= -  .  t+ t (k-1) (k) t+ t (k) t+ t (k-1)K u P f    (3.118) 

After the manipulation of Equation 3.118, to compute the increment of 

displacement, u(k) , it is used to obtain the displacement given by 

  t+ t (k) t+ t (k-1) (k)u u u= +  ,     (3.119) 

with initial conditions  
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=   ,  = , = .  t+ t (0) t t+ t (0) t t+ t (0) tu u K K f f   (3.120) 

where k stands for iteration number. A new unbalanced force, t+ t (k)r , and a new 

increment of displacement, u(k+1) , are obtained for the next iteration. The iterative 

procedure continues until the residual force, t+ t (k)r , is smaller than a limited 

tolerance defined by the user.  

 

3.4.2. Modified Newton-Raphson  

As previously outlined, the Standard NR method provides the solution of 

equations at a given load level P. This is effective in many cases, but it is time 

demanding for large equations systems. Since, it may be computationally expensive 

to calculate the tangent stiffness matrix, K, an alternative is the Modified NR 

iterative scheme. It differs from standard Newton-Raphson algorithm in that the 

stiffness matrix is only updated occasionally. Figure 3.7 schematically exhibits the 

comparison of both procedures to iteratively compute the tangential stiffness 

matrix.  

 
Figure 3.7: Modified Newton-Raphson method. 

 

The nonlinear Equation 3.84 can be solved using the Modified NR method, 

schematically illustrated in Figure 3.7. The tangent stiffness matrix or slope of the 

force-displacement curve is updated only at the beginning of each load 

step/increment (Zienkiewicz and Taylor, 2005). In contrast, the standard Newton-

Raphson method updates the tangent stiffness matrix at each iteration. It speeds 

up convergence but can lead to an increase of computation time. 
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The advantage of the Modified NR method is saving computer time, due to 

factorization of the tangent stiffness matrix performed only once for the load 

increment. However, a large number of iterations is needed, with no cost for the 

recalculation of the stiffness matrix and consequently decreasing the time. 

 

3.5 Objective Stress Rate   

The principle of objectivity ensures that the material behaviour should 

remain invariant quantities with respect to rigid body motion. This property is an 

important concept in solid mechanics, which means that the material constitutive 

relation should be independent of any rigid body motions. In literature it is also 

called the principle of material frame indifference. Hence, a constitutive equation 

describing the material behaviour must be invariant under the change of coordinate 

system, mutually rotating with respect to each other. The definition of objectivity 

for a scalar, vector and tensor is presented as follows 

i) Scalar:    
* =  ,       (3.121) 

ii) Vector:    
* =  ,j Qj      (3.122) 

iii) Second order tensor:  
* T=  ,J QJQ     (3.123) 

where Q is a rotation. 

The equilibrium is expressed using the updated Lagrangian formulation in 

LAGAMINE code, which means that the reference configuration evolves at each 

step/increment. Let us identify a step by its time at the beginning denoted as At  

and its time at the end as B At t + t= , which characterize two configurations. The 

deformation gradient tensors at the beginning and at the end of the step are 

computed as (Alves de Sousa, 2006; Montleau et al., 2008) 

 ,  ,
A B

A B

t t
t t

0 0

x x
F F

x x

 
 
 

    (3.124) 

in which the global incremental deformation gradient is given as follows 

 B   .
B

A

-1 
   


B A B B A

A A

t
t t t t t t

t t t

x
F F F F F F

x
  (3.125) 

and considering the time derivative of Equation 3.124, it gives    
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-1= = = = = =  ,
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 (3.126) 

From the previous equation comes the definition of the velocity gradient tensor 

     , ,
A B

A B

A B

t t
t t

t t

x x
L L

x x

  
 
 

    (3.127) 

and applying the polar decomposition theorem to Equation 3.127 leads to 

= =( )-1 -1 -1 T -1 T= + ,


    L FF RU+RU U R RR RUU R   (3.128) 

with  

-1 -1 -1 -1 -1 T T=( ) =   and   =  if = .F RU U R R R R R I    (3.129) 

where   is the rotation rate tensor which represents the rate of rigid body rotation 

at a given material point.   

The velocity gradient tensor, L, can be alternatively decomposed into 

symmetric, D, and anti-symmetric, W, terms 

= + ,L D W      (3.130) 

in which these terms are known as the rate of deformation tensor, D, and spin rate 

tensor, W, and after some manipulation using Equation 3.128 can be written as 

 1

2
T -1 T

sym
= ( + )= ,D L L R UU R    (3.131) 

and 

 1

2
T T -1 T

asy
= ( - )= + , W L L RR R UU R    (3.132) 

where the subscript (sym) and (asy) denote symmetric and anti-symmetric parts of 

the tensor, respectively. When the principal material lines of  U  and U  coincide 

and the product UU-1  is symmetric part, consequently D and W are simplified as 

-1 T=  ,D RUU R     (3.133) 
T=  .W RR      (3.134) 

Usually time derivatives of tensorial variables are not objective, as it is the 

case for the Cauchy stress,  . The incremental procedure requires the definition of 

a stress rate which must be objective, i.e. independent on rigid body rotation. In 

LAGAMINE code generally the Jaumann objective stress rate is adopted and it is 

introduced before the integration of the stress-strain constitutive relation. This 

objective derivative has the form 
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J = - + = - + .       W W    (3.135) 

where   is the time derivative of the stress tensor and   is a second order anti-

symmetric spin. When the spin part   is the anti-symmetric part W of the 

velocity gradient L (  W ), the Jaumann derivative is used. In this case W is also 

called the rigid body spin. This tensor represents the rate of deformation of the 

principal axes of tensor D and the Jaumann stress rate is also defined, as shown in 

Equation 3.135.  

In nonlinear FEM using the hypoelastic laws, the elastic strains are assumed 

small compared to plastic strains, the symmetric part of the velocity gradient, L, is 

written in the form (a good assumption for sheet metal)  

e p=  ,D D D     (3.136) 

where the subscripts (e) and (p) are elastic and plastic parts, respectively. From the 

orthogonality character of the rotation tensor R expressed in Section 3.2.2, it is 

possible to rotate the strain rate D 

 T e p=  , D R D D R     (3.137) 

The computation of the incremental rotated strain, e , between configurations At  

and Bt  is given by 

=  .  e D
B

A

t

t
dt      (3.138) 

The method used to compute the rotation of the local frame in LAGAMINE 

code is named as Constant Symmetric Local Velocity Gradient (CSLVG) (Duchêne 

et al., 2008; Montleau et al., 2008). This assumption is considered in order to 

impose the strain path with constant velocity gradient, L, on a step. According 

with Equation 3.128, the deformation gradient must satisfy an additional condition 

 = = ,L F F
-1

( ) ( ) constant,     t [ ] , B At t t t   (3.139) 

To apply the CSLVG method, first F  is calculated by the following relation 

 exp ( )  ,  F L t     (3.140) 

where  B At t t=  is the size of the time step and using the initial condition 

=F F( )A At  the solution can be expressed as    

= ( )( ) exp ( )  ,F L FB B A At t - t     (3.141) 

in which manipulating Equation 3.141, setting =F F( )B Bt  and regarding Equation 

3.125, it allows to find a constant value of velocity gradient 
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

L F
1

= ln( ) ,AB
t

    (3.142) 

where FAB
 is in general non-symmetric. It is reduced to a rotation matrix and the 

logarithm of an orthogonal matrix is anti-symmetric. For each element, FAB  can be 

computed with respect to the interpolation functions of the element and making use 

of the isoparametric Jacobian matrix  

 -1 .
  

  
  

x x
F J J

x x
B B

AB B A

A A




   (3.143) 

From now, the velocity gradient is determined in the local reference frame. 

First, the deformation gradient tensor is expressed in the local reference system as 

       T=F R FR0 .     (3.144) 

with R  is the current rotation matrix between the local and the global reference 

systems and R0  is the corresponding rotation matrix at the beginning of the 

procedure. 

Similarly, the local velocity gradient can be obtained as 

       =  .
1

ln( ) 


L FAB
t

    (3.145) 

This velocity gradient defined in the local frame is constant during the increment 

and, additionally, it is assumed to be symmetric. Consequently, FAB  is also 

symmetric. The procedure applied to the local frame for Equation 3.125, doing so, 

the local incremental deformation gradient is 

   .
-1

  F F FAB B A     (3.146) 

Substituting Equation 3.144 into Equation 3.146 allows developing the local 

incremental deformation as  

    T T T T  .
-1 -1 -1     F F F R F R R F R R F F R R F RAB B A B B 0 0 A A B B A A B AB A  (3.147) 

From this equation, *FAB  is defined as 

*  , F F R R FAB AB A B AB     (3.148) 

Then, from Equation 3.148 replaced into Equation 3.145 and after its manipulation, 

as demonstrated in Montleau et al. (2008), the CSLVG can be written as 

       * T *=  ,
1

ln ( )
2




L F FAB AB
t

    (3.149) 

where the local velocity gradient, L , become symmetric.  
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In the case when the initial rotation is RA =I, which means no rotation at 

the beginning of the step, Equation 3.148 leads to    

*  F F R FAB AB A AB  and  *   . F F R FAB AB B AB   (3.150) 

The rotation at the end of the step, RB , is obtained by the right decomposition of 

FAB , with U UAB B . Knowing that yln(x )= yln(x)  and regarding equations 3.148 

and 3.150 replaced into Equation 3.149, it can be rewritten as 

      
 

 

T=

    =  .

1
ln ( )

1
ln






L F F

U

AB AB

AB

t

t

     (3.151) 

The condition of L  being symmetric, means that it equals the local strain 

rate, D , applied to a uniaxial extension case, which satisfy Equation 3.138 and 

gives the increment of strain, e , in the local frame     

-1

 ,

= d = ( )d = ln( ) .

         

   

       L e   D e

e D UU U
B B

A A

t t

ABt t

t t

t t
   (3.152) 

As the integration of the constitutive law is performed in the local frame, 

the stress tensor from previous state, At , is rotated by the following relation 

        
T=  , A A A AR R     (3.153) 

then, it is integrated within the constitutive law giving the local stress tensor for 

state Bt  

       = ,  ,( ,...)     B A Af+ L     (3.154) 

and afterwards it is rotated back to the global frame  

        
T=  . B B B BR R     (3.155) 

where B  is the Cauchy stress tensor. The procedure from Equation 3.153 to 

Equation 3.155 is performed at the element level, for each integration point, also 

known as Gauss point (GP). 
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3.6 Nonlinearities  

Nonlinear continuum mechanics involves large deformations described in 

terms of the material or spatial coordinates. Summarizing, the PVW has resulted in 

the emergence of a variety of stress-strain measures and the deformation gradient is 

the main component to describe the strain. After, the PWV was recognized as 

having nonlinear terms and they were consequently written in a linearized form, 

using Taylor’s series. The linearization demanded the necessity of Newton-Raphson 

solution scheme involving the tangent stiffness matrix.  

In structural analysis there are sources of nonlinearities which can arise from 

many effects, such as geometric, material and boundary conditions. The effect of 

large displacements on the overall geometric configuration of the structure leads to 

geometric nonlinearities. The material nonlinearities occurred due to nonlinear 

relation of stress-strain, described by a constitutive law behaviour. It can be 

described as nonlinear elastic, elastoplastic, viscoplastic or viscoelastic. The 

boundary nonlinearities include displacement conditions and the most frequent is 

contact between two bodies.  

    

3.6.1. Geometric nonlinearity  

 

The geometric nonlinearity occurrence is characterized by "large" 

displacements and/or rotations. The coupling nonlinear geometric strain-

displacement matrix, 
NL

B , associated to classic finite element formulation from 

Equation 3.86, can be written according to UL formulation for three-dimensional 

case as (Alves de Sousa, 2006)  

NL

node 

,

,

,

,

,

,

,

,

,

0 0

0 0

0 0

0 0
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B
   (3.156) 
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where 
,

t
j i

N  are the derivatives of the shape function of node j with respect to 

direction i (x, y, z) at increment t. Finally, the 9×9 array, 
9

t , composed by sub-

blocks of the stress tensor, 
3

t , written in 3×3 form, is evaluated at each 

integration point 

3

9 3

3

  ,

t

t t

t

 
 
 

  
 
 
  

0 0

0 0

0 0



 



    (3.157) 

with  

11 12 13

3 21 22 23

31 32 33

0 0 0

   and   0 0 0  .

0 0 0

  

  

  

t t t

t t t t

t t t

                      

0   (3.158)  

  

3.6.2. Material nonlinearity  

 

The problem that arises now is fundamental in computational mechanics, 

where not only equilibrium equations but also constitutive equations of the material 

must be satisfied. This means that at each increment/step, iteratively the 

procedure is performed until both equilibrium conditions and constitutive equations 

are simultaneously satisfied. The converged solution at the end of the load 

increment is then used at the start of new load increment. 

The material behaviour studied is characterized by two domains, namely the 

elastic and elastoplastic ones. In the linear elastic behaviour domain, the 

mechanical response is described by an elastic law, where the stress is given from a 

measure of elastic deformation. Accordingly, the linear elastic Finite Element 

analysis is based on linear constitutive stress-strain equation defined as 

e=  , C      (3.159)  

where the terms of the elastic material matrix eC  are symmetric with its 

components expressed as function of the Young modulus and Poisson ratio. The 

linear elastic model is acceptable only within a limited range of stress, bounded by 

a yield criterion. The boundary is typically distinguished and characterized by the 

yield stress, y , and the yield criterion which defines the transition from elastic to 

elastoplastic domain. Yield criteria describe the form and the size of the yield 

surface evolution, generally expressed as  
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y
- 0 ,        (3.160) 

where 
y

  is the yield stress and   is the equivalent stress, which is function of the 

effective stress tensor. When the stress level exceeds the yield stress, an 

elastoplastic constitutive behaviour law governs the relationship between 

increments of stress and strain. The elastoplastic behaviour characterizes the 

physical irreversibility of the material due to the dissipation of energy. The 

Equation 3.160 is the yield criterion for a material point, it leads to the following 

stress states 

 
y

  , elastic behaviour ( 0  ); 

 
y

= , elastoplastic behaviour (=0); 

 
y

  , unphysical domain ( 0  ), it only happens in mathematical 

iterations, during the algorithm procedure, used to integrate the constitutive 

equations.  

Figure 3.8 schematically exhibits the concepts of elastic and elastoplastic domains 

for two-dimension plane stress conditions. 

 0 

 0 

 0 

 
Figure 3.8: Schematic concept of yield surface. 

 

In general, the constitutive equation is represented as 

Td = d  . C       (3.161) 

where CT  is the tangent material matrix derived from stress tensor, according to 

the strain tensor. The total strain increment, d , is additively decomposed into an 

elastic (recoverable), ed , and a plastic (irreversible), pd , part 

ped = d d  ,        (3.162) 

From Equation 3.159 the elastic part is generally given by 

-1e ed = ( ) d  .C       (3.163) 
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where the inverse of the elastic matrix, -1e( )C , is performed in the pre-processor 

program of LAGAMINE code for each corresponding material subroutine.  

In Finite Element analysis, the increments of   and   are computed at 

each integration (Gauss) point of a finite element of the mesh discretization 

  T=  .C      (3.164) 

hence it is necessary to integrate the mathematical law over the time increment 



  = d  .
t+ t

t
     (3.165) 

From constitutive law and according to Equation 3.162, we have 

    p
T T

ed = d d = (d d ) .    C C    (3.166) 

The additive decomposition of the rate of deformation defined in Equation 

3.136 is recovered. It deals with a hypoelastic formulation of the constitutive law. 

Considering previous developments, the extension of the small strain isotropic 

linear constitutive relation (Equation 3.163) to the objective stress rate is needed 

for finite strain elastoplasticity.  

In order to calculate the plastic strain increment,   t+ t
t    p p pd , there 

are three elastoplastic principles: the yield function, hardening law and plastic flow 

rule (Borst et al., 2012). They are mathematical relations which describe the 

macroscopic behaviour of the material, known as phenomenological models.   

a) Yield criterion 

As previously mentioned, the main purpose of the yield criterion is to limit 

the elastic domain, mathematically expressed by the so-called yield surface or also 

named Haig-Westergaard space. From the state-of-art, the yield criteria can be 

described as isotropic or anisotropic.  

A material is assumed isotropic when its properties are independent of the 

directions considered. Among all known isotropic criteria, the most widely used 

yield criterion to describe the plastic behaviour of isotropic materials, it is the von 

Mises yield function, expressed as 

         .                 
 

2 2 2 2 2 2
11 22 22 33 33 11 12 13 23 y

1
3

2
  (3.167) 

Its yield surface represents a cylinder of radius y  in the Haig-Westergaard space.    

The von Mises yield criterion is the one implemented within the material 

subroutines of LAGAMINE code.  
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 Anisotropic yield surfaces takes into account the variation dependency of the 

yield stress on the loading direction. The criterion proposed by Hill (1948) is the 

most well-known used for anisotropic yield criterion to model the behaviour of 

orthotropic materials. This yield function is expressed as 

      .
2 2 2 2 2 2

22 33 33 11 11 22 12 13 23 y2 2 2                F G H L M N  (3.168) 

where F, G, H, L, M, and N are six material parameters that characterize the 

material anisotropy. Each Hill parameter is computed based on the Lankford 

coefficients according to the following relations   

 
 .0 90 45

4 - -
r = ,    r = ,    r =

2 +

H H N F G

G F F G
   (3.169) 

with additional conditions:   2H G  and  N L M . In LAGAMINE code, the 

subroutine that concerns this anisotropic criterion can be reduced to von Mises’s 

criterion when F=G=F=1 and L=M=N=3. Alternatively, this criterion can be 

written, using tensorial notation, as 

:  .  y:H      (3.170) 

where H is a forth-order tensor, also known as anisotropy tensor, which represents 

the anisotropy of the material. Using Voigt’s notation, it gives  

.

 
 
 
 

  
 
 
  
 

H

G H H G

H H F F

G F F G

N

L

M

+ - - 0 0 0

- + - 0 0 0

- - + 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

   (3.171) 

b) Hardening behaviour 

The hardening phenomenon is a nonlinear behaviour occurring when the 

limit of the elastic domain is achieved and the plastic strain takes place during a 

forming process, with the progress of loading imposition. In the context of 

computational plasticity, hardening is defined as the evolution of the yield surface 

described by a hardening law. This evolution can induce expansion (isotropic), 

translation (kinematic), rotations or distortion (anisotropic) of the yield surface 

during the deformation.  Figure 3.9 exhibits the schematic representation of each of 

hardening behaviour. 
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  Figure 3.9: Evolution behaviour of the yield surface. 

 

The most general hardening behaviours are isotropic, kinematic and the 

combined/mixed hardening, in which isotropic and kinematic hardening are 

simultaneously taken into account, as shown in Figure 3.9c. The anisotropic effect 

of the yield surface can occur combined with kinematic hardening behaviour.     

The isotropic hardening model takes into account the isotropic expansion of 

the yield surface as shown in Figure 3.9a. The yield criterion defined in terms of a 

potential stress, depends on internal parameters describing the yield surface size 

evolution. Equation 3.160 can be expressed as 

p p
y

( , ) - ( ) 0 ,            (3.172) 

where   is the stress tensor and p  is the effective plastic strain, which is an 

internal variable of hardening. 

 The Bauschinger effect present in cyclic loading is expressed by the 

kinematic hardening introduced by Prager (1956). It is represented in Figure 3.9b, 

the yield surface translates in the stress space without change in its size, shape, or 

orientation. This translation mathematically is described through the back-stress 

evolution, redefining a new yield surface centre. Some other evolution laws for 

back-stress tensor can be found in the literature, such as Ziegler (1959), Armstrong 

and Frederick (1966) and Chaboche (1991), just are to mention a few. They are the 

ones available within LAGAMINE code. The yield criterion including kinematic 

hardening is given as 

p p
y

( , , ) - ( ) 0 ,               (3.173) 
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where   is the back-stress tensor, which describes the displacement of the yield 

surface centre during plastic deformation. In case of representing Figure 3.9b, the 

value of yield stress, 
y
, remains constant ( 

y y0
 ).  

The hardening law describes the plastic behaviour of the material 

mathematically expressed in terms of yield stress, y , in function of accumulated 

plastic strain,  p . The most well-known hardening laws are: Linear, Hollomon 

(1945), Voce (1948), Swift (1952), Ludgwigson (1971) and Sung et al. (2010). In the 

present work the hardening laws used are Voce and Swift hardening laws. The 

Voce’s equation is known for its flow stress saturation behaviour with linear 

decrease of the plastic slope, it is defined as 

p

y y0 (1 - e ),    C-A 
    (3.174) 

where y0  is the initial yield stress, A and C are material parameters. On the other 

hand, in Swift’s hardening law, the stress evolution is unbounded, it is expressed as 

p

y 0  ( + ) ,    nK      (3.175) 

where K, 0  and n are material parameters. These hardening laws generally are 

most widely employed in the description of the mechanical behaviour of aluminium 

and steel alloys, respectively. 

 Finally, the combined/mixed hardening, Figure 3.9c, describes the size and 

displacement of the yield surface according to Equation 3.173 together with a 

combination of Equation 3.174 or Equation 3.175 and a back-stress tensor 

definition.      

c) Plastic flow rule 

Generally, the flow rule determines the relation between the strain rate 

tensor and the stress tensor. The flow rule assumes that the plastic deformations 

are normal to a plastic potential of stress. This definition includes the associative 

and non-associative flow rules. The rate of plastic strain, p
ij
, can be expressed by 

making use of the plastic potential function, Q       

p pd     ,    0 , 


 
ij ij

ij

Q
 


     (3.176) 

where   is a proportional positive scalar factor named plastic multiplier, often 

referred to as the plastic consistency parameter.  
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The adoption of the associated flow rule to describe the behaviour of 

metallic materials is widely accepted. In this sense, the present work uses the 

associated flow rule, also referred as normality principle, i.e. the plastic potential 

coincides with the yield function, it is assumed that Q   . The associated plastic 

strain increment,   t+ t
t  p p , can be obtained as  

p p  .t+ t t+ t
t t




  

 


    (3.177) 

where p pt+ t
t

     is the equivalent plastic strain increment, equivalent  to the  

plastic multiplier,  , in proportional loading if 







 is normalized ( pt+ t

t
  ).   

d) Constitutive law integration 

In order to numerically integrate the constitutive equations, commonly a 

predictor–corrector, also known as return mapping, strategy is applied. This 

procedure consists of two successive phases: an elastic prediction followed by a 

plastic corrector. The first attempt is assumed to be purely elastic (elastic 

predictor), which means that there is no plastic flow or internal variables evolution 

TR TR e( ) ,t t t t t
t

       C    (3.178) 

TR TR  .t t t tt
t

        (3.179) 

If the trial relative stress state, TRt t  , is within the yield surface, TR( ) 0t t  , 

this means that the first assumption is correct and the material point is effectively 

in elastic state. In this circumstance, there is no need to integrate the equations. 

Otherwise, if the elastic trial relative stress is outside of the yield surface, a 

corrector phase (plastic corrector) is required in order to project the stress on the 

yield surface  

TR e( ) .t t t t t+ t
t
   a   C    (3.180) 

with =





a


.  

Figure 3.10 exhibits the schematic interpretation of the predictor-corrector method.  
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Figure 3.10: Generic representation of stress return mapping procedure. 

 

According to Crisfield (1994) the strategy of elastic predictor and plastic 

corrector algorithms can be defined in three different approaches: sub-incremention 

technique, explicit method and implicit method. In each case, the aim is to update 

the stresses at a Gauss point level and the first step is to use an elastic relation to 

update the stresses, previously described. 

The sub-incremention technique consists in dividing the increment of stress 

in equal sub-increments, performing the return correction for each one separately. 

Additionally, this method helps decreasing the gap between the predicted stress 

state after the plastic correction and the correct stress state on the yield surface.    

The explicit return method, also known as belonging to the forward-Euler 

category, integrates the constitutive equations based on the variables at a known 

stress state. However, this algorithm does not directly lead to stresses that satisfy 

the yield criterion, usually it is coupled with the sub-incremention to improve the 

accuracy of the explicit procedure making it, incremental and iterative.  

The implicit integration scheme is known as belonging to backward-Euler 

algorithm. The returning procedure is evaluated based on the final stress state 

which is unknown. This algorithm uses an iterative procedure to compute the state 

variables resorting to the Newton-Raphson method, described in Section 3.4. The 

radial return algorithm is a special form of the backward-Euler procedure.        

Ortiz and Popov (1985) have defined these algorithms in two different 

groups: generalized trapezoidal rule and generalized midpoint rule. Both groups can 

lead to implicit and explicit integration schemes. For a particular case, considering 

von Mises criterion with associative plasticity and a linear isotropic hardening 
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behaviour, both rules give the same result. The major difference between both rules 

is related with flow tensor. In the trapezoidal rule algorithm it is assumed a linear 

combination between the flow tensor from previous increment, t a , (see Equation 

3.180 for a definition) and the current flow tensor, t t a , expressed as 

 p 1  ,t t t t t

t
        

a a     (3.181) 

Although, in the midpoint rule algorithm the flow tensor is obtained by 

interpolation at intermediate position, t t  a , between the previous increment, t a , 

and the current increment, t t a , given as follows 

p   .t t

t

t t   a      (3.182) 

where   is a parameter ranging from 0 to 1. If   is equal to 0 we obtain explicit 

(forward Euler) integration scheme. If   is equal to 1 we obtain implicit (backward 

Euler) integration scheme. 

In particular, if the value of parameter   is 0.5 we have the generalized 

trapezoidal rule algorithm, the one available within the material subroutines of 

LAGAMINE code used in the present work to perform the numerical simulations. 

e) Consistent elastoplastic tangent modulus tensor 

The stress update is efficiently performed resorting to a return-mapping 

scheme as previously described. But, the stress state obtained would not achieve 

directly the equilibrium solution of the finite element discretization, for the reason 

that the strain is calculated at the corrector step. As a result, the tangent modulus 

tensor, also called the consistent tangent modulus tensor, is required at the end of 

each plastic corrector step. The integration scheme algorithm chosen should ensure 

the asymptotically quadratic convergence (Simo and Taylor, 1985).  

Afterward, the stiffness matrix evaluation through nonlinear implicit finite 

element solver is obtained, at each integration point, for each finite element and 

regarding an incremental-iterative procedure, as similarly described in Section 3.4. 

For instance, in case of standard Newton-Raphson, the stiffness matrix update is 

performed at each iteration through the computation of the consistent elastoplastic 

tangent modulus. Then, the new nodal displacements vector is computed by solving 

the equilibrium Equation 3.118, from which the corrected nodal displacement 

incremental vector, Equation 3.119, is calculated.  
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3.6.3. Boundary Conditions: Contact Formulation  

 

Nonlinearity of an analysis is not only geometric and material. It also 

includes quantities associated to boundaries, such as, constrained displacements, 

applied forces (surface tractions and/or body forces) and contact conditions. In 

particular, the present section is more focused on the description of contact with 

friction.  

In order to describe the contact solving method for our case, the analysis is 

based on penalty method applied for general problems, such as, contact between a 

rigid tool body and a deformable metal sheet. Penalty method consists into an 

addition of a large value parameter, known as penalty coefficient, in the governing 

equations of equilibrium. This penalty parameter acts as a stiff spring between the 

contact surfaces. In theory, the penalty parameter tends to infinity. However, the 

resulting system of equations may become ill-conditioned if the penalty parameter 

is too large. Previous works have been done in order to develop an efficient contact 

finite element based on penalty method adapted for LAGAMINE code, such as 

Habraken and Cescotto (1998). Their work concern a contact element used in the 

numerical applications further in this work, a brief description and its basic theory 

description are given below. 

Consider two bodies domains 1  and 2  with boundaries 1
C  and 2

C , 

as shown in Figure 3.11, which represents the contact between them. 

 
Figure 3.11: Schematic contact between two bodies. 

 

The contact side of each body 1  and 2  can be discretised with contact 

isoparametric elements. They are compatible, sharing the same DOF and common 

nodes, with 8 node finite elements used to discretise the corresponding body.  

In general, the contact principle is based on the sum of the PVW equation 

terms defined earlier, internal virtual work and external virtual work of forces 
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applied on NS , balanced with the virtual work of the contact forces, CW , acting on 

contact bodies, CS , gives 

N

C

W ( ,  )

W ( ,  )

N

C

C

d d d

                 - = d  .

        

   

  

 i

i i i i i i i i

V V S

i i i i i i
cS

V V S

S

u S E b u t u

u t u
  (3.183) 

where i  is the solution of the equilibrium state and the subscript i indicates each 

body. W ( , )  i i iu  is the sum of the internal virtual work and the virtual work of 

the applied forces for body i  

CW ( , ) W ( , ) = 0 ,      i i i i i iu u   (3.184) 

with 

CW ( , ) C
c

= - d   .   
i i i i i i

ciS
Su t u    (3.185) 

The contact force induced on body 2 is equal and opposite to that induced on body 

1 at the contact area  

t t2 1
c c= -  .     (3.186) 

Therefore: 

CW ( , ) )
C

C= - - d  .     1

i i i 1 1 2 1
cS

Su t u u    (3.187) 

In SPIF simulations, the forming tool is normally considered a rigid body and since 

that it is the body 2, the weak form of the contact on the deformable mesh is 

CW ( , )
C

C=  d  .   u t u
1

1 1 1
cS

S    (3.188) 

At any point of the contact surface, CS , a local axis frame ( 1e , 2e , 3e ) can be 

defined for each solid. The 1e  component is normal to the contact surface while the 

2e  and 3e  components are tangent to the surface as it can be seen in Figure 3.12.  

e1

e3

e2
x3

x2
x1

S

 
Figure 3.12: Local frame work. 

 

In this local referential, if the contact pressure, named p, the normal component of 

an applied force per unit area ( n ) and the contact shear stresses, 2 , 3 , are 

tangent components at S point, the surface equilibrium conditions are given as 
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 

  

  

11

21 2

31 3

s

s

s

= 0;

= 0;

= 0.

p

     (3.189) 

with 

S C

11

21 2 2

31 3 3

s n

s

s

=  ; = = .

      
            
            

 

p

   (3.190) 

where 11s , 21s , 31s  are components of stress of the solid element, S , and C  

are the contact stress vectors defined in a local referential attached, as 

schematically represented in Figure 3.12.  

In the LAGAMINE code, the contact is discretised using a three-dimensional 

contact element named CFI3D, applied on the top of each hexahedral finite 

element. The contact stresses are computed at the contact element integration 

points, while displacements of the solid boundaries are computed at nodal points. 

The rigid body sphere is discretised as a segment in FEM model, which is defined 

within the subroutine named CALFON. This subroutine computes the relation 

between an integration point of the contact element and the foundation segment. 

The contact condition is numerically enforced using the classical penalty 

method which allows a small penetration of the two bodies (see Figure 3.11) and a 

relative sliding between them. The contact condition is simply obtained locally from 

the geometrical computation of the distance, Cd , at contact interfaces of both 1  

and 2 , as can be seen in Figure 3.13.  

 

 
Figure 3.13: Distance between contact element GP and foundation segment (lateral view). 

 

The computation of Cd  at the integration point of contact element, from domain 
1 , requires the coordinates of the intersection between its normal and the surface 

of the foundation segment, from domain 2 . The distance Cd  is given by 
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1Cd = e  .u      (3.191) 

where the distance vector u is given as 

u R x x1 2=  ( - ) .     (3.192) 

in which R is the rotation matrix between 1 2 3(x , x , x )and ( 1e , 2e , 3e ) axes. If 

0Cd  there is no contact at bodies interface and if 0Cd , there is contact 

between both bodies. 

The contact elements require the use of a particular constitutive relation 

which links the contact stress rate to the contact strain rate. The yield function, 

fC , (the Coulomb’s friction law) assesses the sliding and sticking conditions at the 

contact surface described as 

( ) ( )2 2
C 2 3= - -  ,f p p          (3.193) 

where   is the friction coefficient and p is the contact pressure. In the Coulomb 

friction model, calculation of the tangential force follows the next conditions with 

both slip and stick states (Wriggers, 2002): 

 fC <0 is the domain of sticking contact (the stress lies in the elastic zone); 

 fC =0 is the domain of sliding contact (the stress lies in the plastic zone); 

 fC >0 is impossible. 

If sliding occurs, the relative displacement rate between the points in contact can 

be split into an elastic and plastic part 

C C
e p

C=  .         (3.194) 

The contact stress rate, C , is given as follows 
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 C

p

 (3.195) 

with 0  , if sticking contact (elasticity occurs) and 1  , if sliding contact 

(plasticity occurs). The CC  is the contact matrix and pK , K  are the penalty 

coefficients on contact pressure p and on the contact shear stresses 2 , 3 , 

respectively. 
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3.7 Reduced Enhanced Solid-Shell (RESS): Description 

The development of Finite Element formulations for sheet metal forming 

using “Solid-Shell” elements, combines the main features of shell formulations with 

a solid topology. The RESS (Alves de Sousa et al., 2005, 2006, 2007) Finite 

Element is a hexahedral element composed with 8 nodes, where each node has 

three degrees of freedom (displacements). The advantage of RESS integration 

scheme is the possibility to eliminate the volumetric locking phenomena, due to the 

reduced integration in the element plane. Besides the use of reduced integration 

procedures, there are other well established techniques in the literature to avoid 

locking phenomena. In this context, the Enhanced Assumed Strain (EAS) method 

was applied to increase the element deformation modes, in order to avoid locking 

problems. Originally EAS method was proposed by Simo and Rifai (1990). Within 

this approach, the strain field is enriched in order to enlarge the subspace of 

admissible deformation modes (Alves de Sousa et al., 2003) and, therefore, to 

increase the flexibility of the Finite Element formulation attenuating locking 

effects. In the formulation adopted in this work, only one enhancing variable is 

needed to attenuate the volumetric locking (Alves de Sousa et al., 2005). 

Consequently, the vector of enhanced internal variables is equivalent to a single 

scalar.  

Volumetric locking effect is attenuated using the EAS method and the 

reduced integration in the element plane. However, the reduced integration in the 

element plane is prone to generate spurious modes of deformation, also so-called 

“hourglass”. Consequently, a stabilization scheme is needed to eliminate the 

hourglass effect. The combination of EAS method and hourglass stabilization in 

plane, with the use of an unlimited number of integration points in the thickness 

direction characterizes this element.  

The use of a conventional solid element requires several element layers to 

correctly capture bending effects, but multiple layers of finite elements along the 

thickness direction increases the computation time. Figure 3.14 presents the 

advantage of RESS Finite Element structure compared with different finite element 

integration schemes. For instance, all formulations below using 4 integration points 

through thickness directions, but the computational efficiency increases from a) to 

b) and from b) to c). 
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  (a)         (b)    (c) 

Figure 3.14 – Comparison between (a) fully integrated, (b) reduced integrated and (c) RESS formulation, 

regarding the number of integration points. 

 

Notice that it is essential to know the element orientation within the mesh 

generation, since the EAS method and the integration schemes described below 

depend on the element thickness direction. These conditions are preserved taking 

into account the numeration of the nodes and its connectivity order.   

  

3.7.1. Enhanced Assumed Strain Method 

The virtual work principle described in Section 3.1 is not sufficient to 

overcome all the problems related to the locking phenomena. In this sense, the 

Enhanced Assumed Strain (EAS) method was employed. The Fraeijs de Veubeke-

Hu-Washizu (VHW) (Fraeijs de Veubeke, 1951; Kyuichiro Washizu, 1955) 

variational principle is the starting basis for the EAS method, in its linear version 

as originally presented by Simo and Rifai (1990). The nonlinear version was 

presented by Vu-Quoc and Tan (2003) and it can be given as     

 (u, ) ( )
 

    
 

   VHW T
extV V

1
, d : -  - d -  ,

2
E S E S F F I ESW V V

 (3.196) 

where SW  is the strain energy, ext  is the virtual work of the external loading, as 

similarly defined in Equation 3.14 and E  is the enhanced strain tensor.  

Following the original proposal of Simo and Rifai (1990), the essential point 

of the EAS method is the enrichment of the displacement-based (Green-Lagrange) 

strain field, E, by means of the so-called enhancing strain field (


E ), generating the 

enhanced strain field, E , decomposed in the form 

 .


 E E E      (3.197) 

The imposition of the orthogonality condition between the stress field, S, 

and the enhanced strain field, 


E , is   

 S E: d = 0 ,V
V     (3.198) 

which leads to reduce the number of independent variables of Equation 3.196 
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(u, ) ( )   
VHW

extd -  .E E ESV
W V     (3.199) 

The weak form of above modified equation, with respect to two independent 

variables, is obtained applying the so-called Gateaux derivatives and detailed in the 

work of Alves de Sousa (2006).  

 

3.7.2. FEM approximation of the EAS method 

The Finite Element kinematics is based on the displacements field without 

requiring rotational degree of freedom. The equations are integrated using updated 

Lagrangian approach, where the reference configuration is from now associated to a 

converged state t and the current configuration points to the unknown state 

t t . Let us consider the natural coordinates ( , , )    , representing the 

isoparametric cubic domain V  chosen such as 
V

dV = 8 . The corresponding 

position after incremental deformation (current configuration) can be defined with 

an analogous expression, now referred to state (t t ). The displacement field of a 

point in the converged state can be obtained by 

,t t t t t
t

  u x x            (3.200) 

which is interpolated in each finite element domain in the form 

( ) ,h   u u N d                          (3.201) 

( ) ,h      u u N d                          (3.202) 

( ) .t t t t h t t
t t t

     u u N d                         (3.203) 

where N denotes the usual isoparametric shape functions for a low order 3D 

element, relating the continuum displacement field (u) and the corresponding 

vector of 24 degrees-of-freedom (d) of the 8-node finite element. Its corresponding 

shape functions, N, are described by Equation 3.93 regarding hexahedral element 

discretization using natural coordinates of Equation 3.94. Figure 3.15 exhibited the 

integration scheme with multiple integration points through the thickness, in the 

isoparametric domain. This integration scheme presents an in-plane reduced 

integration and a higher integration scheme through-thickness direction. 
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Figure 3.15: Integration scheme in isoparametric domain with n Gauss points in the thickness direction.  

 

Using the in-plane integration scheme, the terms of strain-displacement 

matrix uB  depending on   and   are zero. For implementation convenience, uB  

can be calculated using the decomposition into constant (c) and   dependent terms 

(Alves de Sousa et al., 2005) 

u
c  B B B ,    (3.204) 

where 
u

B  definition can be found easily in the literature as expressed in Equation 

3.99 (Section 3.3.1). In the context, the enhanced strain tensor can be interpolated 

in the element domain using the nodal displacement vector (d) and the enhanced 

parameter vector is reduced to a scalar, α, as only one enhanced mode is used 

u
.

  


 
             

d
E E E B B     (3.205) 

Considering locking as the inability of a formulation to reproduce a 

deformation pattern under a given set of constraints (Alves de Sousa, 2006), in the 

EAS method the role of the 


B  operator is to supply this lack of deformation 

modes, increasing the space of possible solutions. To do so, the number of degrees 

of freedom (24, for a conventional solid element formulation) is increased by the 

number of internal variables present in enhanced strain modes vector. These extra-

variables have no physical meaning, and given their discontinuity between 

element’s boundaries, they can be eliminated at the element level (Simo and Rifai, 

1990). 

For RESS element, just one enhancing variable needs to be used to 

attenuate volumetric locking (Alves de Sousa et al., 2005). Consequently, the vector 

of internal variables is equivalent to a single scalar, α.  The associated strain-

displacement operator 


B  is a vector, initially defined in the natural convective 

frame as 

 
T

0 0 0 0 0 .


    
B     (3.206) 
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Typically, the enhanced part of the strain field can be transformed into the 

Cartesian frame, using (Simo and Rifai, 1990) 

0
det( )ˆ
det( )



l
c

l
c 


T

B
T

0

1

,




T B     (3.207) 

where 
0

T  is the second order transformation tensor. 

 The transverse shear locking phenomenon, on the other hand, is associated 

to an overestimation of stiffness associated to transverse shear strain energy, which 

does not automatically vanish in the case of 2×2 in-plane integrated elements when 

applied to thin structures. In the work of Alves de Sousa (2006) it is shown, that 

use a suitable subspace analysis, an in-plane reduced numerical integration 

eliminates the transverse shear locking effects. 

From the linearization procedure of the weak form terms, detailed in the 

work of Alves de Sousa (2006), the variations int  and ext  can be expressed as  

 ˆ( )
T

T T T
int , d + d  ,    d d B S B S  

V V
V V   (3.208) 

and 

N

( )         V S
V Sd d N b d N tT T T T

ext d d  .   (3.209) 

As a consequence of the inclusion of the enhancing parameters into the variational 

formulation, the coupling stiffness matrices uK  and uK  are obtained, as well as 

the enhanced stiffness operator K , a scalar within this formulation, all of them 

having the same structure as the linear formulation of Simo and Rifai (1990)  

 
T

u u T ˆ d , 
V

V  K K B C B    (3.210) 

 
Tˆ ˆK d  .

 V
V  B C B    (3.211) 

The linear geometric stiffness matrix (
L

uuK ) is defined as in the fully displacement-

based formulation as function of 
u

B , whereas the geometrically nonlinear stiffness 

matrix 
NL

uuK  is given in Section 3.6.1. The final result gives the equivalent system of 

equations, on matrix form 

 
NL NL
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uu uu u

Tu

V

d  d d
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 
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t t
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 (3.212) 
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Simplifying the equation system above leads to 

L NL

uu uu u uu
intext
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  (3.213) 

The increment of the additional enhanced freedom degrees, t t+
t , at element level, 

are updated using a static condensation procedure, as 

u-1

intK ( + )        
t+ t t+ t

t t= - .f K d           (3.214) 

Replacing t t+
t  into its expression in the system of equations above, leads to the 

static condensation for the stiffness matrix and the internal force vector written at 

the element level, as 

L NL

uu uu u u u u uint
ext int

1
- + ,


  

 

t+ t
t
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 

f
K K K K d f f K

K K
       (3.215) 

 u+ u u+
ext

. t+ t
t

- K d f f           (3.216) 

The internal forces for the displacement ( f u
int ) and the residual forces from 

enhanced part ( int
f ) can be written, under the following expressions 

= ,f Bu T m
int u dσ

V
V     (3.217) 

ˆ ,
 f BT m

int dσ
V

V     (3.218) 

Since the 
T
uB  and ˆ

B matrices have been obtained from the displacement part 

and from enhanced part, respectively, the integrals of equations 3.217 and 3.218 can 

be calculated numerically as follows 

            = ( ) ( )  ,u T m
int u

=1

wf B J
i

ξ,η,ζ x,ε
npi

ipi ipi ipiipi
pi

σ  (3.219) 

             
ˆ ( ) ( )  ,T m

int w
 f B J

i

ξ,η,ζ x,ε
npi

ipi ipi ipiipi
pi=1

σ              (3.220) 

where 
mσ  is the Cauchy stress which is obtained from the integration of material 

law,  wipi  is the Gauss point weight, npi is the total number of integration points 

and ipi is the corresponding integration point. In the equation of the variational 

principle, intf   must be equal to zero resorting to an iterative procedure in order to 

avoid the α effect. While 
u
intf  represents the forces of the element which should be 

in equilibrium with the external forces.  
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Comparing RESS approach with other well-established EAS formulations, it 

is possible to understand its advantages in terms of CPU efficiency, mostly due to 

the number of enhancing variables, which is only one. Consequently, the matrix 

operations (inversions and multiplications) involved in Equation 3.213 is less 

computationally expensive. This advantage allows for a crucial contribution in the 

numerical simulation of demanding industrial processes. 

 

3.7.3. Stabilization Procedure 

The integration scheme used for RESS finite element leads to the rank-

deficiency of the formulation, coming exclusively from the reduced integration 

procedure in the element plane, as can be seen in Figure 3.15. To reduce the 

occurrence of hourglass problems the physical stabilization procedure, originally 

suggested for a shell formulation (Cardoso et al., 2002), is extended to cover 3D 

solid elements.  

The compatible strain tensor from displacement field (E ) term, included in 

Equation 3.205, can be rewritten into a convenient manner by the decomposed 

standard strain-displacement matrix, 
u

B  

 = + + + + + + .c           E B B B B B B B u   (3.221) 

where u is the nodal displacements vector and the sub-terms of Equation 3.221 are 

detailed in Alves de Sousa et al. (2005). In fact, for the special integration scheme 

where 0   and 0   for each integration point, the calculation of 
u

B turns out 

to be simple as demonstrated in Equation 3.99.  

Under the in-plane reduced integration scheme adopted in this formulation, 

the constant cB  and B  terms for the stabilization procedure are intentionally 

removed, since the used integration scheme does not cancel them. The   term is 

not required due to the arbitrary number of integration points through the 

thickness direction. For this reason, the strain-displacement sub-matrices that 

contribute to element stabilization and define the stabilization matrix, HB , are 

H ,            B B B B B B    (3.222) 

Also, it is useful to decompose HB  matrix by lines and to add a parameter   in 

the formulation 
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  (3.223) 

Accordingly, when applying this formulation for thin-walled structures, the 

β  parameter of Equation 3.223 can be set to zero, not adding transverse shear 

energy and avoiding transverse shear locking (Alves de Sousa et al., 2005). Once the 

HB  matrix is defined in natural frame, it is transformed to the global frame, 

applying the transformation matrix T0 , similarly to Equation 3.207 

H H
0

ˆ .B T B      (3.224) 

To avoid the volumetric locking phenomenon which occurs in solid finite elements, 

the B-bar approach is adopted, as introduced by Malkus and Hughes (1978). 

Accordingly, the hourglass counterpart of the strain-displacement operator is 

divided into its volumetric (dilatational) and deviatoric components, the 

dilatational part being computed at the element centre 

     H H H
dev dil

ˆ ˆ ˆ= + 0,0,0  ., , , ,     B B B    (3.225) 

where H
dev

B̂  and H
dil

B̂  are further expanded according to Equation 3.223. 

Following an incremental-iterative Newton-Raphson scheme, both the 

stiffness matrix and the internal force vector of the equilibrium Equation 3.216 

must be corrected, providing the nodal increment of displacement, d   

   
 u+ H u+ H

ext( + ) = ( + )K K d f f f-  .            (3.226) 

The next decompositions are considered for the hourglass stiffness ( HK ) and the 

increment of hourglass forces ( Hf ) 

,+ + + +K K K K K KH =         (3.227) 

    f f f f f fH = + + + + .     (3.228) 

where the hourglass forces ( f H ) is calculated at the mid-step configuration (Alves 

de Sousa et al., 2005). Each hourglass stiffness term of Equation 3.227 is detailed 

below 

 
T 2=  

  K B C B Jξ ξ ξ ξ  ,0V
Vd     (3.229) 
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 
T 2=  

  K B C B J    0V
Vd  ,     (3.230) 

 
T 2 2=  

  K B C B Jξ ξ ξ ξ  ,    0V
Vd    (3.231) 

 
T 2 2=  

  K B C B Jξ ξ ξ ξ  ,    0V
Vd    (3.232) 

 
T 2 2=  

  K B C B Jηζ ηζ ηζ η  . 0V
Vd    (3.233) 

where the isoparametric domain is chosen such as  d 8
V

V  and 0J  is the Jacobian 

determinant computed at the element centre. Similarly, each hourglass force ( f H ) 

component of Equation 3.228 is written as 

     f B Jξ ξ ξ ξ ,
T

0 dσ
V

V  (3.234) 

  
  f B Jη η η η ,

T

0 dσ
V

V  (3.235) 

     f B Jξη ξη ξη ξη ,
T

0 dσ
V

V  (3.236) 

     
ξζ ξζ ξζ ξζ ,f B J

T

0 dσ
V

V  (3.237) 

     f B Jηζ ηζ ηζ ηζ .
T

0 dσ
V

V  (3.238) 

The increment of the Cauchy stress ( ) are given by 

σξ ξ= ξ  ,CB d  (3.239) 

ση η= η  ,CB d  (3.240) 

σξη ξη= ξη  ,C B d  (3.241) 

σξζ ξζ= ξζ  ,CB d  (3.242) 

σηζ ηζ= ηζ  ,CB d  (3.243) 

where C is the constitutive stress-strain law tensor (6x6). In the set of equations 

from 3.229 to 3.233, the non-constant terms can be analytically calculated 

  2 2 8
d d =  ,

3V V
V V     (3.244) 

2 2 2 2 2 2   ξ η ξ ζ η ζ
8

d d d =  .
9V V V

V V V    (3.245) 

It should be noted that no numerical integration is required at this stage, which 

leads to save a considerable computational time.  

Generally, the aspects that contribute to the computational advantages of 

this formulation are: i) the use of only one internal variable per element for the 

enhanced part of the strain field; ii) the reduced integration scheme; iii) the use of 
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one element layer along thickness with multiple integration points; iv) the 

evaluation of analytical stabilization terms instead of resorting to empirical 

parameters and numerical integration. 

The formulation of RESS finite element described in the above sections is 

currently implemented within LAGAMINE in-house code, subroutine called RESS3.      

 

3.8. Numerical Code LAGAMINE 

The present section presents the nonlinear Finite Element in-house code 

called LAGAMINE developed in FORTRAN by MSM team of ArGEnCo 

department in University of Liège since 80’s. This code includes different research 

fields, implicit and dynamic explicit integration schemes, different analysis type (2D 

and 3D), extensive list of finite elements and constitutive laws. Schematically, 

Figure 3.16 exhibits the nonlinear procedure of LAGAMINE code.         

Initialization 
equilibrium state

Impose forces and 
displacements

1st approximation of the 
geometry

Computation of strains, 
stresses and forces

Equilibrium check

Equilibrium?

Last time step?

End

Correction of 
coordinates

NO

NO

YES

YES

 
Figure 3.16: Procedure scheme of nonlinear LAGAMINE code. 
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3.8.1. Pre-Processor: Generation of the “reading” files 

The LAGAMINE in-house code is mostly used as research tool, with a 

flexible open source structure, composed by two parts: the PREPRO program and 

the LAGAMINE program. The PREPRO program is the pre-processor responsible 

to read the data from the input file (*.lag) verifying also its consistency, and 

converting it into a group of files that can be read by the LAGAMINE processor. 

Figure 3.17 presents the files generated after PREPRO read the data file *lag.  

 

 
Figure 3.17: Files generated by PREPRO. 

 

The files generated by PREPRO program provides:   

 File.F01: for permanent parameter. It is a binary file which includes the list 

of DOF per node, list of elements, constitutive law parameters.  

 File.F02: the initial variable file. It is a binary file which contains the initial 

position, initial reaction and initial stress.  

 File.out: output file which is an ASCII file and presents the verification 

summary of the input/data file (*.lag).   

 File.don: drawing parameter file. It is an ASCII file used to visualise the 

mesh on the auxiliary drawing viewer called DESFIN.   

  

3.8.2. Processor: Simulation Processing  

The program processor is responsible for the simulation runs. The LENABO 

subroutine is the main program which manages the LAGAMINE code and performs 

the analysis after reading an additional data file called strategy data file (*.dat). 

This data file contains the information of the simulation control parameters. The 

main controlled parameters are: the initial force increment size, the initial 
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displacement increment size, initial and maximum increment size, total time, read 

and print options, just a few parameters are here mentioned. The input files 

generated by the pre-processor PREPRO program are: the permanent variable file 

(*.F01) and the initial variable file (*.F02). The displacements input file (*.dep) is 

used when the displacement history are not radial/constant during the simulation 

runtime and/or when they are radial but are applied in a different orientation in 

each direction component. The reading of displacements data file (*.dep) is 

requested by an option within the strategy file (*.dat). Any non-radial stress 

history can be read within parameters file (*.loa) if required by the strategy file. 

The current variables file (*.F03) is continually updated during the simulation 

execution until the simulation is concluded, and it saves the information of the last 

increment performed.  

Figure 3.18 schematically shows the input files used and the generated files 

by the LAGAMINE processor. 

 

 
Figure 3.18: Input files and generated files by LAGAMINE code. 

 

The files generated by LAGAMINE program are: 

• File.F03: binary file with current variable information (position, 

reaction, stress…) updated at each step; 

• File.oto: binary file with required stored variables for any requested 

step or all of them (package of file.f03); 

• Fileex.log: ASCII file which contains advanced computation and 

convergence information; 

• Fileex.out: output file is an ASCII file with more info (advancement, 

convergence, stress field, displacement field, state variables); 

• Others output files not described here allowing specific generation 

files for results visualisation, such as File.rea. 

The simulation can be restarted from the last converged increment, as well, 

if the simulation was divided into different execution stages. In this case different 
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strategy files (*.dat) are used at each simulation stage, previously planned by the 

user. If the simulation was stopped, due to convergence problems for instance, the 

user can restart the simulation again and it restarts from the last converged 

increment. The simulation is restarted from the information saved in the binary file 

(*.F03) and it becomes the initial file information to continue the simulation. 

Hence, the updated information of the following increments are saved in the file 

which was initially the variable file (*.F02).           

 

3.8.3. Pos-Processor: Simulation Result Treatment  

The pos-processor is a program called SELECT and it is responsible to 

exhibit the results in function of parameters chosen by the user. The file which is 

used in the pos-processor program generated by the processor LAGAMINE are: 

• File.F02: Binary file with the initial variables values; 

• File.F03: Binary file with the current variables updated;  

• File.rea: ASCII file with the results of reaction forces;  

• File.oto: Binary file with the variables information of all steps or 

requested steps saved. This request is optional and it should be defined by 

the user within the strategy file (*.dat). 

The files generated by the pos-processor are: 

• File.imp: ASCII file with the results chosen by the user; 

• File.res: Binary file (input file of DESFIN) to visualise the final 

deformable of the mesh, stress, strain and internal variable fields. 

DESFIN is the viewer program, where it is possible to display the 

deformable mesh. Figure 3.19 presents the general LAGAMINE work scheme and 

its files connection between the pre-processor, processor and pos-processor to 

prepare/analyse a numerical simulation.    
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Figure 3.19: LAGAMINE code working scheme. 
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Chapter 4 

Remeshing for SPIF: Description  

The current chapter presents a mesh refinement procedure based on the Finite 

Element Method (FEM). Many issues appear when simulating SPIF process 

resorting to FEM, and it is always necessary to find a compromise between 

accuracy and CPU efficiency. The mesh size has a significant effect on the 

numerical results accuracy. It influences the convergence rate, the computational 

time and the contact between two surfaces. An initially refined mesh can improve 

the accuracy of results but the computational time required to perform the 

simulation is huge. On the other hand, a coarse mesh leads to inconsistent results, 

penetration issues and convergence problems during simulations. The alternative to 

obtain the advantages of fine meshes with less computational time is the use of an 

adaptive remeshing technique.  

The following sections are focused on the description of the implemented mesh 

refinement technique. These features are not usually available in common 

commercial FEM codes, in particular for a solid-shell formulation. In this work 

special focus will be given to a solid-shell finite element formulation combined with 

an adaptive remeshing method chosen. Implicit scheme analysis was selected to 

perform the simulations. 

 

4.1. Adaptive Remeshing Method   

This section introduces and describes the adaptive remeshing method 

implemented in the in-house Finite Element code LAGAMINE. Initially, this 

remeshing procedure was developed by Lequesne et al. (2008) and it was available 

only for a shell element. Currently, this section presents the extension of the chosen 

method for an eight nodes solid-shell element, more specifically the RESS finite 

element (Alves de Sousa et al., 2005, 2006, and 2007).  
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In SPIF, the blank surface area where high deformations occur is always 

close to the current tool location. In the presented technique only a portion of the 

sheet mesh is refined at the tool vicinity following its motion. Doing so, the 

requirement of initially refined mesh is avoided and consequently, the global CPU 

time can be reduced. 

 

 
Figure 4.1: Adaptive remeshing procedure. 

 

4.1.1. Refinement Criterion  

In the adaptive remeshing procedure, the initial coarse mesh is refined based 

on a selected refinement criterion. The adopted remeshing criterion for both solid-

shell element and its associated contact element is based on the shortest distance 

between the centre of the spherical tool and the contact nodes applied on the inner 

surface (see Figure 4.1). The used contact element is described in Habraken and 

Cescotto (1998). The criterion defining the size of the tool vicinity is given through 

the expression (Lequesne et al., 2008)   

2 2 2( + )D L R  .                                    (4.1) 

where D is the shortest distance between the centre of the spherical tool and the 

element nodes, L is the length of the longest diagonal of the element, R is the 

radius of the tool and α is the neighbourhood coefficient chosen by the user. This α 

coefficient defines the size of the tool vicinity. The nodes used as reference to check 

the criterion condition are the contact element nodes at the top layer of the mesh. 

The criterion and the list of coarse elements to be refined are performed in 

LPROXEL2 subroutine (see Appendix A.1). The recommended α value choice is 

studied in the present chapter and presented in Section 4.3. 
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4.1.2. Generation of New Nodes  

The coarse element which fulfils the criterion (Equation 4.1) is deactivated 

and becomes a “cell” (storage name for new elements) which contains all 

information of the new smaller elements. The coarse element is divided into a fixed 

number of new smaller elements, defined through the number of nodes per edge, n, 

chosen by the user. Each cell has  +2 ²n  nodes, where  n +2 ² -4  is the number 

of new nodes generated. The new nodes are generated as shown in Figure 4.2 and 

the generation procedure is described below.  

 

 
 

   

 
Figure 4.2: Generation of new nodes in element plane. 

 

In the example of Figure 4.2, n was considered to be equal to 3. The steps to 

generate the new nodes are:  

I) the new nodes (n) on the first edge are generated between nodes 1 and 2;  

II) a second edge with new nodes (n) is generated between nodes 3 and 4;  

III)  one node is generated between 1 and 4;  

IV)  one node is generated between 2 and 3;  

V) the new nodes (n) are generated between the last two new nodes of step III 

and IV;  

VI)  the steps III, IV and V are repeated for each new node in an equivalent 

manner.  

This procedure is performed over the element plane and repeated for each layer of 

nodes through the thickness direction. For instance, with a solid-shell element as 

RESS, it will be always two layers. All nodes are stored in a table size of n+2 lines, 

1. 

       I                     II                 III and IV                   V                       VI 

2. 

(B) 

(A) 
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n+2 columns and number of layers, 1 layer for shell element and 2 layers for 8 node 

element (solid-shell or “brick”). The number of layers defines the table size in the 

third direction. The FORTRAN language contains 5 different intrinsic types 

(integer, real, complex, logical, and character) of variables. Additionally, the user 

can define data objects of different types, known in programming as “derived type”. 

An object of a derived data type is called a structure. Each new node is a “data 

object” containing: current coordinate positions, last step coordinate position, 

velocity, acceleration, master list and relative position between the master nodes. 

The “data object” structure of derived type for each new node is defined into 

GEST_NEW_NODE module (Appendix A.2). The generation of all nodes within a 

cell is performed in CONSTRUCT_TAB_NEW_NODES subroutine (Appendix 

A.3). The generation of the new nodes at an edge of the cell is located between two 

old nodes, A and B (Figure 4.2.a). The old nodes A and B are stored as master 

nodes. The relative positions of the old nodes within the storage table, as shown in 

Figure 4.3, are: node 1) 1, 1; node 2) 1, n+2; node 3) n+1, n+2; node 4) 1, n+2.  

 

new new new

new new new new new

new new new new new

new new new new new

 4       4      5     6     3

17  19    20   21   18

12  14    15   16   13
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 
 
 
  

 

Figure 4.3: Table of nodes with two layers corresponding to an eight node element. 

 

The generation of new nodes in the nodes table (Figure 4.3) is performed 

layer by layer from the bottom to the top. The new nodes generation between two 

new nodes (step V) is performed using the positions between both new nodes 

generated in steps III and IV (see Figure 4.2.b). The global coordinates of each new 

node, Px , at each layer of the coarse element are computed by 

                
P A B= 1- +

+1 +1

   
   
   

x x x
p p

 ,
n n

    (4.2) 

where n is the number of new nodes between A and B (Figure 4.2.2.a) or between 

two new nodes (Figure 4.2.b), p is the index of new number on the segment (see 

Figure 4.2.a or b), Px , Ax
 

and Bx
 

are respectively the global coordinates of new 

node p and old nodes A and B or free new nodes 1 and 2. The local coordinate ξ  of 



125 

 

each new node at each edge of the coarse element is computed at the same time 

than Equation 4.2, using the following equation  

           
=

2 
-1 +

+1
ξ

p
 

n                 
(4.3) 

with 1 ξA  and 1 ξB . The computation of equations 4.2 and 4.3 are performed 

in CALCOORD subroutine. The addition of new nodes in the table of nodes is 

performed layer by layer in AJOUT_NEW_NODES subroutine (Appendix A.4). 

Figure 4.4 exhibits the schematic representation of new nodes table for 8 node 

element generated during refinement procedure.  

 

 

Figure 4.4: Schematic representation of new nodes table for eight node element during refinement. 

 

4.1.3. Generation of New Elements  

The element generation procedure from the table of nodes is performed as 

shown in Figure 4.5.  The numbers of lines, columns and layers enable to know the 

relative position of the node and the node list for each element is generated. As the 

node list is generated from the table of nodes, each list has its own information 

associated to the element which belongs. In the module GEST_NEW_ELEM the 

data object structure of derived type for each new refined element is defined 

(Appendix A.5). The subroutine CONSTRUCT_TAB_NEW_ELEM generates the 

table of the new refined elements (Appendix A.6). It assigns the local indices of 

each new element within the table of elements and gives its global number to each 

new refined element.   
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Figure 4.5: New elements list generation from nodes table for eight node elements example. 

 

The subroutine AJOUT_NEW_ELEM adds the information from the nodes 

table into each corresponding refined element in the list of new elements (Appendix 

A.7). The first finite elements stored in the list of elements are the solid-shell 

elements. As the contact element is assembled on the top layer, these are stored 

afterward, in the following positions. 

As mentioned previously the refinement criterion uses only the nodes over 

the top layer, which belongs to the contact elements. Doing so, the coarse contact 

element number becomes the future cell identity (identifier number). Based on this 

choice, any solid-shell element is identified using a pointer (memory allocation), 

which identifies its number stored in an array of the corresponding contact element. 

The sequential procedure which geometrically divides a coarse element starts with 

the coarse solid-shell partition. Subsequently, the contact element partition becomes 

the top layer of the solid-shell, as can be seen in Figure 4.6.  

 

 

 

Figure 4.6: Refined elements generation of coarse elements from new nodes table. 
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4.1.4. Transfer of State Variables and Stress Components  

The transfer of stresses and state variables from the coarse element to the 

new elements is performed using an interpolation method. The transfer data is 

performed from the integration points in the vicinity of the new integration point 

which belongs to the new element generated. The integration points at the vicinity 

can be from coarse and refined elements. The interpolation method chosen is based 

on a weighted-average formula from the work of Habraken (1989)  

N N

N N

K P

K KJ PJ
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+
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  Z     if    R R



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







    (4.4)

 

where K are the integration points where the variable KZ  is known, P is the closest 

integration point to the new integration point J, where the variable PZ  is known, 

KJR  and PJR
j

 are the distance between K and J, P and J, respectively, C is an 

user-defined constant used to amplify the influence of the closest integration point 

P, N is a interpolation exponent which must be an even number. The choice of this 

interpolation method was based on past experience, comparing it with other 

method tested using the line-test benchmark. Although, in Barnichon (1998) and 

Habraken (1989), other transfer methods have been implemented but the one 

presented above was the most robust. Figure 4.7 schematically represents the 

transfer method variables. 

 
Figure 4.7: Interpolation method scheme (Habraken, 1989). 

With :

        R =1.5dmax

        R = 0.001Dmin
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All the integration points for which KJ maxR >R  and the integration points of 

coarse elements deactivated are not taken into account in the interpolation. After a 

trial-and-error procedure, the best set of threshold values were found to be: C=5, 

N=4, maxR =1.5d , where d is the highest length of the new element, and 

minR = 0.001D, where D is the highest length of the mesh. The minR  value is 

initially calculated within INIT_ADAPT_REMESH subroutine (Appendix A.8). 

This transfer method is performed in the INTERPOL_IP subroutine (Appendix 

A.9) called within the subroutine INTERPOL_ELEM (Appendix A.10). 

A similar procedure is performed to interpolate the state variables and the 

stress components at each integration point of the deactivated coarse element. 

Those integration points also belong to the set of data and later the state variables 

and stresses are interpolated from each integration point of the remeshing elements. 

The interpolation of state variables and stress of the coarse deactivated element is 

performed to keep it updated for any possible re-activation during the simulation 

runtime. This procedure is made only at the end of the increment when the 

convergence is achieved. It is performed using the INTERPOL_ELEM subroutine 

(Appendix A.10) called within the subroutine ELEMB2, which at this stage only 

integration points belonging to deactivated coarse elements are interpolated.  

 

4.1.5. Linked List and Cell Management: Addition of a New Cell  

During the SPIF process simulation, many elements are refined and 

coarsened. As a result, many cells are created and removed. A “linked list” is a 

storage structure of data objects of derived type that are linked together by 

pointers. It consists of a sequence of objects, with each one containing arbitrary 

data fields and a reference (“link") pointing to the next object. It allows inserting 

and removing cells at any point in the list. A cell is an object which has: the coarse 

element number, the table of edge state, the table of nodes, the table of refined 

elements and the following pointer. The contact coarse element number is the cell 

identity (ID) which allows identifying each cell during the simulation runtime. The 

table of edge state contains the information of the borders of the cell which enables 

to know if each edge is: free, in common with other cell and in common with an 

unrefined coarse element. If a cell has common edge with other cell, the nodes along 

this edge are copied to avoid duplicate. This is performed in 

AJOUT_ELEM_RAFFIN subroutine (Appendix A.11). The cell structure 
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definition is performed in the LIST_ELEMENT_RAFFIN module (Appendix 

A.12). Figure 4.8 exhibits a linked list based on pointers.  

 

 
Figure 4.8: Linked list based on pointers. 

 

The head pointer always points to the first cell of the chained list which was 

the last cell added in the list. The basic concept definition of a generic chained list 

presents the following structure: 

MODULE list_module 

TYPE cell_name 

  INTEGER                                : ID 

  TYPE (cell_name), POINTER     :: next_cell =>NULL() 

END TYPE cell_name 

TYPE(cell_name), POINTER :: head_pointer =>NULL() 

END MODULE 

The head pointer is initially undefined and a special syntax, =>NULL(), is 

used to initialise it as a dissociated target. It is useful also when the end of the list 

is reached. It must be guaranteed that the head pointer does not point on a random 

part in the memory. The head pointer is declared outside of the list structure 

definition. 

The head pointer points to an object inside the list, such as the ID variable: 

head_pointer%ID 

or it can point to the next cell: 

head_pointer%next_cell 

The dynamic access to a cell requires an additional new pointer. Technically 

it does the same as the head pointer but the additional pointer is used to 

dynamically change its target during the runtime. The declaration is local and its 

definition is analogous: 
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PROGRAM list 

USE list_module 

TYPE(cell_name), POINTER :: additional_pointer=>NULL() 

!or NULLIFY(additional_pointer) 

END PROGRAM 

To start a linked list the additional pointer is referred to head pointer: 

additional_pointer => head_pointer 

Now the additional pointer can access data of the head pointer, such as the cell ID: 

additional_pointer%ID 

To access the next cell, the additional pointer is pointed on the head pointer: 

  additional_pointer => additional_pointer%next_cell 

From now the additional pointer can access the data in the following cell 

pointing to the next cell until reach the end of the list. If the additional pointer is 

not nullified, the pointer should be deallocated to avoid a random position in the 

memory.      

The steps to add a cell in the linked list are: a new cell is generated, the 

following pointer of the new cell points to the head cell and the head pointer goes 

to the new cell. Figure 4.9 represents the addition of a new cell into a linked list. 

 

 
Figure 4.9: Addition of a new cell in the linked list. 
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The AJOUT_ELEM subroutine is responsible to add the new cell 

containing refined elements in the chained cell list (Appendix A.13). 

 

4.1.6. Derefinement Indicator  

When the tool is far from a refined element and the cell does not respect the 

neighbourhood criterion, Equation 4.1, the refined elements are removed and the 

coarse element is reactivated. However, the shape prediction may be less accurate if 

the new elements are simply removed. Consequently, an additional criterion is used 

to avoid losing accuracy. This condition is based on the distance, d, between the 

current position of each new node, 
C

X , and a virtual position, 
V

X , as illustrated in 

Figure 4.10.  

 
Figure 4.10: Distortion criterion, lateral view.  

 

The virtual position is the coordinates of the new node when it has the same 

relative position in the plane described by the coarse element. This position is 

computed by interpolation between the four nodes positions in the element plane, 

iX , of the coarse element (see Figure 4.10)  

  

= ( )  V H ,i i
i

X X
1,4=

ξ,η

     

(4.5) 

where H
i

 is the interpolation function,   and   are the initial relative positions of 

each new node within the cell, determined by  

( -1) ( -1)
= 2× and = 2×

( +1) -1 ( +1) -1

l c
          

n n
 

   
(4.6) 

where l and c are the new node position within the cell in line and in column, 

respectively. The criterion for reactivating a coarse element or unrefinement is 

given by (Lequesne et al., 2008) 

          ,max C Vwith - X Xd d d = 
    

(4.7) 

where maxd  is the maximum distance value chosen by the user. If the criterion is 

not respected for a single node ( max>d d ), it means that the mesh distortion is 
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significant and the refinement remains on the location of the coarse element. Then, 

the coarse element is not reactivated and remains the cell with refined elements. 

The element nodes used as reference to verify the distortion criterion are the new 

nodes of the refined contact element over the top layer of the mesh. As some nodes 

are removed, to avoid gaps in the mesh numbering, all nodes inside the cells are 

renumbered from the removed nodes. This is performed at the subroutine named 

RENUM_CELL_NOD (Appendix A.14). 

 

4.1.7. Removing a Cell   

Assuming that a cell of elements is deleted from the chained linked list and 

the coarse finite element is activated, the common edges with the removed cell are 

marked. The nodes not common are stored in a linked list of nodes to be removed. 

The steps to remove a cell are: firstly, the pointer which indicates the target cell 

(head pointer or a previous cell pointer) is searched. Secondly, the pointer which 

refers to the target cell also points to the following cell and finally, the target cell is 

removed by deallocation of the memory. This is performed in 

RETRAIT_ELEM_RAFFIN subroutine (Appendix A.15) and the subroutine 

RETRAIT_ELEM is responsible for the cell deallocation procedure (Appendix 

A.16). Figure 4.11 illustrates the removal procedure of an arbitrary cell from a 

chained linked list.    
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Figure 4.11: Removing a cell from the chained linked list. 
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4.1.8. Constrained Nodes: Master-Slave Method  

During the simulation, selected cells of refined elements are removed (step 1 

of Figure 4.12) in case of mesh unrefinement. This remeshing method creates 

selected nodes that are incompatible with the coarse (non-refined) finite element 

with common edges. As the current approach does not take into account any 

transition zone between coarse and fine elements, there are four types of nodes: old 

nodes, master nodes, free new nodes and constrained new nodes. The nodes which 

belong to a cell edge in common with a removed cell or with an unrefined coarse 

element become constrained nodes (step 2 of Figure 4.12), also called as slaves 

nodes. The constrained nodes are used to allow the structural compatibility of the 

mesh. The degrees of freedom and positions of the slave nodes on a “cell” edge 

depend on the two old master-nodes, which are extremities of this edge. The new 

slave-nodes can have a different position from the initial relative position between 

the two old nodes (masters) because they were free before. Doing so, new relative 

positions are computed based on the intersection of the segment between the two 

master nodes, 1) and 2) (see Figure 4.12). Figure 4.12 schematically represents the 

slave node generation during unrefinement occurrence. 

 

         

Old node Old node master of a new node Constrained new node Free new nodeOld node Old node master of a new node Constrained new node Free new node
 

Figure 4.12: Constrained new nodes generation during the mesh unrefinement. 

 

The constrained nodes must remain at the same relative positions between 

the two master nodes and the elements A, B and C have a new shape (step 2 of 

Figure 4.12). Consequently, the global list of degrees of freedom (DOF) is modified. 

The DOF of the slave nodes are replaced with the master DOF which belongs to a 

common edge. If the master nodes have fixed DOF and the new node belongs to a 

Step 1 Step 2 



134 

 

common edge, its DOF becomes fixed. There are two types of DOF q, either 

unconstrained, fq
 

(free),
 

 or constrained, sq  (slave) 

f

s
=

q
q

q

 
 
 

.

     

(4.8) 

The constrained DOF which belong to the slave nodes are computed in function of 

unconstrained DOF  

f withs = =0.5×(1± )q qN       N x  ,
   

(4.9) 

where N is an interpolation function. Based on master-slave method used (Driessen, 

2000), Equation 4.8 can be rewritten without sq  

  f with=  = ,
I

q Aq A
N

 
 
 

       
   

(4.10)

 

where I is an identity matrix applied to unconstrained nodes and N matrix contains 

the interpolation function, N, applied to each constrained DOF of the slave nodes. 

The virtual power principle combining slave and free DOF is 

T T= ,q Kq q f   
    

(4.11)
 

where K is the stiffness matrix and f  is the equilibrium forces array, q
 
is a virtual 

DOF. As the free virtual degrees of freedom follow the same relationship as 

Equation 4.10, Equation 4.11 becomes 

T T T

f f f= ,q A KAq q f 
   

(4.12) 

The variable number of DOF induces a modification in the force equilibrium 

and in the stiffness matrix 

          
T

T T
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f f f f f
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=
= with  .

=





 
f A f

q K q q f
K A K A 

  

(4.13)

 

where ff  is the forces equilibrium array and fK
  

is the stiffness matrix of the 

unconstrained DOF. This computation is performed in ADD_F_AK_MASTERS 

subroutine (Appendix A.17) called within the element loop (subroutine ELEMB) to 

compute stress, nodal forces and stiffness matrix. 
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4.1.9. Boundary Conditions  

A constrained node is an object stored into a nodes master list defined into 

the module named GEST_SLAVE (Appendix A.18). The table of constrained 

nodes is constructed in NEWCONEC subroutine (Appendix A.19). All new nodes 

which belong to the edges in common with a non-refined (coarse) element become 

slave being its master list and relative position saved in the data object of each 

refined cell.  

In the subroutine named NEWELEM (Appendix A.20), the list of DOF is 

modified, in which the slave degrees of freedom are replaced by the master DOF. 

The matrix A (see Equation 4.10) is computed in this subroutine according to the 

master list and the relative position of the master nodes. The imposition of the 

constrained DOF is performed in the subroutine IMPSLAV (Appendix A.21). It is 

called after the imposition of the displacement at the step beginning and updated 

at each iteration after the resolution of the equation system, before the next 

iteration until achieve the convergence of the step. 

Just the main subroutines were mentioned in the sections description above. 

All subroutines directly involved in the adaptive remeshing procedure combining 

RESS coupled with contact element CFI3D within LAGAMINE in-house code are 

schematically presented in Appendix A. It includes the link between subroutines 

and a small description for each subroutine.   

 

4.1.10. Storage Array Update of LAGAMINE 

At each equilibrium state (end of the increment when convergence of forces 

and displacements are reached), the linked list input variables is updated. It is 

performed in the subroutine called UPDATE_ELEMENT_RAFFIN (Appendix 

A.22). The principal advantage of a linked list compared to a conventional array is 

that the order of the linked items can be different from the order used to store the 

information in the memory. This property allows reading in a different order the 

list of cells.  

The arrays which depend on the number of nodes identification, elements 

and DOF are modified or updated due to the adaptive remeshing procedure during 

the simulation runtime. This procedure is performed through the module called 

GEST_DYNAMICS_STORAGE_STRUCTURES which enables the dynamic 
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allocation update of variables within the code in runtime. If there are some 

modifications, addition or removing, of a cell in the chained linked list, the arrays 

of LAGAMINE code are reallocated and modified according to the linked list. One 

of the main storage arrays of LAGAMINE code is called SIGVA. It stores all the 

state variables and stress components of each element of the mesh during the 

simulation runtime. 
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Figure 4.13: Storage array (SIGVA) update of LAGAMINE code. 

 

 The storage sequence within SIGVA array is exhibited in Figure 4.13. 

Firstly the solid-shell coarse elements data are stored (stresses, state variables, 

coordinates) then the contact coarse elements data from the initial mesh follow. 

Subsequently, the refined elements of each cell are stored. The transfer from each 

cell of refined elements to the SIGVA array starts with the last cell added in the 

chained linked list. Similarly, the sequence of stored elements begins with the 

refined solid-shell elements and then the refined contact elements. This storage 

sequence of elements is repeated for each cell of the chained linked list until they 

became not associated.           

The reallocation involves resizing the initial storage arrays. The subroutines 

employed are: 

− REDIM_STRUCTURE_NUMNP for arrays which depend on number of 

nodes;   
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− REDIM_STRUCTURES_NELEM for arrays which depend on number of 

elements. It updates the structure dimension and computes the new number 

of state variables to update SIGVA array dimension for the new finite 

element addition from remeshing procedure; 

− REDIM_STRUCTURES_NEQUA for arrays which depend on number of 

degrees of freedom. 

The transfers from the cells linked list to the LAGAMINE array are 

performed by the subroutines:  

− NEWCONEC for arrays which depend on number of nodes;  

− NEWELEM for arrays which depend on number of elements;  

− NEW_STRUCTURE_NEQUA for arrays which depends on number of 

degrees of freedom. 

   

4.1.11. Mesh Renumbering  

The new nodes addition can significantly increase the global stiffness matrix 

size. Consequently, number of DOF computation can strongly increase. The node 

renumbering can tackle this problem. The renumbering is performed in RENUMB 

module. Two renumbering methods are available: seed method and directional 

method. The method chosen for remeshing elements was the directional method.  

 

4.1.11.1. Seed Method or oil spot 

The identification of the connection table between nodes is performed by 

CONECT_NODE subroutine. The first node is chosen to be the first node of the 

renumbering. The connected nodes are the next ones in the renumbering. Then the 

nodes connected to these nodes are added. The effect on the bandwidth depends on 

the choice of the first node. It is more efficient to choose the node where the mesh 

is refined. Usually, the closest node to the tool is chosen as the first node.  

 

4.1.11.2. Directional Method 

Nodes are ranked according to the direction in which the mesh has the 

greatest number of nodes. If some nodes have the same position in this direction, 

they are ranked according to the second direction in which the mesh has the 

greatest number of nodes. The ranks of the directions are an input chosen by the 

user from the adaptive remeshing input file (*.ari). 
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4.2. Working Procedure in LAGAMINE Code   

In general, the adaptive remeshing parameters controlled by the user are: α 

coefficient, number of nodes division per edge (n) and dmax  value. Their influences 

in the numerical simulation results are analysed in Section 4.3. Figure 4.14 shows 

the schematic flow chart of adaptive remeshing procedure inside LAGAMINE code. 

 

 
Figure 4.14: Flow chart of adaptive remeshing procedure in LAGAMINE in-house code. 
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Notice that at the first step all coarse elements are activated. The mesh is 

updated at the end of a converged step (which means beginning of next step), 

performing all the methodology previously described in Section 4.1. Afterward, 

iteratively the new mesh equilibrium is assessed until achieve the step convergence.  

 

4.3. Line Test Benchmark: Numerical Simulation 

In this section, a simple test is used to assess the adaptive remeshing 

parameters combined with RESS formulation described in the previous sections. 

The test is based on the work of Bouffioux et al. (2008a). It consists of a line 

test using a SPIF machine where a square metallic sheet, with an initial thickness 

of 1.2 mm and clamped along its edges, is plastically deformed. The spherical tool 

radius is 5 mm. The friction coefficient between the tool and the sheet is assumed 

to be equal to 0.05, and penalty coefficients, PK , K , are 1000. The different stages 

of the experimental test are schematically illustrated in Figure 4.15. 

 

 
Figure 4.15: Schematic description of the experimental setup (Bouffioux et al., 2008a). 

 

The complete tool path is composed by five steps with an initial tool 

position tangent to the sheet surface: starting with an indentation of 5 mm (step 1), 

a linear motion at the same (constant) depth along the X axis occurs (step 2). After 

that, a second indentation takes place, down to the depth of 10 mm, relatively to 

the initial position (step 3). Then, a new linear motion (now backwards along the X 

axis) is imposed, again at a constant depth (step 4), and finally an unloading stage 

(step 5, not shown in the picture) occurs and brings the tool to its initial position. 

The material chosen for the sheet is an AA3003-O. The material behaviour 

is elastically described by E = 72600 MPa and ν = 0.36. The hardening parameters 
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for the plastic range are described by Swift’s law. The material parameters set and 

the constitutive law used in the present work were selected as optimal ones from 

the work of Henrard et al. (2010), for 3D solid finite elements (see Table 4.1). 

 

Table 4.1: Constitutive parameters for an AA3003-O (Henrard et al., 2010).  

Hardening type Hill parameters Swift parameters 

Isotropic 

hardening 

F=1.224; G=1.193; H=0.8067; 

N=L=M=4.06 

K=183; n=0.229; 

ε0=0.00057 

 

The relevance of this test resides in the fact that it generates a stress history 

and a strain path similar as the ones present in incremental forming. However, a 

step down of 5 mm is strongly higher than in typically incrementally formed 

components. 

The purpose of the next section is to search the optimal adaptive remeshing 

parameter values, in order to use them in future SPIF numerical simulations with 

the proposed adaptive remeshing technique.  

 

4.3.1. Sensitivity Analysis of Remeshing Parameters   

The present section provides the analysis of adaptive remeshing parameters 

which allow the best approximation of the experimental measurements. The main 

numerical outputs presented in this section are related with the final shape of the 

sheet, the cross-section along the symmetry axis and the evolution of the tool force. 

The forming forces (reaction force on the spherical tool) and the deformed shape 

come from the experimental analysis of Bouffioux et al. (2008a). These results will 

be considered as the reference data in the following sections, to be compared 

against the numerical results of FE simulations 

To assess the influence of the number of integration points along the 

thickness direction, numerical simulations were carried out with RESS finite 

element, as similarly presented in the work of Sena et al. (2011). The obtained 

results showed no variation concerning the different number of integration points 

adopted (for a range from 3 to 10 points). This is possibly due to the deformation 

mechanism present, dominated by membrane components even if bending is 

present. The number of integration points through the thickness chosen for the 

current work is 5 Gauss points (GP). 
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Figure 4.16 illustrates two distinct mesh refinements and only half of the 

sheet model is considered applying symmetry boundary conditions. The initial 

refined mesh is composed by 806 solid-shell elements disposed in one layer in the 

thickness direction. The coarse mesh used with adaptive remeshing method is 

composed by 72 elements on the sheet plane with one layer of solid-shell elements 

in the thickness direction. The nodes at the top layer of both meshes define the 

contact element layer at the surface. The contact modelling is based on a penalty 

approach at each integration point and on a Coulomb’s law (Habraken and 

Cescotto, 1998). Finally, the initially refined (reference mesh) and the coarse 

meshes have two layers of elements (the solid-shell and the contact elements) in the 

thickness direction, i.e., the total number of elements is 1612 and 144 elements, 

respectively.     

 

(1)  (2)  

Figure 4.16: Reference mesh (1) and coarse mesh (2) used with adaptive remeshing. 

 

The following results are based on the computation of the errors between the 

experimental measurements and the numerical predictions. The influences of 

adaptive remeshing parameters are evaluated for the final shape, the CPU time and 

the reaction force of the tool. The force error is determined during the tool loading 

stages of the forming, as shown in Figure 4.15.  

Numerous simulations were performed to verify the parameter influence in 

the numerical results. Different values for each parameter were tested such as 

derefinement distance (dmax ) as well the vicinity size (α): dmax  values were 0.005 

mm, 0.05 mm, 0.1 mm and 0.2 mm and α coefficient values were 0.1, 0.6, 0.8 1.0 

and 1.6. The value of n (number of nodes inserted in one edge) adopted was 3, from 

preliminary tests using the line-test benchmark compared with reference mesh.  

The final choices are based on the parameter values which allow less 

accuracy error for each combination of adaptive remeshing parameters. The relative 

error average is computed using the following expression:  

      2

2
i=1

(Num. - Exp.)Error(%) = 100
Exp.

N

N

                  

    (4.14) 
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where Num. is the numerical value of a chosen variable, Exp. is the corresponding 

experimental value and N is the number of comparison points in X axis (Figure 

4.15). The difference between the numerical value and the experimental one is 

computed for the common abscise values, X axis presented in Figure 4.15. The 

numerical values in the X axis were linearly interpolated to match the 

corresponding X values of experimental measurements.   

The following graphs exhibit the sensitivity of the results for different 

combination values between α coefficient and dmax  parameter using the line test 

benchmark.   
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Figure 4.17: CPU time and error sensitivity of forces and shape prediction for dmax  equal to 0.2 mm. 

 

Increasing the value of α coefficient with dmax  equal to 0.2 mm (Figure 

4.17), the error of force prediction tends to decrease with more significance than the 

shape error. In terms of CPU performance, generally the time increases but there is 

an exception when the α coefficient is equal to 0.8. Increasing the value of the α 

parameter, the number of generated new elements increases during the remeshing 

procedure, and consequently, the CPU time increases. However, the adaptive 

remeshing parameters affect also the convergence performance during the 

simulation. This is due to the fact that the number of iterations performed 

decreases when the mesh is refined and it directly reduces the simulation time. For 

instance, α equal to 0.8, which allows more accurate force or shape prediction, has 

similar CPU time compared with α equal to 0.1, which allows the generation of a 

smaller number of elements during the adaptive remeshing method. 
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Figure 4.18: CPU time and error sensitivity of forces and shape prediction for dmax  equal to 0.1 mm. 

 

When dmax  parameter is equal to 0.1 mm (Figure 4.18), the force error 

decreases when the value of α coefficient increases until α value equal to 1 which 

enables the lowest error. The error concerning the shape prediction decreases with α 

parameter higher than 1.0. In terms of CPU time, generally the time increases for 

increased α values. In Figure 4.18, the combination of α value equal to 0.8 and dmax  

equal to 0.1 mm, the CPU time has an opposite behaviour in comparison with 

previous results of dmax  equal to 0.2 presented in Figure 4.17. However, the error of 

the numerical results are being influenced by experimental data, in terms of the 

opposite behaviour of shape prediction in comparison with force prediction. 
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Figure 4.19: CPU time and error sensitivity of forces and shape prediction for dmax  equal to 0.05 mm. 
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When dmax  is equal to 0.05 mm (Figure 4.19), the values of the α parameter 

which gives the lowest error, in terms of force prediction, are between 0.6 and 1.0. 

The error determination for the shape prediction decreases for α value higher than 

1. The CPU time has the tendency to increase with the α coefficient. However, at 

the intermediate values of the α parameter (0.8 and 1.0), the CPU time is lower 

than with α value equal to 0.6, showing again an effect of convergence efficiency 

related to specific values of remeshing parameters.   
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Figure 4.20: CPU time and error sensitivity of forces and shape prediction for dmax  equal to 0.005 mm. 

 

Figure 4.20 demonstrates similar results as the previous ones using dmax  

equal to 0.005 mm, which nearly prevents any derefinement. These simulations 

should be the most accurate for shape, however they demonstrate that the shape 

error value stabilizes for all values of dmax  

lower than 0.2 mm, as similar shape 

errors were reached. The CPU time seems to be quite stable (dmax = 0.05 mm) or to 

decrease (dmax =0.1 mm; 0.005 mm) when α value is higher than 1.0 combined with 

dmax  values lower than 0.2 mm. The common aspect in all results is that the 

average error for total force prediction is lower than the average error of axial force. 

The load in axial direction (Z axis) can be influenced by high accuracy of tangential 

forces, in X and Y directions (Figure 4.15), and its values remain stabilized for the 

same values of α parameter. 

The following figures exhibit the adaptive remeshing parameters sensitivity 

on the CPU time, the error on the force and shape predictions in a different 

perception manner. The error is exhibited in the following figures in function of 

dmax  values for different α coefficients. 
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Figure 4.21: CPU time and error sensitivity of forces and shape prediction for α coefficient equal to 0.1. 

 

The combination of α coefficient equal to 0.1 with different dmax  values 

(Figure 4.21) induces higher error than the previous values chosen in the prediction 

of axial force and total force. In contrast, CPU time needed to perform the 

simulation decreased. With low value of α coefficient, the mesh area of refinement 

is small. Consequently, the number of coarse elements included in the refinement is 

minimal, as the total number of elements. 

Analysing Figure 4.22, Figure 4.23 and Figure 4.24 for α values ranging from 

0.6 to 1.0, it is verified that the error prediction of shape, axial force and total force 

are analogous with negligible difference between each parameters set. The only 

differentiation is the CPU time spent to perform each simulation.  
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Figure 4.22: CPU time and error sensitivity of forces and shape prediction for α coefficient equal to 0.6. 

 Shape 
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Figure 4.23: CPU time and error sensitivity of forces and shape prediction for α coefficient equal to 0.8. 
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   Figure 4.24: CPU time and error sensitivity of forces and shape prediction for α coefficient equal to 1.0. 

 

Figure 4.25 presents distinct values of error prediction for shape, axial force 

and total force in comparison with the combination sets exhibited above, Figure 

4.21 to Figure 4.24. The error of shape prediction is lower than with the previous 

parameters combination. The adaptive remeshing parameters which present the 

lowest shape prediction error is α coefficient equal to 1.6 combined with dmax  

value 

lower or equal to 0.1mm. Using α coefficient equal to 1.6 combined with dmax  value 

equal to 0.2mm, the shape error is comparable as the previous results. However, the 

axial force prediction and total force prediction show higher error in relation to 

numerical results obtained previously.   
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Figure 4.25: CPU time and error sensitivity of forces and shape prediction for α coefficient equal to 1.6. 

           

In general, the choice of adaptive remeshing parameters values for α 

coefficient has more effect on the force prediction than the dmax  parameter. 

Analysing the shape prediction error of all figures in function of dmax  parameter, it 

is verified that this result is more sensitive to dmax  than to α coefficient. The 

simulation performance is affected by the adaptive remeshing parameters using 

different combination values for dmax  and α parameters. A combination of a high α 

coefficient with small value of dmax  

parameter allows a huge number of new 

remeshing elements at the end of the simulation. However, in the particular case of 

line-test benchmark it does not mean that the simulation is slower due to the better 

convergence and the decrease of number of iterations per step (increment) in the 

FE analysis. 

Figure 4.26 illustrates the number of elements and nodes evolution during 

the adaptive remeshing procedure.  The adaptive remeshing parameters chosen 

were: α coefficient is equal to 1.6, dmax  parameters equal to 0.2mm and n equal to 3 

nodes per edge.  
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Figure 4.26: Evolution of number of elements and nodes during the adaptive remeshing procedure. 

 

The minimum number of elements and nodes are 144 elements and 189 

nodes, respectively (only at the beginning of the simulation). The number of 

elements and nodes varies during the tool motion. When the step 4 (see Figure 

4.15), between time steps 1.0 and 1.6, the number of elements increase due to the 

higher level of mesh distortion (dmax ). Figure 4.27 presents the final number of 

elements for each combination of α with dmax  

parameters for a constant number of 

nodes divisions per edge (n) equal to 3.   
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Figure 4.27: Final number of elements for different pair combination of remeshing parameters. 
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As mentioned, dmax  equal to 0.05 mm or equal to 0.005 mm presents similar 

results even for the final number of elements. Exceptionally with α equal to 0.8 the 

final number of elements is different for both values chosen for dmax  parameter. 

However, Figure 4.27 demonstrates that the dmax  parameter has an influence on 

the final number of elements. 

Table 4.2 shows the performance for different adaptive remeshing 

parameters selected from the previous results and reference mesh (initial mesh 

refinement without remeshing).  

 

Table 4.2: Average error of shape and force prediction. 

Adaptive remeshing 
Total force 

error (%) 

Axial force error 

(%) 

Shape 

error (%) 

CPU time 

(s) 

α = 1.0 ; dmax =0.05mm 3.192 6.899 14.218 658.176 

α = 1.0 ; dmax =0.1mm 3.406 7.232 14.672 801.513 

Reference mesh 5.347 3.078 13.557 2300.819 

 

A relative good correlation was obtained between the simulation results and 

the experimental measurement using either refined mesh or coarse mesh with 

remeshing. The comparisons between the numerical results obtained with adaptive 

remeshing method and with the reference mesh are similar. However, the remeshing 

procedure presents better accuracy for the total force achieved. The initial 

refinement mesh has better accuracy (less error) in the axial force and shape 

predictions. Even for such small SPIF simulation, the computation time is 

reasonably large using an initial refined mesh. These preliminary results evidence 

the advantage of adaptive remeshing technique, taking into account the 

combination of different parameters values. 

 

4.3.2. Remarks    

The main interest of the previous section was the assessment of an adequate 

set of adaptive remeshing parameters in order to support future SPIF simulations.  

Analysing the results sets provided by the sensitivity analysis, some 

intermediate values were chosen. In terms of force prediction, α parameter exposes 

better accuracy using the intermediate values [0.6, 0.8 and 1.0] for each 

combination with dmax  parameter. However, the intermediate values attributed to 
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α parameter show less accuracy in terms of shape prediction. The shape prediction 

has better accuracy when the value of α coefficient is 1.6 and dmax  parameter is 

smaller than 1.0 mm. Globally, the error of shape prediction presents a smaller 

difference between each combination of parameters than the error obtained for the 

force prediction. In this sense, the final choice should be an intermediate value for α 

coefficient. The values of adaptive remeshing parameters selected are: α coefficient 

equal to 1.0 and for dmax  parameter two different values were selected, which are 

0.05 mm and 0.1 mm. These two values will be analysed in the following section in 

the forming of a conical geometry. The number of nodes division per element edges 

(n) will also be analysed in details in the next Chapter. 
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Chapter 5 

Numerical tests  

In this chapter, the performance of RESS finite element described in Chapter 3 

combined with the adaptive remeshing technique proposed in Chapter 4 is 

validated using well known benchmark problems. The reduction of computational 

time is a vital request to perform numerical simulations of SPIF.   

The numerical examples chosen and presented in the following sections, are the 

usual shapes selected to study the SPIF process: cones and pyramids. All the 

simulations are performed using the Finite Element in-house code LAGAMINE. 

The adaptive remeshing parameters influence are assessed and the numerical results 

are compared with the experimental measurements.  

 

5.1 Simulation of incrementally formed conical shape  

This section updates the results of Sena et al. (2013). The numerical 

simulation of SPIF addressed in the current section consists into a conical 

aluminium part from the NUMISHEET 2014 benchmark proposal. It has a 45º wall 

angle with a depth of 45 mm (Figure 5.1). The sheet material is an AA7075-O with 

an initial thickness of 1.6 mm. The backing plate maximum and minimum 

diameters are 148 mm and 140 mm, respectively. The tool tip diameter is 12.66 mm 

and the toolpath is based on successive circles with a vertical step size of 0.5 mm 

per contour, consisting in 90 vertical steps. The initial gap between the tool and 

sheet is 0.5 mm. The numerical toolpath is based on the experimental toolpath 

available in the conference proceedings (Yoon et al., 2013). The dimensions of ideal 

shape and backing plate geometry are schematically shown in Figure 5.1. 
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Figure 5.1: Forming of a conical shape: geometric dimensions. 

 

The elastic material behaviour is described by the Hooke’s law (E = 72000 

MPa and ν = 0.33). The adopted hardening type is isotropic and its parameters for 

the plastic domain are described by Swift and Voce laws. According to the 

benchmark proposal data, isotropic yield behaviour (von Mises) was assumed. The 

chosen material parameters are listed in Table 5.1, from the benchmark proposal. 

  

Table 5.1: Material parameters of AA7075-O. 

Test type 
Test 

direction 

Hardening 

type 
Parameters 

Biaxial tension - Swift law K=335.1MPa; n=0.157; 0 =0.004 

Uniaxial tension  0º  Voce law K=129,17MPa; n=30.55; 0 =97.4MPa 

Uniaxial tension  0º  Swift law K=386.93MPa; n=0.229; 0 =0.004 

 

In order to reduce the computation time, a 45º pie model of the sheet is modelled 

and displacement boundary conditions are imposed by displacements on the edges 

(Bouffioux et al., 2007, Henrard et al., 2010; Bouffioux et al., 2010). For isotropic 

material, the pie mesh with 45º can predict as accurately as the full 360º mesh the 

experimental results in terms of shape, thickness and force (Henrard, 2008). The 

numerical shape prediction is extracted from the cross-section along the middle line 

(see Figure 5.2 and Figure 5.3) of the 45º pie model used within the FE model to 

avoid inaccuracy due to boundary conditions and taking the radius as the 

horizontal axis. No distinction was made between X and Y, since the numerical 

results are considered equal in all directions. Two meshes with 74 mm of radius 

were tested: an initially refined mesh (reference mesh) with 5828 elements (solid-

shell, contact and boundary condition elements (BINDS)) without the remeshing 
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method, Figure 5.2, and a coarse mesh initially with 347 elements combined with 

the adaptive remeshing technique, Figure 5.3. 

 

 
Figure 5.2: Reference mesh with 5828 finite elements used to perform a 45º wall angle cone simulation. 

 

The values used for each remeshing parameter were chosen based on the line test 

benchmark from the Section 4.3. However, the parameter dmax  is tested with two 

different values (0.05 mm and 0.1 mm). The number of nodes per edge is also 

additionally tested for different values (from 1 to 4 nodes). The results generated 

by these adaptive remeshing parameters are analysed for different values in order to 

verify their influence, to find the compromise between the CPU time and numerical 

accuracy, while the value of the α coefficient is fixed and equal to 1.0. Figure 5.3 

presents the coarse mesh used with different numbers of nodes per edge (n), from 1 

to 4 nodes. 

 

 
Figure 5.3: Coarse mesh of 347 finite elements used with adaptive remeshing to perform a 45º wall angle 

cone simulation. 

 

Tool direction 

Tool direction 
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The displacement boundary condition, by using BINDS element, was 

imposed in order to minimize the effect of missing material at both edges of the pie 

model. This type of Boundary Condition (BC) is a link between the displacements 

of both edges. The main purpose to use the displacement BC is due to the tool 

motion which always moves in the same direction. The material in the tool vicinity 

is forced to move inducing the twist effect of the shape around its rotational 

symmetric axis. The tendency to twist can be simulated using the BINDS element 

applied at the edges of the pie model. The twist effect cannot be predicted using 

symmetric BC. The contact model interface between the rigid tool model and the 

sheet metal discretization is taken into account by a contact element named CFI3D 

based on penalty method. Its penalty coefficients, PK  and K , were set to 1000. 

This value was chosen due to the good compromise between accuracy and 

convergence for implicit simulations based on the work of Henrard (2008). Finally, 

Coulomb’s friction coefficient,  , between the tool and sheet is set to 0.01, value 

suggested in the benchmark proposal. Both meshes concern one layer of RESS finite 

element in sheet thickness direction with 5 Gauss Points (GP) through the 

thickness and CFI3D contact element with 4 GP on plane.     

Table 5.2 shows the results obtained with RESS finite element, concerning 

the final number of elements at the end of the numerical simulation for different 

levels of refinement combined with different values of dmax  parameter.  

 

Table 5.2: Final number of elements for different levels of refinement. 

Nº of nodes per 

edge (n) 

Initial nº of 

elements 

Final nº of elements for 

dmax =0.05 mm 

Final nº of elements 

for dmax =0.1 mm 

1 347 1004 884 

2 347 1698 1176 

3 347 3068 1852 

4 347 4548 2998 

Reference 5828 5828 5828 

 

The main numerical outputs presented in the following sections are the final 

shape, final thickness, minor and major strains, and the evolution of the tool force 

in the tool axial direction predicted during the simulation.      
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5.1.1. Shape and thickness prediction 

Figure 5.4 presents the comparison between the numerical results obtained 

using the adaptive remeshing method for different refinement levels and the 

reference mesh. The exhibited numerical results are the thickness prediction and 

final shape of bottom layer, and top layer. The results of adaptive remeshing 

procedure chosen to exhibit below were achieved using dmax  equal to 0.05 mm. 
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Figure 5.4: Final shape and thickness prediction using adaptive remeshing with α coefficient equal to 1.0 

and dmax  
equal to 0.05 mm. 

 

Globally, shape predictions with different refinement levels have similar 

results when compared with the reference mesh. The thickness prediction has 

analogous results compared to the reference thickness. However, the thickness 

prediction using one node per edge presents lower values in the wall region than the 

other refinement levels.  

Figure 5.5 presents the absolute error of shape prediction for different levels 

of refinement (n) and reference mesh. The average shape error is presented as the 

absolute value computed using the following equation  
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Error
=1

Shape [mm]= Abs. . - .
N

i

Num Exp N
      
    (5.1) 

where Num. is the numerical value, Exp. is the experimental value and N is the 

number of points in the radius direction. The difference between the numerical 

values along the cross section and the experimental ones (value of X and Y 

measurements) is computed for the common values in radius direction. The 

numerical values along middle cross section in the radius axis were linearly 

interpolated for the corresponding radius values of experimental measurements. 

The results accuracy using two different dmax  values from the adaptive 

remeshing procedure are compared with experimental data in Rolling Direction 

(RD) and Transverse Direction (TD). The reference mesh is represented in the 

following figure with the parameter n as equal to zero (n=0). 

 

 
Figure 5.5: Shape prediction error and CPU time for different levels of remeshing refinement and 

reference mesh (corresponding to n=0). 

 

The shape error was computed for different refinement levels combined with 

two different values of dmax  

parameter. In general, the average shape error is less 

than 1 mm for all numerical results obtained with different refinement levels, as 

well as with the reference mesh. The shape prediction with highest level of 

refinement does not mean that it will provide the best shape accuracy, as observed 

in Figure 5.5. It shows the influence of dmax  value in the accuracy of adaptive 

remeshing results for n values equal to 1 and 3 nodes division per edge. 
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However, the cases of n values equal to 2 and 4 nodes combined with dmax  

equal to 0.1 mm or dmax  equal to 0.05 mm provide similar results in terms of shape 

accuracy. Their average errors in transverse direction (TD) and in rolling direction 

(RD) can be considered similar for an equivalent dmax  value. 

The CPU time increases from n equal to 1 node until n equal to 4 nodes, as 

expected, and its CPU time is lower than using the reference mesh. The CPU time 

differences between both values of maxd  parameter present a small difference for all 

refinement levels. A small value of d
max

 keep the remeshed elements, which can 

influence the CPU time as well as the shape accuracy. 

The following sections present the numerical results of adaptive remeshing 

with “2 nodes” division per edge combined with dmax  equal to 0.05 mm and α 

coefficient is equal to 1.0. The adaptive remeshing parameters were chosen based on 

the number of nodes per edge (n) which allows an acceptable average error in both 

directions with a good reduction of CPU time. The comparison with experimental 

measurements and reference mesh is made.  

Figure 5.6 and Figure 5.7 exhibit shape and thickness predictions using 

adaptive remeshing method, regarding 2 nodes division per edge combined with 

dmax  equal to 0.05 mm. The comparison was performed for different experimental 

measurement directions, rolling direction (RD) and transverse direction (TD).   
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Figure 5.6: Shape and thickness predictions in the rolling direction (RD) with adaptive remeshing 

refinement (n=2). 
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Figure 5.7: Shape and thickness predictions in the transverse direction (TD) with adaptive remeshing 

refinement (n=2). 

 

Figure 5.6 and Figure 5.7 exhibit a suitable accuracy on the numerical shape 

prediction in comparison with the experimental measurements. The symmetry 

assumption of the numerical results in both directions is validated. The differences 

between the measurements in the transverse direction (TD) and rolling direction 

(RD) are negligible for this material and this symmetric conical shape. 

An analogous analysis was performed for the thickness prediction. The 

numerical thickness prediction has an acceptable accuracy compared with the 

experimental results in both measured directions. However, the final thickness 

experimentally measured is higher than the initial thickness in the central area of 

the sheet and in the area near the clamped zone of the backing plate. This effect is 

not predicted in the numerical model, which can be due to the blank sliding effect 

not considered: the clamped boundary condition is applied in the mesh limits (see 

figures 5.2 and 5.3). The main comparison is the final thickness value along the 

final wall angle shape, where the higher deformations occur and in that sense the 

numerical results obtained have reasonable accuracy.        
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5.1.2. Major and minor strains prediction  

The current section presents the minor and major strains in rolling and 

transverse directions. The obtained numerical results are considered equal for both 

directions due to von Mises isotropic yield locus. The comparison of numerical 

results are performed between the reference mesh and adaptive remeshing 

procedure using 2 nodes per edge (n=2) in relation to the experimental 

measurements. Figure 5.8 and Figure 5.9 exhibit the results comparison in rolling 

and transverse directions.  
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Figure 5.8: Minor plastic strain prediction. 
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Figure 5.9: Major plastic strain prediction. 
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The numerical prediction of minor plastic strain in rolling direction presents 

acceptable approximation using adaptive remeshing method in comparison with 

experimental measurements. The main difference between both numerical 

predictions is at the end of the wall (radius around 50 mm), where the reference 

mesh provides higher values than the use of the adaptive remeshing prediction. In 

terms of major strain the reference mesh has better approximation to the 

experimental measurement. The numerical results using adaptive remeshing present 

higher values of major plastic strain in the wall region. The results using adaptive 

remeshing are sparser than the use of reference mesh which presents dense results. 

This difference between both mesh topologies is related with the mesh density at 

the wall region, as confirmed through the final number of elements in Table 5.2. In 

the transitions areas, as the mesh centre and the region near the clamped boundary 

conditions, the numerical predictions are similar.  

The experimental measurement of the minor plastic strain in transverse 

direction is higher than the numerical results obtained with both mesh topologies. 

The numerical predictions in comparison with the experimental measurements for 

the major plastic strain are similar in the transition areas. However, the values 

prediction in the wall region is better predicted with the uses of reference mesh 

while the values obtained with adaptive remeshing are higher. 

 

5.1.3. Axial force prediction  

Figure 5.10 and Figure 5.11 present the prediction of numerical axial tool 

force (Fz) with different levels of refinement using adaptive remeshing method. The 

simulations were performed using Swift and Voce hardening laws with material 

parameters of Table 5.1. To simplify the comparison, the numerical force evolution 

is replaced by the average calculation when the tool is at the central positions of 

each contour (Henrard et al., 2010), to avoid inaccuracy from boundary conditions.  
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Figure 5.10: Force prediction for different levels of adaptive remeshing refinement and reference mesh 

using the Swift hardening law with biaxial material parameters. 

 

 
Figure 5.11: Force prediction for different levels of adaptive remeshing refinement and reference mesh 

using the Voce hardening law with uniaxial material parameters. 

 

The results are similar between the reference case and the remeshing 

procedure using 3 and 4 nodes per each edge in the element plane. It is noticeable 

that the axial force results are sensitive to the variation of the number of new 

smaller elements per coarse element. The oscillations of the force are due to the 

penalty method used to model contact. They are higher using a low refinement 

(n=1) for the reason that the mesh used is coarser than the reference one. In 

addition, increasing the value of remeshing parameter dmax  could increase the 

oscillation effect, as being a consequence of mesh derefinement. 



162 

 

As expected, the axial force level using Voce hardening law is smaller than 

using Swift, due to the well-known saturation behaviour of Voce’s law. However, 

Swift hardening law provides a more realistic behaviour of the material than the 

use of Voce hardening law.  

Figure 5.12 demonstrates the comparison between different material 

parameters, with different hardening laws, to predict the axial force in comparison 

with experimental measurements. An analytical force prediction was performed to 

compare its approximation to the numerical results and experimental 

measurements. The main interest of the analytical formula is to provide a first 

estimation of the axial force prediction before knowing the experimental results. 

The analytical force is computed using the following formula (Aerens et al., 2009; 

2013): 

Δ Δ Δ1.57 0.41 0.09
Z_S m t

= 0.0716 ( - )cos( - ) ,F R t d h      (5.2) 

where mR  is the tensile strength, also known as Ultimate tensile Strength (UTS), t 

is the sheet thickness, td  is the tool diameter,    is the wall angle in degrees and 

Δh  is the scallop height. The empirical correction value,  =0.05 rad or 2.86°, 

was from Aerens et al. (2013). 

  

Table 5.3: Material parameters used to compute the analytical force and its resulting values. 

Material property Units Uniaxial tension at 0º direction test 

mR  (UTS) N/mm2 202.1 

t mm 1.6 

td  mm 12.66 

Δh  mm 0.0099 

  Degrees  45º 

Force N 1767.1 

 

Figure 5.12 exhibits the comparison between the numerical simulations with 

the material parameters from Table 5.3 with the use of different application of 

boundary conditions. Initially in Figure 5.10, the clamped boundary conditions were 

considered as shown in Figures 5.2 and 5.3.  

From the benchmark proposal, the die plate and holder plate dimensions are 

given. Similarly, as the blank mesh, a 45º pie model of die plate and holder plate 

was assumed. The contact properties between the sheet and holder plate and die 

plate force are not given. The contact parameters and holder plate force were based 

on values found in literature related to deep drawing examples. The contact 
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parameters used between the sheet and the components consist of penalty 

coefficients ( PK , K ) and friction value ( ) of 1000  and 0.05, respectively. The 

applied force in the 45º pie model of holder plate was 1250N. 
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Figure 5.12: Axial force prediction using the reference mesh with Swift hardening law. 

 

The absence of die plate and holder plate in the numerical model was 

substituted by the clamped boundary conditions in the limits of the mesh, in order 

to decrease the CPU time. On the other hand to understand the difference between 

the numerical results and the experimental results presented in Figure 5.10 and 

Figure 5.11, the approximation to the real boundary conditions was tested in 

Figure 5.12. The addition of die plate and holder plate in the numerical model was 

necessary to assess their influence on the numerical prediction of the axial force. 

The use of uniaxial parameters combined with Swift hardening law using 

clamped boundary conditions presents the highest level of axial force. However, the 

biaxial parameters exhibit lower axial force than the uniaxial values, but without 

significant difference. The use of blank holder and die plate decreases the axial force 

prediction and presents a better agreement with the analytical force prediction 

using the biaxial material parameters. However, it was necessary to adapt the 

contact parameters values and blank holder force to achieve the approximation of 

axial force prediction to the analytical force obtained with Aerens et al. formula. 

[s] 
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The contact interaction between the sheet mesh and the modelling of clamped 

devices in the numerical simulation increases the CPU time.     

The obtained analytical force of Equation 5.2, using the material parameters 

of uniaxial tension test, is still distant from the experimental result. However, the 

difference is acceptable. The use of Voce’s hardening law combined with the 

modelling of clamped devices (die plate and blank holder), allows the 

approximation of the axial force prediction to the analytical force using the uniaxial 

parameters.  

According to the numerical results, the values are still far from the 

experimental reference using Voce hardening law but closer than the one using 

Swift hardening law. The use of Voce hardening equation allows the saturation of 

stress values and the axial force level is maintained low. However, tensile test is not 

the suitable test to provide the correct material data to simulate the SPIF process 

(Bouffioux et al., 2010). 

Figure 5.13 presents the comparison of axial force prediction between several 

Finite Element codes. These results were proposed by different authors and 

evaluated in NUMISHEET 2014 benchmark (nº3).      

 

 
Figure 5.13: Comparison of axial force prediction obtained from different Finite Elements codes. 

 

 Except from DD3MP and the reference numerical results, all the numerical 

results from different Finite Elements codes overestimate the axial force prediction. 

However, the result from LAGAMINE code using Voce hardening law also presents 

an approximate force prediction to the reference solution. In addition, it is worth to 

[s] 
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notice the influence of a low penalty coefficient in the axial force prediction, which 

revealed an evident overestimation of force, as a consequence of tool penetration 

effect.    

 

5.1.4. Remarks of cone shape simulations  

In general, the numerical results exhibit good accuracy using RESS finite 

element combined with adaptive remeshing technique. The Swift hardening law 

allows a better agreement in relation to the uniaxial test curve performed 

experimentally than the use of Voce hardening law. Figure 5.14 exhibits the 

uniaxial tensile curve with material data in 0º direction using different hardening 

laws from Table 5.1. 

 

 
Figure 5.14: Uniaxial tensile test (extrapolated). 

 

As shown in the comparison, the Swift hardening model does not provide the 

most accurate results in the present SPIF numerical simulations. Indeed, the force 

predictions by RESS with Swift law for the incrementally formed conical shape is 

farther from experimental measurements than the results generated by Voce law. 

This fact confirms that extrapolating tensile test curves to identify the hardening 

parameters used in SPIF simulations is not an efficient method to identify the 

actual behaviour law in SPIF process. Note that the best Finite Element force 

predictions using different hardening laws, different codes converges to the 

analytical prediction of force and not to the experimental measurement. This 

obtained analytical force prediction using Equation 5.2 and the available material 

parameters allowed an acceptable approximate value in comparison to the 
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experimental force measured. However, this formula showed to be more accurate in 

many cases, so it generates some doubts on all the exact conditions of the 

experiments. 

The numerical results achieved using the addition of die plate and blank 

holder in the numerical model decreased the values of axial force prediction. 

However, the contact properties and force applied on the holder plate were assumed 

ones as their experimental values are unknown. Probably, if the experimental 

contact properties and force applied on the blank holder were known the axial force 

prediction could have similar level as the axial force achieved with clamped 

boundary conditions. The friction value (µ=0.05) used between the aluminium 

sheet and the blank holder is questionable, as well as the blank holder force. These 

parameters mentioned were adjusted in order to improve the approximation of the 

numerical axial force, regarding the experimental axial force. 

Finally, in order to use acceptable adaptive remeshing parameters in further 

simulations, the best adaptive remeshing parameters found are: the number of 

nodes division per edge (n) equal to 3 nodes combined with dmax  equal to 0.05 mm. 

These parameters are chosen regarding the results obtained in previous sections, in 

terms of shape error, CPU time and force prediction. The α coefficient value equal 

to 1.0 was chosen from the line test benchmark analysis performed in Section 4.3.  

 

5.2 Simulation of a two slope pyramid 

The numerical simulation of SPIF addressed in the current section consists 

in a two slope pyramid benchmark with different wall angles at different depths. 

The sheet material is low carbon steel alloy, DC01, with an initial thickness of 1.0 

mm, being clamped on its border by means of a 182 mm x 182 mm blank holder 

plate. The tool tip diameter is 10 mm and the toolpath is based on successive 

quadrangular paths with a vertical step size of 1.0 mm per contour. The number of 

contours for the first slope of the pyramid is 60 and 30 contours are present in the 

second slope. The experimental toolpath points were given in order to use it in the 

numerical simulations. These SPIF experiments as well as the shape measurements 

were performed by Joost Duflou’s team at KU Leuven (Duchêne et al., 2013) who 

provided all the required data for the numerical simulations and their validation. 

The dimensions of an ideal design are schematically shown in Figure 5.15.  
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Figure 5.15: Component nominal target dimensions. 

   

The shape analysis is divided in four sections (A, B, C, D), in order to 

analyse them separately in the middle section of the mesh model (see Figure 5.16), 

to avoid the influence of boundary conditions. The material behaviour is elastically 

described by E = 142800 MPa and ν = 0.33. The plastic domain is described by a 

von Mises yield surface with mixed hardening model, which combines isotropic and 

kinematic hardening. The isotropic hardening behaviour is defined by means of a 

Swift’s law and the evolution of the back-stress is governed by Armstrong-Frederick 

definition. The material parameters are listed in Table 5.4. The initial yield stress 

( 0 ) is 144.916 MPa. 

  

Table 5.4: Material parameters of DC01 steel. 

Name and hardening type Parameters Back-stress 

Swift 

Isotropic hardening 

K=472.19MPa; n=0.171; 

0  =0.001 
XC =51.65; satX =5.3 

 

Figure 5.16 illustrates two distinct mesh refinements. Due to the square 

geometry in XY plane (see Figure 5.15.a) and to benefit the computation time 

reduction, only half of the sheet is modelled. This simplification also can provide a 

similar result as a full mesh (Henrard, 2008). The initial refined mesh (reference 

mesh) is composed by 2048 elements disposed in one layer of RESS finite element 

in the thickness direction. The coarse mesh used with adaptive remeshing method is 

modelled by 128 elements on the sheet plane, with one layer of RESS finite element 
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in the thickness direction. However, the nodes at the top layer of both meshes 

define the contact element layer at the surface. The contact modelling is based on a 

penalty approach and on a Coulomb law (Habraken and Cescotto, 1998). So, both 

meshes have two layers of elements (solid-shell + contact elements) in thickness 

direction, and the spherical tool was modelled as a rigid body. Finally, Coulomb 

friction coefficient ( ) between the tool and sheet is set to 0.05 and the penalty 

coefficients ( PK  and K ) are equal to 1000. 
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Figure 5.16: Reference mesh (1) and coarse mesh used with adaptive remeshing (2). 

 

The numerical shape prediction is extracted from the middle section of the 

half mesh used within the FE model. To avoid inaccuracy due to BC effect, each 

pyramid wall section is analysed separately. 

Displacement BC were imposed (see Figure 5.16) in order to minimize the 

effect of missing material along the symmetric axis. This type of BC is introduced 

by a finite element called BINDS and it is a link between the node displacements of 

both edges (Bouffioux et al., 2010; Henrard et al., 2010). The absence of backing 

plate and blank holder in the numerical model was replaced by the clamped BC at 

the borders of both meshes. The absence of modelling of the clamping devices 

avoids additional contact elements in the model. 

Different values for each parameter were tested for derefinement distance 

( maxd ) as well for the number of nodes per edge (n): maxd  values were 0.1 mm and 

0.2 mm; n values were 2 and 3 nodes. The value used for α coefficient is equal to 

1.0. These values used for each remeshing parameters were chosen based on a 
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previous sensitivity analysis using the line-test benchmark simulation (Bouffioux et 

al., 2008). The total number of elements in both meshes includes the number of all 

finite elements of the model (RESS+CFI3D+BINDS). The number of integration 

points through the thickness used in RESS finite element is 5 GP.  

Table 5.5 presents the performance of both refinement strategies assessed at 

equivalent section analysis. It is possible to confirm the adaptive remeshing 

advantages even when the final number of elements is higher than the reference 

mesh.   

  

Table 5.5: Simulation performance. 

Mesh type CPU time 
CPU time 

Reduction (%) 

Initial nº of 

elements 

Final nº of 

elements 

n=2 maxd =0.1mm 6h:28m:25s 76.67 

298 

2602 

n=3 
maxd =0.1mm 13h:38m:43s 50.8 4394 

maxd =0.2mm 13h:18m:2s 52.1 4394 

Reference 27h:44m:27s ------- 4282 4282 

 

The application of the adaptive remeshing with n equal to 3 delivers an 

average CPU time reduction of 50% while negligible difference for different values 

of dmax  parameter is observed.  The CPU time reduction using n equal to 2 is 

considerably larger than for n equal to 3. However, the shape accuracy obtained 

with different refinement levels is analysed in the following section.  

The main numerical outputs presented in the next sections are the final 

shape of the sheet, in a middle-section along the symmetric axis in different 

directions (see Figure 5.15.b and Figure 5.15.c) and stress state behaviour. The 

deformed shape evolution is also analysed for different tool depths. 

 

5.2.1. Shape prediction 

In the current section, the deformed shape predictions from the bottom 

nodes are compared to the available experimental results. The experimental shape 

measurements were extracted using Digital Image Correlation (DIC) throughout 

the SPIF process (Guzmán et al., 2012). Figure 5.17 exhibits the shape prediction 

in Y direction using the adaptive remeshing procedure and provides a simultaneous 

comparison with the reference mesh and experimental measurements. Different 
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adaptive remeshing parameters are tested in order to assess their influence in the 

numerical shape accuracy.  
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Figure 5.17: Final shape prediction in Y cut for different refinement levels after the tool unload. 

 

It can be observed in Figure 5.17 that an acceptable accuracy is achieved 

between the numerical results and the experimental measurements. The 

derefinement criterion occurs with more frequency using maxd  equal to 0.2 mm than 

for maxd  equal to 0.1 mm. A low value of maxd  parameter means that the 

refinement is kept increasing the mesh flexibility. In this case, at the transition 

region of wall angle on section A, the adaptive remeshing using n equal to 3 

combined with maxd  equal to 0.2 mm seems more accurate than the others 

numerical simulations results. Figure 5.18 exhibits a zoom at wall angle change of 

section A, which evidences a better shape prediction using n equal to 3 combined 

with maxd  equal to 0.2 mm.  

 

B A 
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Figure 5.18: Zoom of shape prediction at wall angle change on section A in Y cut for different refinement 

levels. 

 

Hereafter, the average relative and absolute errors are computed and 

presented in Table 5.6 for each refinement level. The difference between the 

numerical results along the middle section of the mesh and the experimental 

measurements is computed for common values in the corresponding axis. 

Previously, the numerical values along of middle cross section were linearly 

interpolated for the corresponding values of experimental measurements.  

The average relative error is computed using the following expression:  

      Error(%) 100
=1i

                  


N 2

2
(Num. - Exp.)= N *

Exp.

   (5.3) 

where Num. is the numerical value, Exp. is the experimental value and N is the 

number of points in X axis. 

 

Table 5.6: Average error for Y cut section A. 

Y cut (A) Remeshing mesh Reference mesh 

Error Relative (%) 

n=3; maxd =0.1mm 5.95 

6,37 n=3; maxd =0.2mm 5.32 

n=2; maxd =0.1mm 9,22 
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In general, the refinement level using adaptive remeshing method with n 

equal to 3 nodes per edge provides results closer to the experimental ones, than the 

reference mesh or adaptive mesh with n equal to 2 nodes per edge. However, an 

improvement was obtained for the case using n equal to 3 combined with maxd  

equal to 0.2 mm at the wall angle transition region. Its absolute error at wall angle 

change is equal to 0.12 mm while using n equal to 3 and maxd  equal to 0.1 mm the 

absolute error at wall angle change is 2 mm.  

Section B of Y cut presents a similar behavior as section A, as can be seen 

in Table 5.7. However, the absolute error at the wall angle change is more 

noticeable on section B for n equal to 3 nodes per edge with different values 

of maxd . It presents an absolute error of 3.53 mm using maxd  equal to 0.1 mm and 

the error decrease to 2.49 mm using maxd  equal to 0.2 mm.  

  

Table 5.7: Average error for Y cut section B. 

Y cut (B)  Remeshing mesh 
Reference 

mesh 

Error Relative (%) 

n=3; maxd =0.1mm 6.63 

6.94 n=3; maxd =0.2mm 6.37 

n=2; maxd =0.1mm 9.93 

 

In this first cut analysis, the section A has better shape accuracy than the 

cut B. However, for both sections a better shape accuracy was achieved using a 

maxd  value equal to 0.2 mm. Probably, this improvement occurred due to a 

derefinement at some regions of the wall angle mesh during the simulation forming, 

which leads to a stiff wall zone and an improvement at the wall angle transition 

area.   

Figure 5.19 exhibits the shape predictions in X direction using the adaptive 

remeshing procedure after tool unload. The following numerical results were 

obtained using the adaptive remeshing parameters n equal to 3 nodes per edge 

combined with different maxd  values of 0.1 mm and 0.2 mm. 
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Figure 5.19: Final shape prediction in X cut for refinement n equal to 3 nodes per edge, after tool unload. 

 

The numerical results on the X cut are considered symmetric, as the wall 

angle of sections C and D are similar. Table 5.8 presents the average error in X 

direction, at the middle section.   

  

Table 5.8: Average error for Y cut section C or D. 

X cut (C and D) Remeshing mesh 

Error Relative (%) 

n=3; maxd =0.1mm 4.72 

n=3; maxd =0.2mm 4.77 

 

 The average relative error analysis of X cut using maxd  equal to 0.1 mm is 

negligibly smaller than the use of maxd  equal to 0.2 mm. However, at transition 

region of wall angle change, it is observable that for maxd  equal to 0.1 mm the 

shape accuracy is better than for maxd  equal to 0.2 mm.    

Figure 5.20 exhibits the comparison between the experimental measurements 

and the numerical results of four different contours. The numerical curves are 

intentionally shifted to coincide with experimental at similar depth value. This 

method is justified as there are missing data in the experimental measurements 

near the backing plate. Near X equal 0 mm, data are difficult to extract from the 

results of DIC measurements (Guzmán et al., 2012). The numerical results were 

C D 
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obtained using the adaptive remeshing method with n equal to 3 nodes per edge 

and maxd  equal to 0.1 mm. 
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Figure 5.20: Shape prediction for X cut at different depth steps using the adaptive remeshing method. 

 

The numerical results follow the overall shape of the experimental 

measurements for the contours 20 mm to 60 mm. However, there is a difference at 

the central region of the mesh due to non-refined area of contours 40 mm and 60 

mm. This difference occurs when the refinement and derefinement criteria were not 

achieved in the finite elements near the central area of the mesh. Firstly, due to 

distance between the tool and the nodes in the tool vicinity (see Figure 5.22.1 

describing the 60 mm contour). Secondly, due to no significant deformation 

happening in the mesh plane according to the derefinement indicator (see Figure 

4.8). To understand the deviation occurrence at the central region of the mesh for 

contours 40 mm and 60 mm using the adaptive remeshing method, a new analysis 

was carried out. Thanks to a simulation using the reference mesh of Figure 5.16.1 

and another one with adaptive remeshing method, as well as using a new value of α 

coefficient equal to 3 combined with maxd  equal to 0.1 mm, the accuracy at the 

central area of the meshes has been further analysed.  

Figure 5.21 presents the obtained results with both refinement topologies.   
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Figure 5.21: Shape prediction for X cut at 40 mm and 60 mm of depth. 

 

The obtained results using the reference mesh proves that the refinement at 

the central region avoids the numerical deviation error. However, using the 

adaptive remeshing even with a high value of α coefficient, the deviation is kept, 

due to the fulfilment of the derefinement criterion. The refinement at the central 

area remains if a significant distortion occurs and if the maxd  value is higher than 

the value chosen by the user. Once the forming tool does not move on the referred 

region, the refinement due to a high value of α coefficient is deleted and the coarse 

elements are reactivated. The zone with poor degrees of freedom is very sensitive to 

very small error of slope in refined region as elements are very coarse. 

At 80 mm depth, Figure 5.20 presents a visible error in the transition zone 

of the wall angle. This shape error was mentioned by Guzmán et al. (2012) (see 

Figure 12 in Guzmán et al., 2012) as the “tent” effect. In order to understand the 

origin of this shape inaccuracy after wall angle transition, the following section will 

present a stress analysis in the thickness direction.  

   

5.2.2. Through thickness stress analysis 

The main interest of the current section is the analysis of stress state in 

thickness direction in different wall regions of the mesh at the middle section. The 

stress state is obtained using the adaptive remeshing technique at the end of two 
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different forming stages. Figure 5.22 exhibits the mesh plane view and the elements 

selected for stress extraction.  

 

1)       

2)  

Element a) Element b) Element c)
 

Figure 5.22: Position of three selected elements after contour 60 mm (1) and after contour 90 mm 

unloading step (2). 

 

The stress analysis behaviour of each Gauss Point (GP) through thickness is 

performed at different forming depths for three selected elements. The GP positions 

are such that GP1 is near the sheet external surface (the one not in contact with 

the tool) and GP5 near the internal surface. The orientation of the local stress
 

in 

plane components ( 11  and 22 ) can be recovered by their projections in Figure 

5.22. The component 33  is the stress component in thickness direction.  

Figure 5.23 presents the relative stress ( / 0  ) values ( 0  

being the initial 

yield stress 144.916 MPa) at the th60  contour (at the beginning of the forming of 

the second slope pyramid when the tool has already had contact with the sheet and 

is going deeper). The associated mesh and the tool position are shown in Figure 

5.22.1.  
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Figure 5.23: Stress components through the thickness for the three elements at depth stage 60 mm.  

 

The cyclic strain path associated to SPIF, checked by He et al. (2006), 

confirms the bending/unbending type of load associated to a stretch forming. The 

11  and 22  stress components (Figure 5.23) of the element a) at middle position 

on the 60º wall has a typical scheme resulting from such stress state.  

Guzmán et al. (2012) used a shell finite element to analyse a two slope 

pyramid made in Aluminium AA3003, similar to the DC01 pyramid studied in the 

present work. As expected, the stress states computed by shell and solid-shell 

approaches present both similarities and discrepancies. The results from Guzmán et 

al. 2012 were based on the shallow shell theory, thus they assumed that the mid-

plane coincides with the neutral plane. The solid-shell element formulation allows a 

greater flexibility and takes into account through thickness shear stresses and 

normal stress in thickness direction in addition to the membrane stresses. The 

deformation characteristics of SPIF during the tool contact could induce a strong 

element deflection (as probed by the choice of dmax  equal to 0.2 mm in the previous 

section). Hence, the shell hypothesis of the mid/neutral plane could be considered 

as somewhat severe. The membrane stress distribution in Figure 5.23 for element 

(a) and (b) could be considered as the sum of bending/unbending plus stretching, 

as previously observed by Eyckens et al. 2010.  

The typical stress distribution is depicted schematically in Figure 5.24 

assuming for simplicity elastic behaviour. Indeed true behaviour is more complex as 

plasticity occurs in both bending and unbending processes (see equivalent plastic 
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strain values in Table 5.9). Note that the local contact, generating 33  stress as 

well as through thickness shear stress justify a slightly higher plastic strain near the 

internal surface. The stress profile of 33  related to element a) in the wall middle 

section presents the typical gradient expected due to tool contact. The GP near the 

internal surface (GP 5) is associated to the tool compression effect during the 

forming path and zero stress on the external surface (GP 1). For element b) at 

change of slope, a more complex pattern of 33  is observed due to further plasticity 

increase at this location during the forming of the second pyramid, however higher 

number of GP computation confirms a null stress at external surface. 

Neutral plane

1 2 3 4  
Figure 5.24: Simple elastic schematic representation of bending/unbending plus stretching associated to 

elements a) and b). 

 

 Figure 5.25 presents the relative stress ( 0  ) values at 90 mm depth for 

each GP through the sheet thickness. Figure 5.22.2 is its corresponding mesh, note 

that the tool has been removed, it is an unloaded configuration. 
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Figure 5.25: Relative stress components in thickness direction for the three elements at the end of 90 mm, 

after tool unloaded.  
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The elements a) and b) at the end of contour 90 have a similar stress profile 

to the pattern of contour 60, however, they present identical or higher values stress 

values. The strong increase of membrane stresses of GP 5 compared to Figure 5.23 

as well as the values of equivalent plastic strain in Table 5.9 confirm that 

additional plastic deformation appeared  at depth 60 (change of pyramid slope) 

during  further forming  (increased value from 0.599 to 0.855). Already mentioned 

in the work of Guzmán et al. (2012), the “tent” effect (Behera et al. 2011, 2012, 

2013, 2014) is the name given to the displacement of the material at depth 60 mm 

during second pyramid forming (see Figure 5.20). As explained in Figure 12 of 

Guzmán et al. (2012), structural bending effect far from the tool location 

induces this displacement as the smaller slope angle increases the lever arm of the 

tool force and generates high moment in this transition zone. Guzmán et al. 2012 

showed that it occurs only as an elastic effect for their case, however in the present 

work a different material is used and plastic strain in element b) clearly 

increases between contour at 60 and 90 mm depth. Comparing element b) at 

contour depth 60 mm (Figure 5.23) and element c) at contour depth 90mm in 

Figure 5.25 and in Table 5.9, one can observed typical differences of stress states in 

SPIF formed shapes with  high and low slopes respectively. Plastic strain levels in 

all GP as well as the normal stress and shear stress components in thickness 

direction of element c) decreased at the second wall angle slope. The thickness 

profile of 11  and 22  stress components of element c) in Figure 5.25 is associated 

to one moment and a stretching stress suggesting that plasticity did not occurred in 

both bending and unbending events. 

  

Table 5.9: Relative values of 13 0/   and / 23 0 , p
eq
 , yield strength and eq  at contours 60 and 90. 

Stress 
 Contour 60 mm Contour 90 mm 

Element a b c a b c 

/13 0    

GP 5 -0.379 -0.146 0.006 -0.344 -0.096 -0.160 

GP 3 0.112 -0.271 -0.002 -0.026 0.158 0.181 

GP 1 0.668 0.270 -0.002 0.538 0.3273 0.495 

/23 0    

GP 5 -1.145 0.080 -0.000 -1.027 -1.585 0.005 

GP 3 0.554 0.076 0.001 0.429 0.658 0.031 

GP 1 0.598 -0.136 0.001 0.593 1.264 0.193 

p
eq
  

GP 5 1.251 0.599 0.000 1.251 0.855 0.483 

GP 3 0.873 0.356 0.000 0.873 0.571 0.283 
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GP 1 1.077 0.581 0.000 1.077 0.869 0.491 

Yield  

strength 

[MPa] 

GP 5 490.677 432.721 144.916 490.719 459.828 417.064 

GP 3 461.408 395.898 144.916 461.408 429.186 380.753 

GP 1 478.321 430.460 144.9161 478.321 461.061 418.199 

eq  [MPa]
 

von Mises 

GP 5 464.132 398.134 20.720 462.506 425.074 329.010 

GP 3 262.035 382.365 11.043 223.949 93.438 270.531 

GP 1 232.149 425.234 34.809 256.896 458.994 305.779 

 

5.2.3. Remarks of two-slope pyramid simulations  

In general, the shape prediction and the stress analysis in thickness direction 

are the main contributions of this work. An acceptable accuracy was obtained when 

comparing the numerical results in different stages with experimental DIC 

measurements. Most of numerical shape error are from transitions areas, as near the 

backing plate edge and at the wall angle change. However, the error near the 

backing plate is only noticeable at the end of the simulation. The adaptive 

remeshing parameter dmax  showed negligible influence on CPU time. The increase 

of dmax  value improved the shape accuracy at the wall angle change on section A 

and B but the same improvement was not verified for sections C and D. However, 

concerning the relative shape error found for different dmax  values used, the error 

difference between both shape sections can be considered negligible. The adaptive 

remeshing parameter which has exhibited a significant influence in the shape 

accuracy was the number of nodes per edge (n). 

The stress analysis through the thickness of the sheet exhibited a 

bending/unbending plus stretching, already documented in previous publications, 

while the shear stresses remain very small. The combination of membrane under 

tension with bending behaviour was also found at different levels of depth. The 

elastic stress state affects the geometrical shape accuracy, mainly, after the wall 

angle transition. For the studied case (DC01 steel material and a 2 slopes, non-

symmetrical pyramid  with angles  60/30° and 60/35° and respective depths 60/90 

mm), one can confirm that at the wall angle slope transition, it is plastically 

affected by the second pyramid forming process. 
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5.3 Second analysis of a two-slope pyramid 

The present section concerns a detailed analysis of two-slope pyramid 

geometry described in Section 5.2 by Figure 5.15. The geometry is kept the same, 

but the material used is a different steel alloy elastically described by E = 210000 

MPa and ν = 0.3, named HC660XD steel (Volkswagen VW 50060 Hot Dipped 

Galvanised Dual Phase steel). The plastic domain is described by a von Mises yield 

surface and an isotropic hardening behaviour defined by means of a Swift law. 

Table 5.10 describes the material hardening parameters obtained from uniaxial 

tensile test in 0º direction. The initial yield stress ( 0 ) is 784.0 MPa. 

    

Table 5.10: Material parameters of HC660XD steel. 

Name and hardening type Parameters 

Swift 

Isotropic hardening 
K=1586.17 MPa; n=0.128; 0 = 0.02  

 

The geometry described in Figure 5.15 has been experimentally repeated 

resorting to an innovative SPIF machine developed at University of Aveiro, 

Department of Mechanical Engineering, named SPIF-A (Alves de Sousa et al., 

2014). Previously, on the external surface of the material sheet with 1 mm thick a 

small circular grid was printed, in order to measure sheet deformation by DIC 

procedure with ARGUS software. Figure 5.26 exhibits the shape forming process 

and the experimental measurement of the deformed shape through ARGUS 

software and its hardware equipment, which uses only one camera.   

 

  
Figure 5.26: Experimental measurements resorting to DIC from ARGUS software.  
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Figure 5.27 exhibits the measurement of the cross sections on the external 

surface (opposite face with respect to the tool contact) of the final deformed shape. 

In both figures the reference points of each section set to zero are shown, in order 

to match with the similar points of the numerical results.   

    

  

Figure 5.27: Sections measurement on the external surface of the shape.  

 

Afterwards, the comparison is made between the measurements obtained 

from DIC and the numerical results from the implicit analysis, combined with 

adaptive remeshing method.  

The simulations were carried out with a 180º coarse mesh for the adaptive 

remeshing procedure, as shown in Figure 5.16 2), with 5 GP through the thickness. 

The adaptive remeshing strategy is applied with the following refinement 

parameters: 3 nodes per edge (n=3), α equal to 1.0 and dmax  equal to 0.1 mm. 

The penalty coefficient ( PK  and K ) of the contact elements between the 

tool and the metal sheet mesh was chosen as 1000 . Concerning the friction 

coefficient, µ, given the absence of experimental data, it was assumed to be 0.05.  

Table 5.11 presents the average CPU time using adaptive remeshing 

procedure with the steel chosen. 

 

Table 5.11: Adaptive remeshing technique performance. 

Mesh type CPU time Initial nº of elements Final nº of elements 

n=3 maxd =0.1mm 15h:11m:13s 298 4394 
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5.3.1. Prediction of the shape and thickness 

This section focuses on the prediction of the shape and thickness of the 

pyramid for sections AB (Y cut) and CD (X cut). As the experimental 

measurements were measured on the external surface of the shape, the numerical 

shape prediction is extracted for the bottom nodes of the mesh. Figure 5.28 and 

Figure 5.29 present the shape and thickness prediction.  

  

  
Figure 5.28: Final shape prediction of section AB corresponding to Y cut.  

 

 
Figure 5.29: Thickness prediction of section AB corresponding to Y cut.  

 

A B 
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Figure 5.30: Final shape prediction of section CD corresponding to X cut.  

 

 
Figure 5.31: Thickness prediction of section CD corresponding to X cut.  

 

As shown above, an acceptable correlation was found between the simulation 

results and the experimental measurements. The shape error is limited to a small 

deviation of millimetre, but not uniform for all sections, with evident error at the 

first wall angle slope of section B of Y cut, Figure 5.28. The wall angle transition is 

well predicted in particular for sections A (Y cut) and D (X cut).  

C D 
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In terms of thickness prediction, the largest error can be found near the 

clamping boundary conditions, which exhibits a thinner prediction than the 

experimental data. The deviation of the horizontal axis in the thickness comparison 

figures is proportional to the deviation of the shape prediction. Concerning the wall 

angle transition effect, it is visible that the thickness reduction is higher at the first 

wall angle than for the second slope wall angle.  

Additionally, from the comparison of both shape predictions using two 

different steels to build the same geometry, it reveals better accuracy for the results 

using DC01 (see Section 5.2.1). As possible explanation for less shape accuracy 

prediction in the second attempt using the material described in Table 5.10 can be 

the occurrence of springback effect during the forming and after the unclamping.  

This means that the isotropic hardening is not adequate to take into account the 

springback effect, as well as the influence of the GP number through sheet 

thickness, as reported by Alves de Sousa et al. (2007).    

             

5.3.2. Major strain prediction 

The current section is focused on the analysis of the major strain prediction 

along both sections, schematically shown in Figure 5.15, in comparison with the 

experimental data. The major strains of the numerical model are computed at the 

integration points. This means that the numerical major strains presented below 

are obtained from the integration point near to the bottom layer of the mesh. The 

minor strains are negligible in comparison with major strains.  

Figure 5.32 and Figure 5.33 exhibit the major strain comparison between the 

experimental data and the simulation prediction.    

 

  
Figure 5.32: Final major strain prediction of section AB corresponding to Y cut 
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Figure 5.33: Final major strain prediction of section CD corresponding to X cut.  

 

Both results, experimental and numerical ones, follow a similar pattern with 

a pronounced large level of major strain at the first wall angle slope. The 

experimental measurements present a higher level of major strain than the 

simulation results. A possible explanation for this difference can be measurement 

effects of the deformed sheet surface from DIC due to the occurrence of out-of-plane 

motion introducing strain errors. Figure 5.34 schematically presents the physical 

meaning of out-of-plane motion (Lava et al., 2014) and the strain error, error , 

occurrence due to the surface bent originating a concave surface. This bent effect of 

sheet surface is well visible in the pyramidal shapes walls.   

 
Figure 5.34: Physical meaning of out-of-plane motion.  

 

5.3.3. Through thickness stress analysis 

As final analysis point, in terms of average CPU time, the simulations 

performed with DC01 material (Table 5.4) presents better performance compared 

to the simulation with HC660XD material (Table 5.10), for equivalent adaptive 

remeshing parameters (n=3; α=1.0; dmax =0.1 mm). This means that the material 

parameters and hardening law influence the performance of the numerical 
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simulation. For identical geometry and sheet thickness, the mixed hardening 

applied to DC01 steel achieved better CPU performance and shape accuracy than 

the isotropic hardening by means of the material parameters of Table 5.10. The 

CPU for HC660XD material simulation time increases in 15% in comparison with 

DC01 steel simulation. In order to understand the origin behind the performance 

difference between both steel alloys, the equivalent plastic strain, yield strength and 

equivalent von Mises stress are analysed. Table 5.12 presents the values of 

equivalent plastic strain, p
eq
 , and equivalent von Mises stress, 

eq
 , computed in 

different GP in thickness direction at contours 60 and 90. Those values were 

obtained from similar GP at equivalent elements location in the mesh, as 

schematically exhibited in Figure 5.15 a).  

    

Table 5.12: Values of p
eq
 , yield strength and eq  at contours 60 and 90. 

Stress 
 Contour 60 mm Contour 90 mm 

Element a b c a b c 

p

eq
  

GP 5 1.442 0.584 6.64E-04 1.440 0.925 0.395 

GP 3 1.025 0.438 0.000 1.025 0.623 0.254 

GP 1 1.396 0.662 1.80E-03 1.400 0.814 0.441 

Yield  

strength 

[MPa] 

GP 5 1662.52 1481.20 742.724 1662.52 1570.80 1409.17 

GP 3 1591.56 1428.12 715.948 1591.56 1493.49 1332.25 

GP 1 1655.91 1505.27 777.266 1655.91 1545.42 1429.04 

eq   

[MPa]
 

von Mises 

GP 5 643.419 853.987 149.329 835.900 1011.99 745.230 

GP 3 483.366 469.657 48.887 361.012 915.812 471.949 

GP 1 376.296 1432.33 61.438 452.996 1240.66 599.851 

 

From Table 5.12 is noticeable higher yield strength and equivalent von 

Mises stress values than in Table 5.9. Besides the hardening effect, another possible 

reason for the performance different between both materials is related with the 

plasticity level achieved. On the other hand, let us remind that the material 

parameters of steel HC660XD was obtained resorting to uniaxial tensile test which 

gives a limited parameterization of a proper material behaviour. Additionally, the 

increments/iterations number, using the steel HC660XD increased 33% in 

comparison with steel DC01. In terms of equivalent plastic strain both tables 

exhibit insignificant difference between the values of similar GP.  
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5.4 Simulation of multistage incremental sheet forming 

The purpose of this section is to analyse the multistage forming to obtain a 

cone with vertical wall performed in five different stages. Instead of forming a 90º 

wall-angle cone directly, the forming starts with a 50º cone, followed by a 60, 70, 80 

and 90º cone. Figure 5.35 schematically presents the strategy of five stages adopted 

to obtain a vertical wall angle shape.  

 

 
Figure 5.35: Strategy to form a vertical wall shape.  

 

The global toolpath is composed of five times 30 contours, with a vertical 

step of 1 mm between two successive contours. The forming tool is a hemispherical 

tip with a diameter of 10 mm and the initial thickness of the sheet is 1.0 mm of 

AA1050-H111. Table 5.13 describes the material hardening parameters obtained 

from uniaxial tensile test.  

    

Table 5.13: Material parameters of AA1050-H111. 

Name and hardening type Parameters 

Swift 

Isotropic hardening 
K=206.57 MPa; n=0.091; 0 = 0.002  

 

Figure 5.36 exhibits a schematic view profile with the dimensions of the cone 

with vertical wall (a cylinder). 
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Figure 5.36: Dimensions of the cone with vertical wall angle.  

 

The experimental tests were similarly carried out in University of Aveiro 

resorting to the concept SPIF machine, named SPIF-A. The procedure to measure 

the obtained deformed shape was similarly performed as mentioned in Section 5.3.  

Figure 5.37 shows the final shape obtained and its measurement. The 

reference points are used by ARGUS software for assembling the photos in order to 

build the DIC of the shape. 

 

  

Figure 5.37: The final vertical wall angle shape.  

 

Figure 5.38 shows all the deformed shapes at each forming stage. 

Afterwards, each shape was measured in order to be compared with the numerical 

predictions. The shapes measurement were obtained from the circular grid printed 

on the opposite surface with respect to the tool working surface.    
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Figure 5.38: Shapes obtained after each forming stage.  

 

The failure occurrence was observed at the last contour of the 90º wall angle 

stage, as shown in Figure 5.39.   

 

 
Figure 5.39: Occurrence of fracture in the last contours of the last stage.  

 

In order to reduce the CPU time, a solution was to simulate only a 45º pie 

of the mesh with BINDS elements, on both edges of the pie to replace and minimize 

the effect of missing material. In terms of mesh density, an initial refined mesh 

(reference case) and a coarse mesh with an adaptive remeshing strategy are applied 

with the following refinement parameters: 3 nodes per edge (n=3), α equal to 1.0 

and dmax  equal to 0.05 mm. Both meshes concern one layer of RESS finite element 

in thickness direction with reduced integration in plane and 5 GP through the 

thickness. The contact interface between the tool and the sheet is performed taken 

into account a contact element, named CFI3D applied on the top layer of the RESS 

element. The penalty coefficients, PK  and K , chosen are 1000 and the absence of 

experimental data concerning the friction coefficient, µ, it is assumed to be 0.01. 

Figure 5.40 and Figure 5.41 present both meshes used for the simulations of the 

multistage cone with vertical wall.       
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Figure 5.40: Reference mesh with 3325 finite elements. 

 

Clam
ped B

C

 
Figure 5.41: Coarse mesh of 523 finite elements used with adaptive remeshing method. 

 

The simulation results are retrieved from the cross section at the middle of 

the 45º pie mesh, as exhibited in the previous figures. All numerical results in the 

following sections are obtained after unloading of the forming tool. 

 

5.4.1. Shape and thickness prediction 

  This section presents the results related to the shape and thickness 

prediction at the end of each stage of the multistage forming procedure to generate 

a cone with a vertical wall. In addition, a large area of the current shape is never 

touched by the forming tool, so the accuracy of shape prediction is highly 

dependent of the quality of the finite element chosen and the transition zone 

description between flat bottom and wall. Figure 5.42 and Figure 5.43 exhibit the 

shape and thickness predictions at the end of the first stage, when the toolpath has 

produced a cone with a wall angle of 50º. 
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Figure 5.42: Shape after first stage of 50º wall angle.  

 

 
Figure 5.43: Thickness of the shape after the first stage of 50º wall angle. 

 

The accuracy of the first cone with 50º wall angle, in particular the shape 

prediction of the final cone, it achieves a high level of precision for both mesh 

types. The thickness prediction also presents a good accuracy in the wall region 

with a slightly thinning near to the backing plate region, modelled by clamping 

boundary conditions. 

Similarly, Figure 5.44 and Figure 5.45 show the result comparison at the 

second stage corresponding to a wall angle cone of 60º. 
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Figure 5.44: Shape after first stage of 60º wall angle.  

 

 
Figure 5.45: Thickness of the shape after the first stage of 60º wall angle. 

 

From the second stage of the toolpath for 60º wall angle cone, the 

experimental measurement begins to show that the shape at the central region of 

the bottom surface is deeper and flatter than Finite Element predictions. The 

bottom of the shape numerically predicted did not follow the same trend at the 

same depth, the bottom shape prediction is slightly moved upwards. In terms of 

thickness prediction, besides the visible thinning occurrence near the clamping 

region, there is a second thinning effect, consequence of the corner shape from the 

previous stage, remaining noticeable for the following stage. A strain localisation 

appears in the zone with thinning effect from stage one. This experimental effect is 
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reproduced and evidenced in the numerical prediction, as can be seen on the 

external bottom surface of the experimental specimens in Figure 5.38.     

Analogous observations can be associated to the further stages, showing that 

the prediction of the bottom of the cones becoming less and less accurate during the 

simulation progresses. Concerning the measured experimental thickness, it is not 

able to correctly exhibit the thinning effect of the corner effect left by previous 

stages. However, this thinning effect is not present (it can be seen by eyes and 

yields to fracture at the last stage) in the measurements due to technical issues. As 

the tool travels several times on the same local during the multistage forming, 

consequently the printed grids on the external surface becomes less visible 

especially at the transition region. This leads to measurement difficulties and to 

overcome this problem the DIC software allows the interpolation of missing regions, 

in particular corners. However, this strategy introduces measurement errors, as it 

can be seen in Figure 5.46. Notice that the marks left by the previous stages visible 

in Figure 5.38 are not observable on the surface of mesh generated for measuring 

thinning within the software. Thinning is extracted from a false geometrical shape, 

confirming accuracy problems within measurements.   

      

 
Figure 5.46: Measurement of cross section of 70º wall angle cone (colour lines of depth). 
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Figure 5.47: Shape after first stage of 70º wall angle.  

 

 
Figure 5.48: Thickness of the shape after the first stage of 70º wall angle. 

 

Notice that the peak at the transition zone due to previous wall angle stages 

disappears from the DIC measurement and it is negligible in predicted shapes, but 

not in the actual piece (see Figure 5.38). On the other hand, the thickness profile 

maintain thinning peaks as consequence of previous stages, as well as the thinning 

effect of the corner at the current stage. Similar observations can be seen in the 

next forming stages. 
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Figure 5.49: Shape after first stage of 80º wall angle.  

 

 
Figure 5.50: Thickness of the shape after the first stage of 80º wall angle. 

 

      
Figure 5.51: Application of interpolation procedure from ARGUS software in 80º wall angle cone. 
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Figure 5.52: Shape after first stage of 90º wall angle.  

 

 
Figure 5.53: Thickness of the shape after the first stage of 90º wall angle. 

 

  

Figure 5.54: Application of interpolation procedure from ARGUS software in 90º wall angle cone. 
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 Both meshes predict similar geometry at the transition between the bottom 

and the wall. However, at the centre mesh region in the last two stages, 80º and 90º 

wall angles, an evident deviation between both meshes is observed.   

The difference between the experimental thickness measurement and the 

numerical thickness is more pronounced at the transition region, showing 

overestimation of numerical thickness reduction compared to DIC measurements. 

However, the accuracy of Finite Element prediction compared to our measurements 

is confirmed by the fact the fracture occurred at the last stage forming of wall angle 

with 90º, as shown in Figure 5.39, means that the numerical model presents a 

realistic thinning.  

Figure 5.55 presents the nodal displacement in the centre of both meshes in 

comparison with the experimental measurement, where the tool never touched. This 

region is dependent of the elements stiffness and not constrained by the tool 

displacement, as in the wall region.   

 

 
Figure 5.55: Depth in the centre of the cone mesh at the end of the 5 stages.  

 

Similar analysis using shell elements was presented by Henrard (2008), 

which uses a plane stress law. The RESS element uses a 3D stress law and it allows 

computing the stress distribution across the thickness. It improves the 

approximation of the experimental results. The error between the experimental 

data and the numerical prediction increases at each stage and for adaptive 

remeshing method, the maximum deviation is 6.33% (slightly less than the 
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reference mesh). However, the error between the experimental shape and numerical 

prediction is subjected to an errors of the measurements as previously described.  

 

5.4.1.1. Second analysis of multistage sheet forming 

In order to confirm the numerical results accuracy of shape and thickness 

predictions, the multistage forming simulation presented in the work of Henrard 

(2008) was carried out with RESS and adaptive remeshing. The shapes were 

measured with laser scanner after each of the five stages in this research. All the 

numerical results are reported in Appendix B. Regarding the numerical results 

obtained, they have demonstrated the ability to achieve a high level of accuracy in 

the simulation of multistage forming. In addition, the existence of thinning peak 

due to transition zone of previous wall angle stages numerically predicted are 

accurately confirmed with experimental data. Furthermore, different yield surface 

definitions were tested using the material parameter from Henrard (2008) in order 

to analyse their influence in the shape and thickness predictions. Globally, all yield 

surface definitions showed similar thickness predictions without significant 

differences between them, achieving a very good accuracy in comparison with the 

experimental data. The shape prediction using isotropic and anisotropic yield 

surfaces exhibited similar level of accuracy regarding the experiments. The 

kinematic hardening law presents similar accuracy level at the wall region and 

transition corner, but higher deviation at the centre region of the shape bottom, as 

shown in all simulations of Appendix B.              

     

5.4.2. Major strain prediction 

The following results present the numerical major strain prediction 

computed at integration point level. The chosen results correspond to the 

integration point close to the external surface, as similarly the experimental data 

are obtained from the external sheet surface.    
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Figure 5.56: Final major strain prediction of 50º wall angle shape.  

 

 
Figure 5.57: Final major strain prediction of 60º wall angle shape.  
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Figure 5.58: Final major strain prediction of 70º wall angle shape.  

 

 
Figure 5.59: Final major strain prediction of 80º wall angle shape.  

 



202 

 

 
Figure 5.60: Final major strain prediction of 90º wall angle shape.  

 

 All previous results exhibit the increase of major strain for each forming 

stage, from 50º wall angle until the final target shape with a wall angle of 90º. The 

numerical prediction using remeshing procedure follows a similar pattern and 

achieve similar levels of major strain with a good accuracy for the curve strain 

pattern of 50º and 60º wall angles. However, the curve patterns from 70º to 90º 

present an acceptable accuracy prediction in the regions corresponding to the wall 

and flat bottom. Concerning transition region between wall and the flat bottom, 

the interpolation of the missing surfaces does not present a significant accuracy 

error as occurred for the shape and thickness predictions.   

In general, the numerical results of major strain using the reference mesh 

exhibit similar patterns in all forming stages. However, it is noticeable a slight 

difference between both mesh refinement types regarding the major strain values at 

the transition regions. In terms of accuracy, the reference mesh achieves a good 

approximation level in comparison with the experimental data. 

The out-of-plane motion effect occurred resorting to DIC measurement 

method, as previously suggested (see Figure 5.34), is not noticeable for round 

shapes. In terms of the interpolation of missing areas performed using ARGUS 

software, an acceptable approximation between the experiments and numerical 

predictions is obtained.        
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5.5 Final remarks 

In summary, this chapter demonstrates the interest, reliability and efficiency 

of the proposed adaptive remeshing method combined with RESS finite element. 

Regarding the chosen element, the numerical results validate its ability to 

accurately analyse sheet metal forming using only one element layer. 

The first benchmark test concerns the analysis of a cone shape. It identifies 

the key remeshing parameter for accurate numerical results, as the number of nodes 

per edge (n). The use of 45º pie mesh for low refinement level, provides a CPU time 

that is smaller than the CPU time of the reference mesh, as expected. However, the 

CPU value becomes close to the reference one for high refining level (n=4).  

In the two-slope pyramid shape simulation in DC01 steel grade, the CPU 

reduction achieved with adaptive remeshing application reavealed to be more 

efficient for larger meshes. As shown for different initial density meshes, the 

adaptive remeshing which generated higher final number of elements than the 

reference mesh, still allowed a pronounced CPU time reduction of 50%. Regarding 

the repetition of the pyramid shape with a different steel in Aveiro (SPIF-A), the 

CPU time increases in 15% in comparison with DC01 steel simulation. So the 

influence of the material parameters in the CPU performance is observed. Let us 

remind that for identical geometry is compared DC01 behaviour modelled by mixed 

hardening with steel HC660XD modelled by von Mises yield locus and isotropic 

hardening. Furthermore, the increase of CPU time demonstrated to be non-

proportional to the increase of the increments/iterations number, responsible for 

CPU time increase. 

The deep analysis of the shape prediction of two-slope pyramid using DC01 

showed an accurate prediction of overall shapes at different depths and wall angle 

transition using a kinematic hardening model. From the analysis of the second two 

slope pyramid from Aveiro (simulated only with isotropic hardening), one can see a 

less global accurate shape prediction. Clearly some asymmetric accuracy is present 

(see Figure 5.28 and Figure 5.30) suggesting a type of twist effect or mode probably 

an asymmetric springback as the pyramid is not totally symmetric. A possible 

explanation is that the simulation using an isotropic hardening is not enough 

correct to take into account this springback effect. Indeed the available material 

tests did not allow identifying of more complex hardening law than the isotropic 

one. 
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The CPU time using adaptive remeshing procedure in the multistage 

simulation revealed insignificant decrease. The CPU time advantage is only 

obtained in the first stage of 50º wall angle due to the initial mesh density. In 

further stages the refined elements remains and consequently the addition and 

removal procedures decrease. 

The effects of different refinement levels in the shape prediction exhibited an 

irrelevant influence in the accuracy of the results. In terms of thickness prediction 

all the numerical results showed similar thinning effect close to the clamping 

boundary conditions. However, for the lowest level of refinement (n=1), it is 

observed an underestimate thickness prediction, as it can be seen in Figure 5.4.    

The multistage forming prediction in terms of shape and thickness presented 

a good agreement at the wall angle region in comparison with experimental 

measurements. As previously mentioned, the centre region of the bottom shape 

exhibits a deviation tendency, increasing from the first stage until the final target 

shape. The transition area between the flat bottom and the wall angle showed a 

good prediction from 50º to 70º wall angles. As previously described, the missing 

accuracy of experimental data for 80º and 90º wall angles leads to a deviation of 

numerical results. On the other hand, the numerical validation resorting to a 

similar example from Henrard (2008) confirmed the ability of adaptive remeshing 

method to accurately predict the shape and thickness of multistage forming, as 

shown in Appendix B.   

The information retrieved from integration points allowed to understand 

stress state components at different zone of the sheet as previously demonstrate in 

Section 5.2.2. The analysis of DC01 pyramid simulated by RESS element confirms 

that plasticity occurs within the slope transition zone during the forming of the 

second pyramid. In the contrary, the analyses of aluminium pyramid simulated by 

shell (Guzmán et al., 2012) confirms that no plasticity occurs in this case. This 

confirms that geometry and material are important to take into consideration 

before identifying the strain mechanism in SPIF process. 

Also, the major strain prediction computed from the integration points for 

all shapes present an acceptable level of accuracy compared to strain surface 

measurements when they are reliable. In the simulation of multistage forming 

accuracy issues were reported due to DIC measurements at the transition region. In 

contrast, the major strain prediction at the bottom and wall region demonstrated 

an acceptable accuracy.                          
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Finally, the geometries chosen validate the application of adaptive remeshing 

procedure for symmetric and asymmetric shapes. In addition, Table 5.14 shows the 

characteristics of the computer used to perform all the simulations previously 

discussed.  

 

Table 5.14: Computational characteristics used for all simulations. 

CPU type 

CPU clock speed Intel L5420 2.50 GHz 

Number of cores per CPU 2 (2 CPU - 4 cores) 

Main memory 4*1024 MB 

Operating system Cluster Vision OS, kernel 2.6.18-128.1.10el5 
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Chapter 6 

Conclusion  

In this thesis an efficient adaptive refinement method was applied using a solid-

shell finite element in order to accelerate the standard implicit FEM simulation of 

the SPIF process. The method and the element formulation were explained focusing 

the fundamental concepts and implementation procedure. Their performance was 

demonstrated through numerical simulation examples. 

The main conclusions and suggestions for future developments are presented in the 

following sections.   

 

6.1 Final considerations 

The numerical simulation carried out by nonlinear analysis of SPIF using 

static implicit scheme has shown its inefficiency. In this context, the present 

research work was mainly devoted to the application of an adaptive remeshing 

method combined with a specific solid-shell finite element. Both developments were 

implemented into an in-house Finite Element implicit code called LAGAMINE. 

Moreover, Chapter 2 reviewed different approaches on the automatic refinement 

mesh topic. However, the common aspect found between similar research works was 

always the use of shell elements, both in in-house codes or commercial codes. As it 

is well-known, generally shell elements formulations are based on plane stress 

assumptions and the thickness is obtained through mathematic artifices. In this 

sense, the use of a hexahedral finite element allows the possibility to use general 3D 

constitutive laws. Additionally, a direct consideration o f  thickness variations, 

double-sided contact conditions and evaluation of all components of the stress field 

are available with solid-shell and not with shell elements. 
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From the finite element developments of high-order solid elements, it is 

required additional formulation to solve locking pathologies. The Enhanced 

Assumed Strains (EAS) method allows enhancing the solid finite element 

deformation modes. Consequently, a high number of enhancing modes to solve the 

locking phenomena inevitably leads to high computational time. The choice of 

RESS finite element, presented earlier, has advantages due to its integration 

scheme to eliminate locking phenomena using reduced integration in the element 

plane. In this formulation, only one enhancing variable is needed to attenuate the 

volumetric locking. As a result, the vector of enhanced internal variables is 

equivalent to a single scalar. The arbitrary number of integration points through 

thickness in one single layer avoids the addition of elements in thickness direction. 

This characteristic decreases the total number of nodes and elements, and as a 

result reduces the computation time. 

A number of researchers have been interested in studying the deformation 

mechanisms and its peculiarities in order to understand the high formability 

achieved by SPIF process. These mechanisms were presented and described 

individually in the stat-of-art chapter (Chapter 2). However, there was not a 

general agreement due to the fact that each author has claimed and demonstrated 

his mechanism proposal. The main aspect found in the state-of-art research topic of 

deformation understanding on SPIF process was that all proposed mechanisms are 

directly or indirectly related with cyclic bending occurrence. 

Initially, the influence of adaptive remeshing parameters, more properly the 

α coefficient and the dmax  value, was analysed in the prediction of final shape and 

tool forces. These preliminary tests were used to select a set of parameters to be 

applied in further simulations. The line test was chosen due to its simplicity and 

high deformation imposed during the vertical step, larger than the value used 

during a complex shape forming. The best value of α coefficient and two values of 

dmax  were chosen. Afterwards, the obtained parameter sets were tested into a 

conical shape forming simulation combined with different number of nodal division 

per edge. These parameters sets were studied in the prediction of the major and 

minor plastic strains, shape, thickness and tool forces. 

A second simulation was performed in order to assess an incrementally 

formed component based on a pyramidal shape with two slopes. For this example, 

the shape accuracy was focused at transition region between both wall angle slopes. 

In particular, a special emphasis was given to the stress behaviour through the 

thickness in order to understand the shape evolution at transition wall angle zone. 
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The stress analysis through the sheet thickness exhibited a bending/unbending plus 

stretching, already documented in previous chapter, while the shear stresses remain 

very small. The combination of membrane under tension with bending behaviour 

was also found at different levels of depth. 

These numerical results were compared with experimental measurements 

along the middle section of the sheet resorting to displacement boundary conditions 

(BC) instead of symmetric BC. From these comparisons, a good accuracy 

agreement was obtained between experimental measurements, adaptive remeshing 

procedure and initially refined mesh. They also clearly confirmed that the 

combination of a trilinear hexahedral finite element and a remeshing strategy 

become appropriate to perform future SPIF simulations. Besides the drastic CPU 

time reduction while keeping accuracy, the use of the presented framework into 

further studies will allow for a deeper understanding of SPIF mechanisms, as could 

be shown in the present thesis. 

In conclusion, it has been shown that it is possible to perform accurate and 

efficient finite element simulations of SPIF process, resorting to implicit analysis 

and continuum elements. This is definitively a step-forward on the state-of-art in 

this field.   

 

6.2 Future works 

The author of this thesis suggests for further studies the following aspects: 

- Find the origin of memory leaks due to the use dynamic allocation and 

pointer (already identified within LAGAMINE code); 

- Adaptive remeshing using non-structured mesh; 

- Application of damage model coupled with adaptive remeshing procedure; 

- Implementation of different alternatives to Jauman rate; 

- Test different return mapping algorithms; 

- Correct prediction of springback phenomenon; 

- Numerical analysis of different toolpath strategies; 

- Experimental tests to find an adequate friction coefficient to be used into 

the numerical simulations. 
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Appendix A 

 Adaptive Remeshing subroutines: Flowchart description 

 
 

Figure A.1: Flowchart of all adaptive remeshing subroutines within LAGAMINE in-house code. 
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Appendix B 

Yield surface influence 

The purpose of this section is to analyse the influence of different yield 

surface definitions in the prediction of shape and thickness of a cone with vertical 

wall resorting to multi-stage forming. Besides, this section is also used to 

complement and overcome the missing accuracy between the numerical results and 

the experiments, especially in the 70º, 80º and 90º wall angles cones, described in 

Section 5.4.  The problems faced were related with the experimental measurements 

and, consequently, the errors introduced due to the interpolation procedure from 

ARGUS software used to replace the missing region of the measured DIC mesh.  

The experimental measurements and geometry dimensions used in these 

Appendix simulations are based on the work of Henrard (2008), schematically 

described in Figure B.1. The final shape forming is achieved by 5 stages performed 

through the SPIF process using circular contours separated by a vertical step of 1 

mm, as similarly detailed in Section 5.4. 

 

 
Figure B.1: Dimensions of the cone with vertical wall (Henrard, 2008). 

 

The material used is an AA3003-O sheet with initial thickness of 1.5 mm. 

The material parameters presented in the following table are well detailed in the 

work of Henrard (2008). The elastic domain is described by E = 72600 MPa and a 
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Poisson coefficient (ν) equal to 0.36. The following tables detail the material 

parameters used for each yield surface. The hardening behaviour of all yield 

surfaces are defined by means of Swift’s law.  

Table B.1 presents the material parameters for von Mises yield locus coupled 

with isotropic Swift hardening. 

 

Table B.1: Hardening parameters for isotropic yield locus. 

Swift’s law parameters 

0
F = 42.97 MPa  

K=180.0 MPa 

0 = 0.00109  

n=0.21 

 

Table B.2 gives the parameters for anisotropic Hill yield locus coupled with 

isotropic Swift hardening. 

 

Table B.2: Hill 48 yield locus parameters. 

Yield surface coefficients Swift’s law parameters 

F=1.224  

G=1.193 

H=0.807 

N=L=M=4.06 

K=180.0 MPa 

0 = 0.00109  

n=0.21 

 

Table B.3 describes the parameters for isotropic von Mises yield locus 

coupled with mixed isotropic, kinematic hardening. 

 

Table B.3: Kinematic yield locus using Ziegler’s parameters combined with isotropic surface expansion. 

Yield surface coefficients Swift’s law parameters Back-stress data 

F=G=H=1 

N=L=M=3 

K=175.0 

-4
0 =1.5 10  

n=0.328 

A = 800C  

A = 45.9G  

 

More detailed information regarding the identification procedures used to 

obtain the material parameters can be found in the work of Henrard (2008).  

In order to reduce the CPU time, only a 45º pie mesh with applied 

rotational boundary conditions to replace the missing material on the edges is 
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chosen, as similarly performed for circular meshes used in Chapter 5. Figure B.2 

presents the coarse mesh for the application of adaptive remeshing. The adaptive 

remeshing parameters chosen were: 3 nodes per edge (n=3), α equal to 1.0 and dmax  

equal to 0.05 mm. Figure B.2 exhibits the coarse mesh used with adaptive 

remeshing method modelled with 435 elements on the sheet plane using one layer of 

RESS finite element coupled with CFI3D contact element in thickness direction.  

The mesh concerns one layer of RESS finite element in sheet thickness direction 

with 5 GP through the thickness and CFI3D contact element (4 GP on plane). 

 

 
Figure B.2: Coarse mesh with 435 finite elements used with adaptive remeshing. 

 

Finally, Coulomb friction coefficient,  , between the tool and sheet is set to 0.05 

and the penalty coefficients, PK  and K , are equal to 1000 (Henrard, 2008). The 

following results are obtained at the end of each stage. 

    

   

Figure B.3: Shape at the stage of 50º wall angle. 

Tool direction 
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Figure B.4: Thickness at the stage of 50º wall angle. 

 

 
Figure B.5: Shape at the stage of 60º wall angle. 
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Figure B.6: Thickness at the stage of 60º wall angle. 

 

 
Figure B.7: Shape at the stage of 70º wall angle. 
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Figure B.8: Thickness at the stage of 70º wall angle. 

 

 
Figure B.9: Shape at the stage of 80º wall angle. 
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Figure B.10: Thickness at the stage of 80º wall angle. 

 

 
Figure B.11: Shape at the stage of 90º wall angle. 
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Figure B.12: Thickness at the stage of 90º wall angle. 

 

All the simulations performed resorting to adaptive remeshing achieved an 

equivalent final number of 2772 elements. These results generated by different 

constitutive laws for AA3003-O confirm for this shape the following statements:  

- no effect of anisotropy of the yield surface on the shape and thinning; 

- the error in the predicted depth of the bottom cannot be solved with a 

better description of the material behaviour as more advanced law, such as 

kinematic hardening does not improve the Finite Element predictions; 

- the experimental measurement accuracy seems better as it shows profile 

oscillation due to the multistep stages as the piece show them; 

- the Finite Element measured strains are in close agreement, Figure B.6 

exhibits a strong thinning localization reported by both approaches. 

This additional work confirms the idea that the Finite Element predictions 

are accurate from point of view of strains. The shift of bottom in numerical 

predictions with real state cannot be solved by material law. 

In order to analyse the refinement effect at the flat bottom area where the 

tool does not touch the sheet, a high density refinement mesh all over the sheet 

mesh is used. Figure B.13 describes the initial mesh density modelled with 6119 

elements on the sheet plane. Similarly, in the thickness direction the mesh is 

composed by one layer of RESS finite element coupled with CFI3D contact. The 

number of integration points for both elements are similar as previously described 

for the coarse mesh (see Figure B.2). 
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Figure B.13: Initial refined mesh modelled with 6119 finite elements (RESS+CFI3D). 

 

The following results present the comparison between different mesh 

densities at the final stage of 90º wall-angle using the material parameters described 

in Table B.1. Figure B.14 and Figure B.15 exhibit the shape and thickness 

predictions using a high refined mesh in centre region of the flat bottom. 

 

 
Figure B.14: Shape comparison between different densities meshes at the stage of 90º wall angle. 

 

As observed in Figure B.14, there is a slight improvement using a high 

refined mesh on the centre region of the shape prediction. However, the refinement 

of the centre region of the mesh is not the solution to improve the approximation of 

the numerical prediction. The wall and transition regions show similar predictions 
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for both meshes refinement strategies. Additionally, increasing the value of the 

vicinity size parameter (α) from adaptive remeshing procedure does not improves 

the numerical shape prediction.   

 

 
Figure B.15: Thickness comparison between different densities meshes at the stage of 90º wall angle. 

 

Figure B.15 shows identical thickness prediction for both meshes, there is no 

difference between the numerical results resorting to different strategies of mesh 

refinement. The initial refinement mesh density at the centre region of the mesh 

significantly increased the CPU time in 68%.  
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