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Brussels Summer School of Mathematics



Exercice d’échauffement

Signe de la fonction sin(x ) sur [0, π] ?
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Exercice d’échauffement

Signe de la fonction sin(x ) sin(2x ) sur [0, π] ?
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Exercice d’échauffement

Signe de la fonction sin(x ) sin(2x ) sin(4x ) sur [0, π] ?
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Exercice d’échauffement

Signe de la fonction sin(x ) sin(2x ) sin(4x ) sin(8x ) sur [0, π] ?
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Exercice d’échauffement

Question générale

Signe sur [0, π] de la fonction

fn(x ) := sin(x ) sin(2x ) sin(4x ) · · · sin(2nx )

L’intervalle [0, π] est divisé en 2n intervalles

Ij :=

[
j π

2n
,
(j + 1)π

2n

]

j = 0, . . . , 2n − 1

Comment caractériser facilement

le signe de fn sur Ij pour n grand et j < 2n . . .



Pour les cosinus, on dispose d’une formule :

cos(x ) cos(2x ) cos(4x ) · · · cos(2nx ) = sin(2n+1x )

2n+1 sin(x )



Un brin de formalisation



Un alphabet est un ensemble fini,
e.g., {+,−}, {a, b, c}, {0, 1, . . . , 9}, {A, C, G, T}.

Soit A un alphabet. Un mot (fini) de longueur n ≥ 0 sur A est une
application de [[0,n − 1]] à valeurs dans A, i.e., une suite finie
d’éléments de A.

+−−+, abcbca, AGGCTACTTA

La longueur d’un mot est notée |w |.

Le mot vide est la suite vide de longueur 0, noté ε.

Structure de monöıde

L’ensemble A∗ des mots finis sur A muni de l’opération de
concaténation est un monöıde dont le neutre est ε

bon · jour = bonjour



Notion de convergence

Soit A un alphabet. Un mot infini sur A est une application
w : N → A, i.e., une suite d’éléments de A

14159265358979323846264338327950288419716939937 · · ·

◮ suite de mots infinis convergeant vers un mot infini limite

◮ suite de mots finis convergeant vers un mot infini limite

Espace métrique

Soit AN l’ensemble des mots infinis sur A. Soient x,y ∈ AN

x ∧ y : plus long préfixe commun

d : AN × AN → R≥0, d(x,y) =

{
2−|x∧y| , si x 6= y

0 , si x = y
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Distance ultramétrique

1. d(x,y) ≥ 0,

2. d(x,y) = 0 si et seulement si x = y,

3. d(x,y) = d(y,x),

4. d(x, z) ≤ d(x,y) + d(y, z) (inégalité triangulaire),

∀w,x,y ∈ AN, d(w,x) ≤ max{d(w,y), d(y,x)} .

Digression. Soient p ≥ 2 premier et x entier. On a x = pnq et la
valuation p-adique νp(x ) = n. Extension à Q par
νp(a/b) = νp(a) − νp(b) pour tous a, b ∈ Z avec b 6= 0.

La valeur absolue p-adique (non archimédienne) sur le champ Q

est |x |p = p−νp(x) si x 6= 0 et |0|p = 0.

On a |x + y |p ≤ max{|x |p , |y |p} pour tous x , y ∈ Q et la distance
correspondante d(x , y) = |x − y |p est ultramétrique.
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boule de centre abbbbb · · · et de rayon 1/2

{x ∈ AN | d(x, abbbbb · · · ) ≤ 1/2}

aAN bAN

aaAN abAN baAN bbAN

Figure : Une représentation de {a, b}N.

◮ Tout point appartenant à une boule en est le centre ;

◮ si B ∩ B′ 6= ∅, alors B ⊆ B′ ou B′ ⊆ B.



Convergence

Soit (xn)n≥0 une suite de mots infinis sur A.
Cette suite converge vers y ∈ AN si

∀ǫ > 0, ∃N : ∀n ≥ N , d(xn ,y) < ǫ.

Pour tout ℓ, il existe N tel que pour tout n ≥ N , les mots infinis
xn ont tous le même préfixe de longueur ℓ.

NB : AN est un espace métrique complet et compact.

Convergence de mots finis

Soit (xn)n≥0 une suite de mots finis sur A. Soit z 6∈ A.
Cette suite converge vers y ∈ AN si

la suite (xnz
ω)n≥0 converge vers y.
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Exemple dans {0, . . . , 9}N, développement en fractions continues
de π − 3

1

7
142857142857 142857142857 142857142857 · · ·

1

7 +
1

15

141509433962264 1509433962264 15094339 · · ·

1

7 +
1

15 +
1

1

141592920353982300884955752212389380 · · ·

1

7 +
1

15 +
1

1 +
1

292

14159265301190260407226149477372968400 · · ·



Suite convergente de mots finis

1zzzzzzzzzzzzzzzzzzzzz · · ·
14zzzzzzzzzzzzzzzzzzzzz · · ·
141zzzzzzzzzzzzzzzzzzzzz · · ·
1415zzzzzzzzzzzzzzzzzzzzz · · ·
14159zzzzzzzzzzzzzzzzzzzzz · · ·
141592zzzzzzzzzzzzzzzzzzzzz · · ·
1415926zzzzzzzzzzzzzzzzzzzzz · · ·
14159265zzzzzzzzzzzzzzzzzzzzz · · ·
141592653zzzzzzzzzzzzzzzzzzzzz · · ·
1415926535zzzzzzzzzzzzzzzzzzzzz · · ·
14159265358zzzzzzzzzzzzzzzzzzzzz · · ·
141592653589zzzzzzzzzzzzzzzzzzzzz · · ·
1415926535897zzzzzzzzzzzzzzzzzzzzz · · ·
...
14159265358979323846264338327950288419716939937 · · ·



Si #A ≥ 2, AN est non dénombrable.

Cependant, les “algorithmes pouvant engendrer un mot infini de
AN”(i.e., si on fournit n par exemple en base 2, l’algorithme calcule
le n ième symbole du mot) forment un ensemble dénombrable.

Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. 1937.

 On va chercher des algorithmes“simples”
(hiérarchie de Chomsky, complexité de Chaitin–Kolmogorov).



Construction simple de mots infinis

Soit A∗ le monöıde des mots finis sur A. Un morphisme est une
application f : A∗ → A∗ telle que f (uv) = f (u)f (v) pour tous
u, v ∈ A∗.

Définition

Un morphisme prolongeable sur a est tel que

◮ f (a) = au avec u 6= ε et

◮ limn→+∞ |f n(a)| = +∞.

Exemple 1 (longueur constante)

t : + 7→ +−, − 7→ −+ est prolongeable, |tn(+)| = 2n .



Construction simple de mots infinis

Exemple 2

u : a 7→ abc, b 7→ ac, c 7→ bac est prolongeable sur a,
|un+1(a)| ≥ 2|un(a)|.

Exemple 3 (morphisme de Fibonacci)

f : a 7→ ab, b 7→ a est prolongeable sur a,
|f n(a)| = Fn .

Exemple 4

g : a 7→ ba, b 7→ ab n’est pas prolongeable.

Exemple 5

h : a 7→ ab, b 7→ ε n’est pas prolongeable,
|hn(a)| = 2 pour tout n ≥ 1.



Construction simple de mots infinis

Soit f : A∗ → A∗ un morphisme prolongeable sur a.

Exercice

1. Si f (a) = au, exprimer f n(a).

2. Montrer que f n(a) est un préfixe de f n+1(a).

3. Conclure que (f n(a))n≥0 converge vers un mot infini limite.

4. Etendre f sur AN et montrer que ce mot infini limite est un
point fixe de f .

f ω(a) := lim
n→+∞

f n(a).

Un morphisme prolongeable permet donc de définir aisément un
mot infini (ensemble des mots purement morphiques).



Construction simple de mots infinis

Exemple 1

t : + 7→ +−, − 7→ −+

t(+) = +−
t2(+) = +−−+
t3(+) = +−−+−++−
t4(+) = +−−+−++−−++−+−−+

...



Construction simple de mots infinis

Exemple 2

f : a 7→ abc, b 7→ ac, c 7→ bac

f (a) = abc

f 2(a) = abcacbac

f 3(a) = abcacbacabcbacacabcbac

f 4(a) = abcacbacabcbacacabcbacabcacbacacabc · · · bac
...
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Retour au problème initial

Comment caractériser facilement

le signe de fn sur Ij pour n grand et j < 2n . . .

En particulier, doit-on déterminer le signe de chaque intervalle pour
déterminer le signe d’un seul d’entre eux ? Doit-on disposer de
sign(I0), . . . , sign(Ij−1) pour déterminer sign(Ij ) ?

+−−+−++−−++−+−−+−++−+−−++−−+−++−· · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
+ − − + − + + − − + + − + − − · · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
⊕ − − + − + + − − + + − + − − · · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
⊕ ⊖ − + − + + − − + + − + − − · · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
+ ⊖ − + − + + − − + + − + − − · · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
+ − ⊖ ⊕ − + + − − + + − + − − · · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
+ − ⊖ + − + + − − + + − + − − · · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
+ − − + ⊖ ⊕ + − − + + − + − − · · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
+ − − ⊕ − + + − − + + − + − − · · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
+ − − + − + ⊕ ⊖ − + + − + − − · · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
+ − − + − + ⊕ − − + + − + − − · · ·



+ 7→ +−, − 7→ −+

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
+ − − + − + ⊕ − − + + − ⊕ ⊖ − · · ·

t2n = tn , t2n+1 = −tn



Morphismes de longueur constante

Soit f : A∗ → A∗ tel que |f (a)| = k pour tout a ∈ A.

k
k2

Figure : Morphisme de longueur constante k = 4.

x = f ω(a) = x0x1x2 · · · xq · · · · · · xj · · · · · ·

Lemme fondamental (simple exercice)

Soit j , km ≤ j < km+1. On a j = kq + r , km−1 ≤ q < km et
0 ≤ r < k . Le symbole xj est le (r + 1)-ième symbole dans f (xq).



t2n = tn , t2n+1 = −tn

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
⊕ ⊖ − ⊕ − + ⊕ − − + + − + ⊖ − · · ·

13 = 2.6 + 1 = 2.(2.3 + 0) + 1 = 2.(2.(2.1 + 1) + 0) + 1

= 2.(2.(2.(2.0 + 1) + 1) + 0) + 1

rep2(n) = 1101

Ainsi, connaissant l’écriture en base 2 de j , on détermine
directement le signe de la fonction sur Ij .



t2n = tn , t2n+1 = −tn

1 1 1 1 1 · · ·
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 · · ·
⊕ ⊖ − ⊕ − + ⊕ − − + + − + ⊖ − · · ·

13 = 2.6 + 1 = 2.(2.3 + 0) + 1 = 2.(2.(2.1 + 1) + 0) + 1

= 2.(2.(2.(2.0 + 1) + 1) + 0) + 1

rep2(n) = 1101

Ainsi, connaissant l’écriture en base 2 de j , on détermine
directement le signe de la fonction sur Ij .



+ 7→ +−, − 7→ −+

+ −
1

1

0 0

On introduit la notion d’automate fini déterministe

◮ Q ensemble d’états

◮ q0 ∈ Q état initial

◮ δ : Q × A → Q fonction de transition

On étend la fonction de transition à δ : Q × A∗ → Q



Recherche d’un mot dans un texte. . .

a

a

a

a

c

g

g

g,c,t

c,t

g,c,t

c,t

a

g
t a

g,c,t

agata

Complexité linéaire par rapport à l’entrée



Morphismes de longueur constante

L’exemple de +−−+−++− · · · se généralise :

f :







a 7→ abc

b 7→ cbc

c 7→ bca

a

b c

0

1
2

0, 2

1 1
0

2

f ω(a) = abccbcbcabcacbcbcacbcbcaabc · · ·

Proposition (A. Cobham 1972)

Si x = x0x1x2 · · · est point fixe d’un morphisme f de longueur
constante k ≥ 2 et débutant par a, alors pour l’automate associé

∀j , xj = δf (a, repk (j ))



Morphismes de longueur constante

Réciproque (A. Cobham 1972)

Soient k ≥ 2 et un automate fini déterministe

◮ A comme ensemble d’états,

◮ a ∈ A comme état initial,

◮ [[0, k − 1]] comme alphabet, (k arcs sortant de chaque état)

◮ δ(a, 0) = a.

Alors, le mot infini x défini par

∀j , xj = δ(a, repk (j ))

est engendré par le morphisme prolongeable sur a de longueur
constante k et associé à l’automate.

Ensemble des mots infinis k -automatiques.



Généralisations

◮ Ajout d’un codage (projection) / automates avec sortie

f ω(a) = abccbcbcabcacbcbcacbcbcaabc · · ·

g(f ω(a)) = 010010100100010100010100010 · · ·
{mots purement morphiques} ( {mots morphiques}

◮ Etude des ensembles k -reconnaissables de nombres

{1, 4, 6, 9, 13, 15, 19, 21, 25, . . .}

◮ Longueur non constante, a 7→ ab, b 7→ a

abaababaabaababaab · · ·

 systèmes de numération non standards

◮ Cadre multi-dimensionnel

◮ Codage/représentation de systèmes dynamiques discrets



{mots automatiques} ( {mots morphiques}

◮ fréquence d’apparition d’un symbole

◮ ordre de croissance, thm. de Cobham de 1969

◮ fonction de complexité

f : a 7→ ab, b 7→ a

f ω(a) = abaababaabaababaababaabaababaabaababaababaabaabab · · ·



Est-ce qu’un mot infini engendré par un morphisme de longueur 2
peut aussi l’être par un morphisme de longueur 3 ?

A. Cobham
http://recursed.blogspot.com/2010/04/alan-cobham.html





J.-P. Allouche, T. Johnson, Finite automata and morphisms in assisted

musical composition, Journal of New Music Research (1995).

Tom Johnson :“Les automates finis n’occupent qu’un chapitre dans mon

livre Self-Similar Melodies (1996), mais en 1997 j’eus envie d’étudier des

suites de cette sorte plus rigoureusement et de composer une collection

de Automatic Music for six percussionists. Les sept premiers mouvements

furent créés à Moscou par l’ensemble de Marc Pekarsky. . . ”



Applications

1. Combinatoire des mots : étude des configurations, motifs
évitables, dénombrement, énumération, structure,. . .

2. Théorie des nombres

3. Géométrie discrète

(4.) Système de numération, ensembles reconnaissables,
vérification

(5.) Théorie des jeux combinatoires



Combinatoire des mots

Un carré : coco, 0120212101, uu

Théorème

Si #A = 2, tout mot suffisamment long contient un carré.

◮ Si #A > 2 ?

◮ Peut-on éviter les cubes sur deux lettres ?



Combinatoire des mots

Un carré : coco, 0120212101, uu

Théorème

Si #A = 2, tout mot suffisamment long contient un carré.

◮ Si #A > 2 ?

◮ Peut-on éviter les cubes sur deux lettres ?



Combinatoire des mots

Un chevauchement : cvcvc, ananas

Tout cube débute/se termine par un chevauchement

Théorème (Thue 1906)

Le mot de Thue–Morse ne contient pas de chevauchement

+−−+−++−−++−+−−+−++−+−−++−−+−++−· · ·

M. Morse, Recurrent geodesics on a surface of negative curvature,
Trans. Amer. Math. Soc. 22 (1921) 84–100.



Combinatoire des mots

Preuve (Lothaire)

Lemme

Soit X = {ab, ba}.
Si x ∈ X ∗, alors axa et bxb n’appartiennent aucun des deux à X ∗.

Par récurrence sur |x |.
Cas de base, x = ε.

Supposons le résultat OK pour les mots de longueur < n.

Soit x ∈ X ∗ de longueur n.
Par l’absurde, supposons que u = axa ∈ X ∗.

u = abyba, |y | = |x | − 2

et y ∈ X ∗ donc x = byb 6∈ X ∗, absurde.
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Combinatoire des mots
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Combinatoire des mots

Lemme “overlap-free morphism”

Soit f tel que f (a) = ab, f (b) = ba.
Si w est sans chevauchement, f (w) aussi.

Supposons que f (w) contient un chevauchement

f (w) = xcvcvcy , c ∈ {a, b}, v , x , y ∈ {a, b}∗

Thèse : w contient un chevauchement.

 exploiter le fait que f est de longueur constante.



Combinatoire des mots

f (w) = xcvcvcy

|cvcvc| = 3 + 2|v | est impair, |f (w)| pair ⇒ |xy | impair.

◮ Montrer que |v | est impair

◮ Si |x | pair, alors cvcv , cy ∈ X ∗.
supposons |v | pair, alors cvc ∈ X ∗, contradiction.

◮ Si |x | impair, alors vcvc, y ∈ X ∗.
supposons |v | pair, alors cvc ∈ X ∗, contradiction.



Combinatoire des mots

f (w) = xcvcvcy

|cvcvc| = 3 + 2|v | est impair, |f (w)| pair ⇒ |xy | impair.

◮ Montrer que |v | est impair

◮ Si |x | pair, alors cvcv , cy ∈ X ∗.
supposons |v | pair, alors cvc ∈ X ∗, contradiction.

◮ Si |x | impair, alors vcvc, y ∈ X ∗.
supposons |v | pair, alors cvc ∈ X ∗, contradiction.



Combinatoire des mots

On peut conclure
1. Si |x | pair.

f (w) = x
︸︷︷︸

pair

c

impair
︷︸︸︷
v

︸ ︷︷ ︸

pair

cv
︸︷︷︸

pair

cy ∈ X ∗

x , cv , cy ∈ X ∗ ⇒ ∃r , s, t : f (r) = x , f (s) = cv , f (t) = cy

w = rsst

s, t débutent par la même lettre,
donc sst débute par un chevauchement.

2. Si |x | impair.

f (w) = xc
︸︷︷︸

pair

impair
︷︸︸︷
v c

︸ ︷︷ ︸

pair

vc
︸︷︷︸

pair

y ∈ X ∗



Combinatoire des mots
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︸︷︷︸

pair

c

impair
︷︸︸︷
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︷︸︸︷
v c
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pair

y ∈ X ∗
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Combinatoire des mots

Corollaire

Existence d’un mot sur 3 lettres sans carré

{a, ab, abb} code

abb|ab|a|abb|a|ab|abb|ab|a|ab|abb|a|abb|ab|a|ab · · ·
321312321231321 · · ·



Combinatoire des mots

Un carré abélien : abcbca
Peut-on construire un mot infini sur 3 lettres sans carré abélien ?

0102010

0102101
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0102010

0102101



Combinatoire des mots

V. Keränen (ICALP’1992) fournit un morphisme de longueur 85
répondant à la question !

a 7→ abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabd

abacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca;

b 7→ bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbca

bcbdbadcdadbdacdcbdcdadbdadcadabacadcdb;

c 7→ cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdb

cdcacbadabacabdadcadabacabadbabcbdbadac;

d 7→ dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadac

dadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd ;



Combinatoire des mots

J. Cassaigne, J. D. Currie, L. Schaeffer, J. Shallit, Avoiding Three
Consecutive Blocks of the Same Size and Same Sum, arXiv:1106.5204

ϕ : 0 7→ 03, 1 7→ 43, 3 7→ 1, 4 7→ 01

ϕω(0) = 031430110343430310110110314303434303434 · · ·
ne contient aucun cube additif, e.g., 041340.



Combinatoire des mots

Le problème de Prouhet (1851) – Tarry – Escott
Mémoire sur quelques relations entre les puissances de nombres

Partitionner {0, . . . , 2n − 1} de telle sorte que

{0, . . . , 2n − 1} = {a1, . . . , a2n−1} ∪ {b1, . . . , b2n−1}

2n−1

∑

j=1

aj =
2n−1

∑

j=1

bj ,
2n−1

∑

j=1

a2
j =

2n−1

∑

j=1

b2j , . . . ,
2n−1

∑

j=1

an−1
j =

2n−1

∑

j=1

bn−1
j

∞∏

i=0

(1− X 2i ) =
∞∑

j=0

tj X
j
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Théorie des nombres

Exhiber des nombres transcendants (sur Q)

◮ nombres de Liouville (approximations diophantiennes)

∞∑

j=1

1

10j !
,

∞∑

k=1

aj

k j !
, k ≥ 2, aj ∈ [[0, k − 1]]

◮ e

◮ π

Quid des nombres k -automatiques ?

011010011001011010010110 · · · ↔ 0, 4124540314078330 · · ·

x0x1x2 · · · ↔
∑

j≥0

xj

k j+1



Théorie des nombres

Conjecture Cobham, Hartmanis–Stearns’1965

◮ mot ultimement périodique ↔ nombre rationnel

◮ mot k -automatique non périodique → nombre transcendant ?

◮ Si α est un nombre algébrique irrationnel, alors le
développement en base k de α ne peut pas être engendré par
un automate fini ?

◮ Existe-t-il un nombre algébrique irrationnel dont les n
premiers chiffres puissent être calculés en O(n) opérations ?



Théorie des nombres

Fonction de complexité pw : N → N,n 7→ #Facw(n)

pw(m + n) ≤ pw(m)pw(n), pw(n) ≤ (#A)n

pw(n) ≤ pw(n + 1)

Théorème (Morse–Hedlund)

Les conditions suivantes sont équivalentes

◮ w est ultimement périodique, w = uvω

◮ il existe N tel que pw(N ) ≤ N

◮ pw est borné

◮ il existe m tel que pw(m) = pw(m + 1)

Si w non périodique, alors pw(n) ≥ n + 1 pour tout n.



Théorie des nombres

Complexité des mots automatiques

Si w est un mot k -automatique, alors pw(n) est en O(n)

Preuve (désubstitution)
f ω(a) = abbabaabbaababbabaababbaabbabaab · · ·
(f 2)ω(a) = ab|ba|ba|ab|ba|ab|ab|ba|ba|ab|ab|ba|ab|ba|ba|ab| · · ·
(f 3)ω(a) = ab ba|ba ab|ba ab|ab ba|ba ab|ab ba|ab ba|ba ab| · · ·
(f 4)ω(a) = ab ba ba ab|ba ab ab ba|ba ab ab ba|ab ba ba ab| · · ·

4 < n ≤ 8, km−1 < n ≤ km , (#A)2km < (#A)2k n

Remarque Pansiot (1984)

Soit w un mot purement morphique (non périodique),
alors pw(n) est en Θ(n), Θ(n log n), Θ(n log log n) ou Θ(n2).
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Théorie des nombres

Complexité du mot de Thue–Morse
(de Luca, Varricchio ; Cassaigne ; Brlek)

pt(n) =

{
4n − 2 · 2m − 4, if 2 · 2m < n ≤ 3 · 2m ;
2n + 4 · 2m − 2, if 3 · 2m < n ≤ 4 · 2m .

1000 2000 3000 4000

2000

4000

6000

8000

10 000

12 000



Théorie des nombres

Théorème Bugeaud–Adamczewski 2007

Si w est le développement en base k d’un nombre algébrique
irrationnel, alors

lim
n→+∞

pw(n)

n
= +∞

Corollaire

Les nombres automatiques non périodiques sont transcendants.



Théorie des nombres

Soient K un corps, a(n) ∈ KN et k1, . . . , kd ∈ K. La suite a(n)
satisfait une relation de récurrence linéaire sur K si

a(n) = k1a(n − 1) + · · ·+ kd a(n − d), ∀n >>

Skolem–Mahler–Lech

Soit a(n) une suite linéaire récurrente sur un corps de
caractéristique 0. Alors, l’ensemble

Z(a) = {n ∈ N | a(n) = 0} est ultimement périodique.

Remarque

Si K est un corps fini, a(n) (et donc Z(a)) est trivialement
ultimement périodique.

T. Tao, Effective Skolem–Mahler–Lech theorem in Structure and Randomness, AMS’08.



Théorie des nombres

Si K est un corps infini de caractéristique p > 0. . .

Exemple 1 (Lech)

a(n) := (1 + t)n − tn − 1 ∈ Fp(t).

La suite a satisfait la relation linéaire sur Fp(t), pour n > 3

a(n) = (2+2t) a(n − 1)+(1+3t+t2) a(n − 2)−(t+t2) a(n − 3).

On a
a(pj ) = (1 + t)p

j − tp
j − 1 = 0

alors que a(n) 6= 0 si n n’est pas une puissance de p. Dès lors, on
obtient

Z(a) = {1, p, p2, p3, . . .}.



Théorie des nombres

Exemple 2 (Derksen)

Soit la suite a(n) de Fp(x , y , z ) définie par

a(n) := (x+y+z )n−(x+y)n−(x+z )n−(y+z )n+xn+yn+zn .

On peut montrer que :

◮ La suite a(n) satisfait une relation de récurrence linéaire.

◮ L’ensemble des zéros est donné par

Z(a) = {pn | n ∈ N} ∪ {pn + pm | n,m ∈ N}.

Z(a) peut sembler plus pathologique qu’en caractéristique nulle.
Cependant, on peut penser aux mots p-automatiques !



Théorie des nombres

Théorème (H. Derksen’2007)

Soit a(n) une suite linéaire récurrente sur un corps de
caractéristique p. Alors la suite caractéristique de l’ensemble Z(a)
est un mot p-automatique.

Derksen décrit précisément la forme des automates possibles :
Tout mot p-automatique n’est pas un ensemble Z(a) pour une
suite linéaire récurrente sur un corps de caractéristique p.



Géométrie discrète

Discrétisation de droites (pente irrationnelle)

5 10 15 20

2

4

6

8

abaababaabaababaababaabaababaabaababaababaabaabab · · ·
 Tester si une suite de“pixels”décrit un segment de droite ?



Géométrie discrète

Q/Z est l’ensemble des points d’ordre fini dans R/Z

α rationnel ⇔ ∃m,n ∈ Z, m 6= n, {mα} = {nα}.

Si α = p/q ,
{

(q+1)p
q

}

= {p/q}

Supposons qu’il existe m < n tels que {mα} = {nα}.
Alors (n −m)α est un entier r et α = r/(n −m) ∈ Q
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Géométrie discrète

Exercice (thm. de Kronecker)

Si α est irrationnel, alors
l’ensemble des {nα}, n ∈ N, est dense dans [0, 1].

Soit N . On partitionne [0, 1] en intervalles de longueur 1/N .

“Pigeonhole principle” : deux éléments {α}, {2α}, . . . , {(N + 1)α}
appartiennent au même intervalle.

Si i < j ≤ N + 1 tels que k/N < {iα} < {jα} < (k + 1)/N ,

{(j − i)α} < 1/N et on considère les {n(j − i)α}

Si i < j ≤ N + 1 tels que k/N < {jα} < {iα} < (k + 1)/N ,

1− 1/N < {(j − i)α} < 1
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Géométrie discrète

On a même un résultat plus fort de ”distribution uniforme”

Théorème (Weyl 1916)

Soient 0 < a < b < 1. Si α est irrationnel, alors

lim
n→+∞

#{k < n | a < {kα} < b}
n

= b − a .



Géométrie discrète

Réalisation de systèmes dynamiques discrets
T = R/Z, R : T → T, x 7→ x + α (mod 1)

Ia = [0, 1 − α[, Ib = [1− α, 1[, a
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Réalisation de systèmes dynamiques discrets
T = R/Z, R : T → T, x 7→ x + α (mod 1)

Ia = [0, 1 − α[, Ib = [1− α, 1[, abaa
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Ib

Ia , Ib



Géométrie discrète

R−1(Ib)

Ia ∩ R−1(Ia ), Ia ∩R−1(Ib), Ib ∩R−1(Ia)



Géométrie discrète

R−2(Ib)

Ia ∩ R−1(Ia ) ∩ R−2(Ib), Ia ∩ R−1(Ib) ∩ R−2(Ia),
Ib ∩ R−1(Ia ) ∩ R−2(Ia), Ib ∩ R−1(Ia) ∩ R−2(Ib)



Géométrie discrète

R−3(Ib)

Iaab ∩ R−3(Ia), Iaba ∩ R−3(Ia), Iaba ∩R−3(Ib)
Ibaa ∩ R−3(Ib), Ibab ∩R−3(Ia )



Géométrie discrète

R−4(Ib)

Iaabaa , Iaabab , Iabaab ,
Iababa , Ibaaba , Ibabaa



Géométrie discrète

Les mots sturmiens sont caractérisés de diverses façons

◮ sont de complexité p(n) = n + 1 (minimale)

◮ mots mécaniques de pente irrationnelle

◮ codage de rotations

◮ mots apériodiques et équilibrés,

∀u, v ∈ Facn , −1 ≤ |u|a − |v |a ≤ 1.

cf. aussi les suites de Beatty

⌊(n + 1)ϕ⌋ − ⌊nϕ⌋



Complexité du mot de G. Rote (JNT 1994)

xn =

{
a si {nα} < 1/2
b sinon

Si α = (1 +
√
5)/2,

xϕ = ababaababbabaababbaba · · ·

n’est pas sturmien, p(2) = 4.
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