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EXERCICE D’ECHAUFFEMENT

Signe de la fonction sin(z) sur [0,7]?




EXERCICE D’ECHAUFFEMENT

Signe de la fonction sin(z) sin(2z) sur [0, 7] ?




EXERCICE D’ECHAUFFEMENT

Signe de la fonction sin(z) sin(2z) sin(4x) sur [0, 7] ?







EXERCICE D’ECHAUFFEMENT

QUESTION GENERALE

Signe sur [0, 7] de la fonction

fn(z) :=sin(z) sin(2z) sin(4z) - - - sin(2"z)

L'intervalle [0, 7] est divisé en 2™ intervalles

_im GHDm]

COMMENT CARACTERISER facilement

le signe de f, sur I; pour n grand et j < 2"...



Pour les cosinus, on dispose d'une formule :

: 2n+1
cos(z) cos(2z) cos(4x) - -+ cos(2"z) = ;11(17(35))
sin(z



Un brin de formalisation



Un alphabet est un ensemble fini,
eg., {+,—} {a,b,c}, {0,1,...,9}, {A,C,G, T}

Soit A un alphabet. Un mot (fini) de longueur n > 0 sur A est une
application de [0,n — 1] a valeurs dans A4, i.e., une suite finie
d'éléments de A.

+ — —+, abcbca, AGGCTACTTA
La longueur d'un mot est notée |w].
Le mot vide est la suite vide de longueur 0, noté ¢.

STRUCTURE DE MONOIDE

L'ensemble A* des mots finis sur A muni de |'opération de
concaténation est un monoide dont le neutre est

bon - jour = bonjour



NOTION DE CONVERGENCE

Soit A un alphabet. Un mot infini sur A est une application
w: N — A, ie, une suite d'éléments de A

14159265358979323846264338327950288419716939937 - - -



NOTION DE CONVERGENCE

Soit A un alphabet. Un mot infini sur A est une application
w: N — A, ie, une suite d'éléments de A

14159265358979323846264338327950288419716939937 - - -

> suite de mots infinis convergeant vers un mot infini limite

> suite de mots finis convergeant vers un mot infini limite

ESPACE METRIQUE

Soit A" I'ensemble des mots infinis sur A. Soient x,y € AN

x Ay : plus long préfixe commun

-yl six £y

. AN N =
d: A" x A7 — Ry, d(x,y)—{o ,SixX=y



DISTANCE ULTRAMETRIQUE

1.
2.
3.
4.

X,y € AN d(w,x) < max{d(w,y), d(y,x)}.



DISTANCE ULTRAMETRIQUE

1. d(x,y) >0,

2. d(x,y) = 0 si et seulement si x =y,

3. d(x,y) = d(y,x),

4. d(x,z) < d(x,y) + d(y,z) (inégalité triangulaire)

vw,x,y € AN, d(w,x) < max{d(w,y), d(y,x)}.

Digression. Soient p > 2 premier et = entier. On a x = p"q et /a
valuation p-adique v,(x) = n. Extension a Q par
vp(a/b) =vy(a) — vy(b) pour tous a, b € Z avec b # 0.

La valeur absolue p-adique (non archimédienne) sur le champ Q
est ||, = p~»®) si x # 0 et |0, = 0.

On a |z + y|p, < max{|z|p,|y|p} pour tous z,y € Q et la distance
correspondante d(z, y) = |z — y|, est ultramétrique.



boule de centre abbbbb--- et de rayon 1/2

{x € AN | d(x,abbbbb---) < 1/2}

aAN bAN

aaAN apbAN baAN bbAN

FIGURE : Une représentation de {a,b}".

» Tout point appartenant a une boule en est le centre;
» siBNB #10, alors BC B ou B C B.



CONVERGENCE

Soit (x,,)n>0 une suite de mots infinis sur A.
Cette suite converge vers y € AN si

Ve >0,dN : Vn > N,d(x,,y) < €.



CONVERGENCE

Soit (x,,)n>0 une suite de mots infinis sur A.
Cette suite converge vers y € AN si

Ve >0,dN : Vn > N,d(x,,y) < €.

Pour tout /, il existe N tel que pour tout n > N, les mots infinis
X, ont tous le méme préfixe de longueur /.

NB : AN est un espace métrique complet et compact.

CONVERGENCE DE MOTS FINIS

Soit (x,)n>0 une suite de mots finis sur A. Soit z & A.
Cette suite converge vers y € AN si

la suite (2,2),>0 converge vers y.



Exemple dans {0,...,9} développement en fractions continues
dem—3

1
- 142857142857 142857142857 142857142857 - - -
L 1 141509433962264 1509433962264 15094339 - - -
74
jL_15
1
1 141592920353982300884955752212389380 - - -
1 z
5+ 1
1
1 14159265301190260407226149477372968400 - - -
7+ 1
15 + 1
14—
+292



Suite convergente de mots finis

lzzzzzzzzzzzazzzzzzzzz - - -
14z22z222222022222222222

141 22z2222222222222222222 - - -

1415 2z2222222222222222222
14159z2z22222222222222222222 - - -
141592z2z2222222222222222222

1415926 222222222222222222222 - - -
14159265222222222222222222222 - - -
141592653 z22222222222222222222 e
1415926535 222222222222222222222 - - -
14159265358 222222222222222
141592653589 222222222222222222222 - - -
1415926535897 2222222222222222 2227 -

14159265358979323846264338327950288419716939937 - - -



Si #A > 2, AN est non dénombrable.

Cependant, les “algorithmes pouvant engendrer un mot infini de
AN (i.e., si on fournit n par exemple en base 2, I'algorithme calcule
le niéme symbole du mot) forment un ensemble dénombrable.

Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. 1937.

~» On va chercher des algorithmes “simples”
(hiérarchie de Chomsky, complexité de Chaitin—Kolmogorov).



CONSTRUCTION SIMPLE DE MOTS INFINIS

Soit A* le monoide des mots finis sur A. Un morphisme est une
application f : A* — A* telle que f(uv) = f(u)f(v) pour tous
u,v € A*.

DEFINITION

Un morphisme prolongeable sur a est tel que
» f(a) = au avec u # ¢ et

> limy o0 |[f"(a)] = +o0.

EXEMPLE 1 (LONGUEUR CONSTANTE)

t:+4— +—, —— —+ est prolongeable, |t"(+)| = 2".



CONSTRUCTION SIMPLE DE MOTS INFINIS

EXEMPLE 2

u: a— abc, b— ac, c¢— bac est prolongeable sur a,
[u"* (a)] = 2u"(a)].

EXEMPLE 3 (MORPHISME DE FIBONACCI)

f:ar~ ab, b— a est prolongeable sur a,
[f*(a)| = Fn.

EXEMPLE 4

g:a— ba, b— ab n'est pas prolongeable.

EXEMPLE 5

h:aw~ ab,b+— € n'est pas prolongeable,
|h"™(a)| = 2 pour tout n > 1.




CONSTRUCTION SIMPLE DE MOTS INFINIS

Soit f : A* — A* un morphisme prolongeable sur a.

EXERCICE

Si f(a) = au, exprimer f"(a).
Montrer que f"(a) est un préfixe de f"+1(a).

Conclure que (f™(a))n>0 converge vers un mot infini limite.

= 8 R

Etendre f sur AN et montrer que ce mot infini limite est un
point fixe de f.

f“(a):= lim f"(a).

n——+o00

Un morphisme prolongeable permet donc de définir aisément un
mot infini (ensemble des mots purement morphiques).



CONSTRUCTION SIMPLE DE MOTS INFINIS

EXEMPLE 1

frari d= == =
t+) = +-
Py = +——+
Pl = === =
t4(+)

= +——+—++——++—+-——+



CONSTRUCTION SIMPLE DE MOTS INFINIS

EXEMPLE 2

f:ar— abc, b ac, ¢ bac

(a) = abc
(a) = abcacbac
f3(a) = abcacbacabcbacacabcbac
(a) = abcacbacabcbacacabebacabeacbacacabe - - - bac



Retour au probléme initial

COMMENT CARACTERISER facilement

le signe de f, sur I; pour n grand et j < 2"...

En particulier, doit-on déterminer le signe de chaque intervalle pour
déterminer le signe d’un seul d'entre eux ? Doit-on disposer de
sign(lp), . . ., sign(lj—1) pour déterminer sign(l;)?

b —t ettt —
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MORPHISMES DE LONGUEUR CONSTANTE

Soit f : A* — A* tel que |f(a)| = k pour tout a € A.

FIGURE : Morphisme de longueur constante k = 4.

LEMME FONDAMENTAL (SIMPLE EXERCICE)

Soit j, k™ <j < k™l Onaj=kg+r k™ I1<qg<k™et
0 < r < k. Le symbole z; est le (r + 1)-ieme symbole dans f(z,).



ton, = tna t2n+1 =—tp

1
1 2 4 7 8

1 1 1 1
3 5 6 9 0 2 3 4
5 - ® -+ ® - — + + - + 6 -
13=26+1=2.23+0)+1=2(2.(214+1)+0)+1

=2.(2.(2.20+1)+1)4+0)+1



ton, = tna t2n+1 =—tp

1
0 1 2 3 4 7 8

1 1 1 1

3 5 6 9 0 2 3 4

60 -® -+ ® - -+ + - + 6 -

13=26+1=2.23+0)+1=2(2.(214+1)+0)+1
= 2.(2.(2.204+1)+1)+0)+1

repy(n) = 1101

Ainsi, connaissant I'écriture en base 2 de j, on détermine
directement le signe de la fonction sur I;.



F e, e+

1

On introduit la notion d'automate fini déterministe
» () ensemble d'états
> o € () état initial
> §: @ x A— @ fonction de transition

On étend la fonction de transition a § : @ x A* — @



Recherche d'un mot dans un texte. . .

g.ct

agata

Complexité linéaire par rapport a |'entrée



MORPHISMES DE LONGUEUR CONSTANTE

L'exemple de + — — + — + + — - -+ se généralise :

a +— abc
f:< b — cbc
c +— bca

0,2

f¥(a) = abccbebeabeacbebeacbebeaabe - - -

PROPOSITION (A. COBHAM 1972)

Si x = myr129 - - - est point fixe d'un morphisme f de longueur
constante k > 2 et débutant par a, alors pour |'automate associé

vja Ty = 5f (aa repy (]))



MORPHISMES DE LONGUEUR CONSTANTE

RECIPROQUE (A. COBHAM 1972)

Soient k£ > 2 et un automate fini déterministe
» A comme ensemble d'états,
» a € A comme état initial,
» [0,k — 1] comme alphabet, (k arcs sortant de chaque état)
> §(a,0) = a.

Alors, le mot infini x défini par

Vi, = 0(a,repy(j))

est engendré par le morphisme prolongeable sur a de longueur
constante k et associé a |'automate.

Ensemble des mots infinis k-automatiques.



Généralisations

» Ajout d'un codage (projection) / automates avec sortie
f%(a) = abccbebecabcacbebeacbebeaabe - - -

9(f“(a)) = 010010100100010100010100010 - - -
{mots purement morphiques} C {mots morphiques}

Etude des ensembles k-reconnaissables de nombres

v

{1,4,6,9,13,15,19,21,25,...}
» Longueur non constante, a +— ab, b— a
abaababaabaababaab - - -

~~ systemes de numération non standards

Cadre multi-dimensionnel

v

v

Codage/représentation de systémes dynamiques discrets



{mots automatiques} C {mots morphiques}

» fréquence d'apparition d'un symbole
» ordre de croissance, thm. de Cobham de 1969

» fonction de complexité

f:a—ab, b—a

f¥(a) = abaababaabaababaababaabaababaabaababaababaabaabab - - -



Est-ce qu’un mot infini engendré par un morphisme de longueur 2
peut aussi I'étre par un morphisme de longueur 3 ?

A. Cobham
http://recursed.blogspot.com/2010/04/alan-cobham.html
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J.-P. Allouche, T. Johnson, Finite automata and morphisms in assisted
musical composition, Journal of New Music Research (1995).

Tom Johnson : “Les automates finis n’occupent qu'un chapitre dans mon
livre Self-Similar Melodies (1996), mais en 1997 j'eus envie d'étudier des
suites de cette sorte plus rigoureusement et de composer une collection
de Automatic Music for six percussionists. Les sept premiers mouvements
furent créés a Moscou par I'ensemble de Marc Pekarsky.-."



Applications

1. Combinatoire des mots : étude des configurations, motifs
évitables, dénombrement, énumération, structure,. . .

2. Théorie des nombres
3. Géométrie discrete
(4.) Systeme de numération, ensembles reconnaissables,
vérification

(5.) Théorie des jeux combinatoires



COMBINATOIRE DES MOTS

Un carré : coco, 0120212101, wu

THEOREME

Si #A = 2, tout mot suffisamment long contient un carré.




COMBINATOIRE DES MOTS

Un carré : coco, 0120212101, wu

THEOREME

Si #A = 2, tout mot suffisamment long contient un carré.

> Si#A>27

» Peut-on éviter les cubes sur deux lettres ?



COMBINATOIRE DES MOTS

Un chevauchement : cvcve, ananas

Tout cube débute/se termine par un chevauchement

THEOREME (THUE 1906)

Le mot de Thue—Morse ne contient pas de chevauchement

bttt

M. Morse, Recurrent geodesics on a surface of negative curvature,
Trans. Amer. Math. Soc. 22 (1921) 84-100.



COMBINATOIRE DES MOTS

Preuve (Lothaire)

LEMME
Soit X = {ab, ba}.
Si z € X*, alors aza et bzb n'appartiennent aucun des deux a X*.

Par récurrence sur |z|.

Cas de base, z = .



COMBINATOIRE DES MOTS

Preuve (Lothaire)

LEMME

Soit X = {ab, ba}.

Si z € X*, alors aza et bzb n'appartiennent aucun des deux a X*.
Par récurrence sur |z|.

Cas de base, z = ¢.

Supposons le résultat OK pour les mots de longueur < n.

Soit z € X* de longueur n.
Par I'absurde, supposons que u = aza € X*.



COMBINATOIRE DES MOTS

Preuve (Lothaire)

LEMME

Soit X = {ab, ba}.
Si z € X*, alors aza et bzb n'appartiennent aucun des deux a X*.

Par récurrence sur |z|.
Cas de base, z =¢.
Supposons le résultat OK pour les mots de longueur < n.

Soit z € X* de longueur n.
Par I'absurde, supposons que u = aza € X*.

u = abyba, |y|=|z|—2

et y € X* donc z = byb ¢ X*, absurde.



COMBINATOIRE DES MOTS

LEMME “OVERLAP-FREE MORPHISM”

Soit f tel que f(a) = ab, f(b) = ba.
Si w est sans chevauchement, f(w) aussi.

Supposons que f(w) contient un chevauchement
f(w) = zcvevey, ¢ €{a,b}, v,z,y €{a,b}”
These : w contient un chevauchement.

~> exploiter le fait que f est de longueur constante.



COMBINATOIRE DES MOTS

f(w) = zevevey

|cveve| = 34 2|v| est impair, |f(w)| pair =  |zy| impair.



COMBINATOIRE DES MOTS

f(w) = zevevey

|cveve| = 34 2|v| est impair, |f(w)| pair =  |zy| impair.

» Montrer que |v| est impair

» Si |z| pair, alors cvcv, cy € X*.
supposons |v| pair, alors cvc € X*, contradiction.

» Si |z| impair, alors veve, y € X*.
supposons |v| pair, alors cvc € X*, contradiction.



COMBINATOIRE DES MOTS

On peut conclure

1. Si |z| pair.
impair
_ = *
flw)y=_x ¢"v \cg/cyEX

pair  pair  pair



COMBINATOIRE DES MOTS

On peut conclure

1. Si |z| pair.
impair
_ = *
flw)y=_x ¢"v \cg/cyEX

pair  pair  pair

z,ev,cy € X =3Ary s, t:f(r) =z, f(s)=cv, f(t)=cy

w = rsst



COMBINATOIRE DES MOTS

On peut conclure

1. Si |z| pair.
impair
_ = *
flw)y=_x ¢"v \cg/cyEX

pair  pair  pair

z,ev,cy € X =3Ary s, t:f(r) =z, f(s)=cv, f(t)=cy
w = rsst

s, t débutent par la méme lettre,
donc sst débute par un chevauchement.

2. Si |z| impair.



COMBINATOIRE DES MOTS

On peut conclure

1. Si |z| pair.
impair
_ = *
flwu)y=_x ¢" v _cv cyelX

pair  pair  pair

z,ev,cy € X =3Ary s, t:f(r) =z, f(s)=cv, f(t)=cy
w = 788
s, t débutent par la méme lettre,
donc sst débute par un chevauchement.
2. Si |z| impair.

impair
fw)= xc "v cvc yeX*
o N — N~

pair  pair  pair



COMBINATOIRE DES MOTS

COROLLAIRE

Existence d'un mot sur 3 lettres sans carré

{a, ab, abb} code

abblab|a|abb|a|ablabblab|a|ablabb|a|abblab|a|ab - - -
321312321231321 - - -



COMBINATOIRE DES MOTS

Un carré abélien : abcbca
Peut-on construire un mot infini sur 3 lettres sans carré abélien ?



COMBINATOIRE DES MOTS

Un carré abélien : abcbca
Peut-on construire un mot infini sur 3 lettres sans carré abélien ?

0102010
0102101



COMBINATOIRE DES MOTS

V. Kerdnen (ICALP'1992) fournit un morphisme de longueur 85
répondant a la question !

a — abcacdcbedcadcedbdabacabadbabebdbebacbedcacbabd

abacadcbedcacdbebacbedcacdebdedadbdcbeas

b — bedbdadcedadbadacabebdbebacbedcacdebdedadbdcebea
bebdbadcdadbdacdcbdedadbdadcadabacadcdb;

¢ — cdacabadabacbabdbedcacdcbdedadbdadcadabacadedb
cdcacbadabacabdadcadabacabadbabcbdbadac;

d — dabdbcbabebdcbeacdadbdadcadabacabadbabebdbadac
dadbdcbabcbdbeabadbabebdbebachedcacbabd;



COMBINATOIRE DES MOTS

J. Cassaigne, J. D. Currie, L. Schaeffer, J. Shallit, Avoiding Three
Consecutive Blocks of the Same Size and Same Sum, arxiv:1106.5204

p:0—03, 1—43, 3—1, 4—01
©“(0) = 031430110343430310110110314303434303434 - - -

ne contient aucun cube additif, e.g., 041340.



COMBINATOIRE DES MOTS

Le probléeme de Prouhet (1851) — Tarry — Escott
Mémoire sur quelques relations entre les puissances de nombres

Partitionner {0,...,2" — 1} de telle sorte que

{O,...,2n - ].} — {a17...,aerfl}U{b17...7b27Lfl}

on— 1 on— 1 277,—1 277,—1 on— 1 277,—1

a4 = bj, af=2bfa Z 4 Zb;‘l_l
j=1

Jj=1 j=1 j=1 Jj=1



COMBINATOIRE DES MOTS

Le probléeme de Prouhet (1851) — Tarry — Escott
Mémoire sur quelques relations entre les puissances de nombres

Partitionner {0,...,2" — 1} de telle sorte que

{O,...,2n - ].} — {a17...,aerfl}U{b17...7b27Lfl}

on— 1 on— 1 277,—1 277,—1 on— 1 277,—1
2 _ 2 n—1
4 = bj, aj—wa Z % ij
J=1 Jj=1 J=1 J=1 Jj=1



THEORIE DES NOMBRES

Exhiber des nombres transcendants (sur Q)

» nombres de Liouville (approximations diophantiennes)

=1 =\ a
7=1 k=1

> e

> T

Quid des nombres k-automatiques?

011010011001011010010110- - - «+ 0,4124540314078330 - - -

L
720



THEORIE DES NOMBRES

CONJECTURE COBHAM, HARTMANIS—-STEARNS’1965

» mot ultimement périodique <> nombre rationnel

» mot k-automatique non périodique — nombre transcendant?

> Si v est un nombre algébrique irrationnel, alors le
développement en base &k de a ne peut pas étre engendré par
un automate fini?

> Existe-t-il un nombre algébrique irrationnel dont les n
premiers chiffres puissent &tre calculés en O(n) opérations?



THEORIE DES NOMBRES

Fonction de complexité py : N — N, n — #Facy(n)
Pw(m + n) < pw(m)pw(n), pw(n) < (#A)"

Pw(n) < pw(n +1)

THEOREME (MORSE-HEDLUND)

Les conditions suivantes sont équivalentes
» w est ultimement périodique, w = uv*
> il existe N tel que pw(N) < N
> pw est borné

» il existe m tel que pw(m) = pw(m + 1)

Si w non périodique, alors pw(n) > n + 1 pour tout n.



THEORIE DES NOMBRES

COMPLEXITE DES MOTS AUTOMATIQUES

Si w est un mot k-automatique, alors py(n) est en O(n)

Preuve (désubstitution)
f¥(a) = abbabaabbaababbabaababbaabbabaab - - -



THEORIE DES NOMBRES

COMPLEXITE DES MOTS AUTOMATIQUES

Si w est un mot k-automatique, alors py(n) est en O(n)

Preuve (désubstitution)
f¥(a) = abbabaabbaababbabaababbaabbabaab - - -
(f%)“(a) = ab|ba|ba|ab|ba|ab|ab|ba|ba|ab|ab|ba|ab|ba|ba|ab] - - -



THEORIE DES NOMBRES

COMPLEXITE DES MOTS AUTOMATIQUES

Si w est un mot k-automatique, alors py(n) est en O(n)

Preuve (désubstitution)

f¥(a) = abbabaabbaababbabaababbaabbabaab - - -

(f%)“(a) = ab|ba|ba|ab|ba|ab|ab|ba|ba|ab|ab|ba|ab|ba|ba|ab] - - -
(f3)“(a) = ab ba|ba ab|ba ablab ba|ba ablab ba|ab ba|ba abl - - -



THEORIE DES NOMBRES

COMPLEXITE DES MOTS AUTOMATIQUES

Si w est un mot k-automatique, alors py(n) est en O(n)

Preuve (désubstitution)

f¥(a) = abbabaabbaababbabaababbaabbabaab - - -

(f%)“(a) = ab|ba|ba|ab|ba|ab|ab|ba|ba|ab|ab|ba|ab|ba|ba|ab] - - -
(f3)“(a) = ab ba|ba ab|ba ablab ba|ba ablab ba|ab ba|ba abl - - -
(fH)“(a) = ab ba ba ablba ab ab ba|ba ab ab ba|ab ba ba ab] - - -

4<n<8 k"< <E™  (#A)2™ < (#4)%kn



THEORIE DES NOMBRES

COMPLEXITE DES MOTS AUTOMATIQUES

Si w est un mot k-automatique, alors py(n) est en O(n)

Preuve (désubstitution)

f¥(a) = abbabaabbaababbabaababbaabbabaab - - -

(f%)“(a) = ab|ba|ba|ab|ba|ab|ab|ba|ba|ab|ab|ba|ab|ba|ba|ab] - - -
(f3)“(a) = ab ba|ba ab|ba ablab ba|ba ablab ba|ab ba|ba abl - - -
(fH)“(a) = ab ba ba ablba ab ab ba|ba ab ab ba|ab ba ba ab] - - -

4<n<8 k"< <E™  (#A)2™ < (#4)%kn

REMARQUE PANSIOT (1984)

Soit w un mot purement morphique (non périodique),
alors pyw(n) est en ©(n), O(nlogn), O(nloglogn) ou O(n?).



THEORIE DES NOMBRES

Complexité du mot de Thue—Morse
(de Luca, Varricchio; Cassaigne; Brlek)

(= { =224 if22m <n<3om
P =Y 2n44.2m — 2 if3.2" < pn<4.2m

12000

10000

L L L L
1000 2000 3000 4000



THEORIE DES NOMBRES

THEOREME BUGEAUD—ADAMCZEWSKI 2007

Si w est le développement en base k£ d'un nombre algébrique

irrationnel, alors

lim Pw(7) = +0o0
n——4o00 n

COROLLAIRE

Les nombres automatiques non périodiques sont transcendants.




THEORIE DES NOMBRES

Soient K un corps, a(n) € KN et k,..., ks € K. La suite a(n)
satisfait une relation de récurrence linéaire sur K si

a(n) =kia(n —1)+---+kga(ln —d), Vn>>

SKOLEM—MAHLER—LECH

Soit a(n) une suite linéaire récurrente sur un corps de
caractéristique 0. Alors, I'ensemble

Z(a) ={n € N| a(n) = 0} est ultimement périodique.

REMARQUE

Si K est un corps fini, a(n) (et donc Z(a)) est trivialement
ultimement périodique.

T. Tao, Effective Skolem—Mahler-Lech theorem in Structure and Randomness, AMS'08.



THEORIE DES NOMBRES

Si K est un corps infini de caractéristique p > 0. ..

EXEMPLE 1 (LECH)

a(n) = (14+1t)" —t" —1eFy(¢).

La suite @ satisfait la relation linéaire sur F,,(t), pour n >3

a(n) = (242t) a(n — 1)+ (1 +3t+t2) a(n — 2) = (t+t2) a(n — 3).
On a _ _
a(p) =1+t —tP —1=0

alors que a(n) # 0 si n n'est pas une puissance de p. Dés lors, on
obtient
Z(a) = {1,p,p*p’,...}.



THEORIE DES NOMBRES

EXEMPLE 2 (DERKSEN)

Soit la suite a(n) de F,(z,y, z) définie par
a(n) i= (@4 y+2)" — (0+1)" — (2+2)" — (y+2)"+ "+ y" + 2",

On peut montrer que :
» La suite a(n) satisfait une relation de récurrence linéaire.

» |’ensemble des zéros est donné par

Z(a) ={p" |n e N} U{p" +p™ | n,m € N}.

Z(a) peut sembler plus pathologique qu'en caractéristique nulle.
Cependant, on peut penser aux mots p-automatiques !



THEORIE DES NOMBRES

THEOREME (H. DERKSEN’2007)

Soit a(n) une suite linéaire récurrente sur un corps de
caractéristique p. Alors la suite caractéristique de I'ensemble Z(a)
est un mot p-automatique.

Derksen décrit précisément la forme des automates possibles :
Tout mot p-automatique n'est pas un ensemble Z(a) pour une
suite linéaire récurrente sur un corps de caractéristique p.



GEOMETRIE DISCRETE

Discrétisation de droites (pente irrationnelle)

abaababaabaababaababaabaababaabaababaababaabaabab - - -
~~ Tester si une suite de “pixels” décrit un segment de droite ?



GEOMETRIE DISCRETE

Q/Z est I'ensemble des points d'ordre fini dans R/Z

« rationnel < Im,n € Z, m # n, {ma} = {na}.

Sia=p/q, {@} ={p/a}



GEOMETRIE DISCRETE

Q/Z est I'ensemble des points d'ordre fini dans R/Z

« rationnel < Im,n € Z, m # n, {ma} = {na}.

Sia=p/q, {(‘”1 } {p/q}

Supposons qu'il existe m < n tels que {ma} = {na}.

Alors (n — m)a est un entier ret a =r/(n —m) € Q



GEOMETRIE DISCRETE

EXERCICE (THM. DE KRONECKER)

Si « est irrationnel, alors
I'ensemble des {na}, n € N, est dense dans [0, 1].



GEOMETRIE DISCRETE

EXERCICE (THM. DE KRONECKER)

Si « est irrationnel, alors
I'ensemble des {na}, n € N, est dense dans [0, 1].

Soit N. On partitionne [0, 1] en intervalles de longueur 1/N.



GEOMETRIE DISCRETE

EXERCICE (THM. DE KRONECKER)

Si « est irrationnel, alors
I'ensemble des {na}, n € N, est dense dans [0, 1].

Soit N. On partitionne [0, 1] en intervalles de longueur 1/N.

“Pigeonhole principle” : deux éléments {a}, {2a},... . {(N + 1)a}
appartiennent au méme intervalle.

Sii<j<N-+1telsquek/N < {ia} <{ja} <(k+1)/N,

{( —i)a} < 1/N et on considere les {n(j — i)a}



GEOMETRIE DISCRETE

EXERCICE (THM. DE KRONECKER)

Si « est irrationnel, alors
I'ensemble des {na}, n € N, est dense dans [0, 1].

Soit N. On partitionne [0, 1] en intervalles de longueur 1/N.

“Pigeonhole principle” : deux éléments {a}, {2a},... . {(N + 1)a}
appartiennent au méme intervalle.

Sii<j<N-+1telsquek/N < {ia} <{ja} <(k+1)/N,

{( —i)a} < 1/N et on considere les {n(j — i)a}

Sii<j<N+1telsquek/N < {ja} <{ia} <(k+1)/N,

1-1/N<{(H—1ia} <1



GEOMETRIE DISCRETE

On a méme un résultat plus fort de "distribution uniforme”

THEOREME (WEYL 1916)

Soient 0 < @ < b < 1. Si « est irrationnel, alors

lim #{k<n\a<{ka}<b}:

n—-+00 n

b —




GEOMETRIE DISCRETE

Réalisation de systemes dynamiques discrets
T=R/Z, R:T—T, z+ z+« (mod 1)

I,=[0,1—af h=[1—a,1], a
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Réalisation de systemes dynamiques discrets
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GEOMETRIE DISCRETE

Réalisation de systemes dynamiques discrets
T=R/Z, R:T—T, z+ z+« (mod 1)

I,=100,1—af, I, =1 — 1], aba



GEOMETRIE DISCRETE

Réalisation de systemes dynamiques discrets
T=R/Z, R:T—T, z+ z+« (mod 1)

I,=100,1—af, I = [1 — o, 1], abaa



L. 1,

(O <& <

Hac



GEOMETRIE DISCRETE

R=Y(Iy)

I,NR™Y(I,), I, "R™'(I), I, N R~ (1,)



GEOMETRIE DISCRETE

Ri?(lb)




GEOMETRIE DISCRETE

R_s(lb)

Iaab N R_‘g(]a): Iaba N R_3(Ia)- Iaba N R_3(Ib)
[baa N Rid(lb)v [bab N R_3(Ia)



GEOMETRIE DISCRETE

R_4(Ib)

[aabaav Iaababy Iabaaby
Iababa- Ibaaba- Ibabaa



GEOMETRIE DISCRETE

Les mots sturmiens sont caractérisés de diverses facons

» sont de complexité p(n) = n + 1 (minimale)
» mots mécaniques de pente irrationnelle
» codage de rotations

» mots apériodiques et équilibrés,
Vu,v € Fac,, —1<|u|q—]v|, <1

cf. aussi les suites de Beatty

L(n + 1De] — [ne]



COMPLEXITE DU MOT DE G. ROTE (JNT 1994)

%:{ a si{na}<1/2

b sinon

Sia=(1+ \/5)/2
X, = ababaababbabaababbaba - - -

n'est pas sturmien, p(2) = 4.
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