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ABSTRACT 

The aim of this work is to develop an efficient large-strain hyperelastic constitutive model for 

amorphous polymers in the glassy state. These materials exhibit a complex rate- and pressure-sensible 

behavior in both elastic and plastic regimes. After an initial linear elastic region, a nonlinear stage 

continues until reaching a peak stress, which is followed by a softening stage. At large strains, when 

the softening is saturated, a re-hardening stage is reached. The viscoelastic effect is captured using the 

generalized Maxwell model. The viscoplastic effect is considered using a Perzyna-type flow rule 

incorporating a pressure sensitive yield surface and a non-associated flow potential. This yield surface 

is extended from the Drucker-Prager one. The saturated softening phenomenon is modeled using an 

isotropic numerical damage variable progressed by a saturated softening law. With the introduction of 

the damage parameter, a non-local implicit gradient damage model is used to avoid the loss of the 

solution uniqueness. Through experimental comparisons, it is shown that the proposed model has the 

ability to model the complex mechanical responses of amorphous glassy polymers. 

 

1 INTRODUCTION 

The amorphous polymers in the glassy state are often used as matrix materials in polymer 

reinforced composites, which appear in a large range of applications in the aerospace and automotive 

industries. In their glassy state, these materials exhibit rate-, time-, pressure-, and temperature- 

dependent response, see [1] for more details in case of the RTM6 epoxy resin. Moreover, different 

stages can be identified in the stress-strain curves from experiments [2]. After an initial linear elastic 

region, a nonlinear stage continues until reaching a peak stress, which is followed by a softening stage. 

At large strains, when the softening is saturated, a re-hardening stage is reached. The rate effects are 

significant even at low strain level. As a consequence, a constitutive model incorporating the 

viscoelastic, viscoplastic, and damage ingredients is necessary to capture the whole range of the 

polymer response. 

Using a hyperelastic formulation, the constitutive model is based on an elastic potential, from 

which the first Piola-Kirchhoff can be obtained by derivation with respect to its work conjugated 

measure, which is the deformation gradient. The viscoelastic effect is modeled using the generalized 
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Maxwell model constructed from the corotational Kirchhoff stress and the elastic logarithmic strain. 

The viscoplastic effect is based on a Perzyna-based flow rule [3] incorporating a pressure-sensitive 

yield function and a non-associated flow potential. This yield surface is extended from the Drucker-

Prager one. A quadratic flow potential is used to correctly capture the volumetric deformation during 

the plastic process with a constant plastic Poisson ratio [4]. The saturated softening phenomenon is 

introduced to the constitutive law through an isotropic damage variable, which is saturated by a limit 

value. The rehardening stage is naturally obtained after the damage saturation because of the kinematic 

and isotropic hardening phenomena, which are still developing. With the introduction of the damage, 

the non-local implicit gradient damage model [5] is used to avoid the loss of the solution uniqueness. 

With these ingredients, the proposed model is shown to capture the full range of the mechanical 

behavior of the amorphous glassy polymers at various strain rates, as compared to the experiments. 

 

2 CONSTITUTIVE MODEL 

Following the standard multiplicative decomposition in elastoplastic materials at finite strains, the 

deformation gradient tensor F  is decomposed into a recoverable (viscoelastic) component and an 

irrecoverable (viscoplastic) component, following 

vpve
FFF  , (1) 

where 
veF and 

vp
F are the viscoelastic and viscoplastic tensors, respectively. Based on the continuum 

damage mechanics, the damage represents the relation between the stresses in the apparent body and 

in its undamaged representation [6]. This relation can be written as 

D


1
ˆ P
P , (2) 

where P  is the first Piola-Kirchhoff stress in the apparent body, P̂  is the effective (undamaged) 

counterpart in the undamaged representation, and 10  D  is the numerical damage variable used to 

represent the softening response. In this work, the saturation damage phenomenon is considered with a 

limit value 1D . 

The hyperelastic formulation is based on the existence of an elastic potential  . The stress 

measures are derived from this potential function by the relation  

ve
EτFFκFP  :ˆ)(:ˆ:ˆ 1  

, (3) 

where P̂  is the effective first Piola-Kirchhoff stress, where κ̂ is the effective Kirchhoff stress and 

where τ̂  is the effective corotational Kirchhoff stress, which is the stress measure conjugated to the 

viscoelastic logarithmic strain 
veve CE ln  with the viscoelastic right Cauchy strain tensor 

veveTve FFC  . The effective Cauchy stress can be computed from the relation 

κFPσ ˆˆˆ 11   JJ T
, with FdetJ . 

 

2.1 Viscoelastic part 

 

Figure 1: Springs/dashpots network of the generalized viscoelastic Maxwell model. 
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The viscoelastic behavior is modeled using the generalized Maxwell model. This model contains 

N+1 elastic springs and N dashpots as shown in Figure 1. The total elastic potential is given by  




 
N

i

ii D
1

, (4) 

where i  with Ni ,...,1,  are the elastic potentials acting on the springs and where iD  with 

Ni ,...,1  are the dissipating functions acting on the dashpots. In each spring, the elastic potential is 

defined as  

veve

i

vei
i GJ

K
EE dev:devln

2

2  with Ni ,...,1, , (5) 

where iK and iG  are respectively the bulk and shear moduli and where 0det  veveJ F  is the 

viscoelastic Jacobian. From the elastic potential given by Eq. (5), the related effective corotational 

Kirchhoff stress is derived as 
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where  iq  is the internal variables governing the viscoelastic behavior. The viscoelastic effect is added 

through the internal variables by a retardation action. For the spring/dashpot branch i , the viscoelastic 

equations are given as follows 

  
 
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q  , (7) 

where ig  and ik  are the characteristic retardation times for the deviatoric and volumetric parts, 

respectively. Equations (6) and (7) lead to the solution of the effective corotational Kirchhoff stress iτ̂  

on each spring/dashpot branch. The total effective corotational Kirchhoff stress τ̂ is computed from 

the convolution form in time as 
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where the fourth order Hook tensor is given by 

.exp)(

  ,exp)(

,
3

2
)()()(

1

1













































i

N

i

i

i

N

i

i

klijjkiljlikklij

ve

ijkl

g

t
GGtG

k

t
KKtK

tGtKtC 

. (9) 

Finally, the effective first Piola-Kirchhoff stress is estimated using Equations (3) and (8) as 

Tvp
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2.2 Viscoplastic part 

In order to model the viscoplastic behavior, a Perzyna-type viscoplastic flow rule [3] is used. The 

viscoplastic deformation evolution can be estimated with the following relation 













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0 if   0

0  if  
  ,
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, (11) 

where 
pD is the viscoplastic strain rate, where F  is the yield function, where P  is the flow potential, 

where   is the viscosity, and where p  is the rate sensitivity exponent. In the viscoplastic range, a 

new yield condition can be defined as 

  p
p

FF - F
11

   with ,0


  , (12) 

which is completed by the Kuhn-Tucker condition, 

0    0    0  FF  . (13) 

To model the pressure sensitive effect in amorphous glassy polymers, a generalized version of the 

classical Drucker-Prager is considered with a power-enhanced octahedral term of exponent  , such as 
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In Eq. (14), bτχ  ˆ  is the combined stress tensor, τ̂  is the effective corotational Kirchhoff stress 

tensor expressed in Eq. (8), b is the back-stress tensor, which is used to capture the kinematic 

hardening effect, c  and t  are the isotropic compression and tensile yield stresses, respectively, and 

m  is the traction/compression yielding anisotropy. The arbitrary value of the exponent   can be used 

leading to a new class of yield surface, so-called power yield surfaces. If 1 , the classical  

Drucker-Prager one is recovered; if 2 , the paraboloidal one is obtained. Both of them can be used 

for amorphous glassy polymers [4] . 

A non-associated flow rule is assumed in this work. The flow potential in Eq. (11) is specified with 

a quadratic function of the corotational Kirchhoff stress as 

2

2

3

)tr(

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
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χ
eqP , (15) 

where   is the flow parameter. Using this non-associated flow, the constitutive model has the ability 

to capture the volumetric plastic deformation with a constant plastic Poisson ratio, which is directly 

related to the flow parameter through the relation [4] 





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29




p . (16) 

The equivalent plastic deformation rate is defined from the viscoplastic strain rate tensor in Eq. (11) by 

the following relation [4] 
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2.3 Saturated damage evolution 

Using the coupled damage concept of Eq. (2), the remaining part is to provide the evolution of the 

isotropic numerical damage parameter. This work uses the non-local accumulated plastic strain   to 

compute the damage evolution, as 

 ,FDD  , (18) 

with the assumption that the damage depends only on the strain state and on the non-local variable. In 

this non-local enhanced model, the non-local accumulated plastic strain is computed from the implicit 

formulation [5] 

  c , (19) 

where c is the square of the characteristic non-local length. The relation (20) is completed by the 

natural boundary condition 

0 n . (20) 

The evolution of damage follows a saturation law 
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where D  is the saturation damage value, h is the softening slope, s is the softening exponent and c  

is the plastic threshold for the damage evolution. 

 

3 COMPARISON WITH EXPERIMENTS 

The numerical compression and creep predictions of epoxy resins at the room temperature (23oC) 

using the current viscoelastic-viscoplastic-damage constitutive model are illustrated in Figure 2, where 

they are compared to the experimental curves reported in [2]. The obtained results are in good 

agreement with the experiments showing the ability of the proposed model for predicting the behavior 

of amorphous glassy polymers.  

 

 

  

Figure 2: Model predictions compared to the experimental data [2] at room temperature: uniaxial 

compression results  at various strain rates in the full strain range (left image), zoom at small strain 

levels (middle image); creep test results (right image). 

 

4 CONCLUSIONS 

The developed model can correctly capture the overall response of amorphous glassy polymers 

with the epoxy resins as a specific case through a couple viscoelastic-viscoplastic-damage constitutive 

model. The implicit non-local plastic model is employed to avoid the loss of uniqueness. In the near 

future, an appropriate pressure-dependent failure criterion is incorporated. The constitutive model will 

be applied to the polymer resins of composites, so that the multi-scale fracture of composites will be 
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studied  using the Discontinuous Galerkin/Cohesive Zone Method (DG/CZM) as proposed in [7]. 
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