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The problem

« MEMS structures
— Are not several orders larger than their micro-structure size

— As a result, their macroscopic properties can exhibit a scatter
» Due to the fabrication process
» Due to uncertainties of the material

—> The objective of this work is to estimate this scatter

« Up to now, the only sources of uncertainty is due to the material

— Silicon crystals are anisotropic .
/ . Each grain has arandom

L . orientation
— Polysilicon is polycrystalline

* Characteristics of our model:
— Clamped microbeam

— Macroscopic property of interest: first mode eigenfrequency
« For a MEMS gyroscope for example
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Monte-Carlo for a fully modelled beam

« The first mode frequency distribution can be obtained with
— A 3D beam with each grain modelled
— and a Monte-Carlo simulation of this model
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« Considering each grain is expensive and time consuming

|—> Motivation for stochastic multi-scale methods

CM3 July 6-10, 2015 ESCM 2015, Madrid, Spain 3 um;;glig



Motivations

* Multi-scale modelling

— 2 problems are solved

concurrently Material
response

@ Extraction of a meso-
scale Volume Element

Macro-scale

« The macro-scale problem

* The meso-scale problem (on
a meso-scale Volume
Element)

A

* Length-scales separation

macro>>|— >>Lm|cro
For accuracy: Size of the meso- To be statistically representative:
scale volume element smaller than Size of the meso-scale volume
the characteristic length of the element larger than the
macro-scale loading characteristic length of the micro-
structure
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Motivations

« For structures not several orders larger than the micro-structure size

I—macro>>|—VE>~|—micro

For accuracy: Size of the meso- Meso-scale volume element no
scale volume element smaller than longer statistically representative:
the characteristic length of the Stochastic Volume Elements*

macro-scale loading

« Possibility to propagate the uncertainties from the micro-scale to the macro-scale

*M Ostoja-Starzewski, X Wang, 1999

P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrali, 2015
X.Yin, W. Chen, A. To, C. McVeigh, 2008

J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011
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A 3-scale procedure

» Samples of the » Intermediate scale » Uncertainty quantification
microstructure (volume of the macro-scale quantity
elements) are generated » The distribution of the

material property P(C) is » E.qg. the first mode

» Each grain has a random defined frequency P(f;)

orientation

Mean value of

= % material property éﬁ‘
€/ ?
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—— | Homogenization > SFEM Probability density
".’v N SVE size A
Vi ‘ Variance of
s /¢ material property
I
. >
: > Quantity of
SVE size interest
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From the micro-scale to the meso-scale

« Definition of Stochastic Volume Elements (SVES)
— Poisson Voronoi tessellation
— Each grain i is assigned an elasticity tensor C;

(Ci (Cl-

- C; defined from silicon crystal properties C;

— Each C; is assigned a random rotation

— Mixed BCs

C; C;
« Stochastic homogenization
— Several realizations
O'mi=(cl':€mi ,Vl —_— 0'M=:EM

Computational Samples of the meso-
homogenization scale  homogenized

elasticity tensors

— Homogenized elasticity tensor not unique as statistical representativeness is lost*
* |tis thus called apparent elasticity tensor

**C. Huet, 1990
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From the micro-scale to the meso-scale

« Distribution of the apparent meso- cov—m .
scale elasticity tensor C,, 5.0 ~ mean %

=
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— For large SVEs, the apparent tensor
tends to the effective (and unique)
one
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— lSVE =0.1 ,U.?’H,w
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— lSVE = 0.2 MK

COV of the Young modulus [%]

lSVE =04 MK

“
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— ISVE = 0.6 um
— Mean MBC
- Bounds for Si |

0.2 0.3 0.4 0.5 0.6
SVE length [pm]

» The bounds do not depend
on the SVE size but on the silicon
elasticity tensor

0_1\ 0903 01 05 0% 0~ ¥0:8 ' » However, t.h.e larger the SVE, the lower
SVE length [;im] the probability to be close to the bounds

-
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From the micro-scale to the meso-scale

 Use of the meso-scale distribution with macro-scale finite elements
— Beam macro-scale finite elements Cyr Cpz Cps
— Use of the meso-scale distribution as a random variable. — — I | | L.
— Monte-Carlo simulations

16 COV of the resonance frequency

—— Full Beam solution
---- Ratioof 1
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From the micro-scale to the meso-scale

 Use of the meso-scale distribution with macro-scale finite elements
— Beam macro-scale finite elements C,n C,p2
M M
— Use of the meso-scale distribution as a random variable. — — I | | L.
— Monte-Carlo simulations

COV of the resonance frequency

1.6

0.4 05 0 15 70 75 7.0
Coarse macro- mesh RatioSVEMesh i o 0 cro- mesh

* No convergence: the macro-scale distribution (first resonance frequency) depends
on SVE and mesh sizes
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From the micro-scale to the meso-scale

 Use of the meso-scale distribution with macro-scale finite elements
— Beam macro-scale finite elements Cyr Cpz Cps
— Use of the meso-scale distribution as a random variable. — — I | | L.
— Monte-Carlo simulations

COV of the resonance frequency
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More random variables having the same distribution
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From the micro-scale to the meso-scale

* Introduction of the (meso-scale) spatial correlation

— SVEs extracted at different distances

— Spatial correlation of the r'" and st components of the

apparent (homogeneous) elasticity tensor Cy,

E[(C™(x) — E(€™))(c®(x + T) — E(C®))]
VEL(CD — E(CM))2]E[(C® — E(C()))2]

RSV (1) =

Vi

= V N 7

Young’s modulus correlation

1.0
— Represented by the correlation length:
0.8}
®©  5(rs)
(rs) _ f—oo R(C 0.6
Le™ = (rs)
R¢ 7 (0)

Correlation
_O
He

The correlation length increases

logyvg = 0.1 pm
— lgyg = 0.2 um

lgyg = 0.4 pm
— lgyg = 0.6 pum

0.2
with the SVE size S
0.0} ‘
0.0 0.2 0.4 0.6 0.8
Distance [pm]
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The meso-scale random field

« Use of the meso-scale distribution with stochastic (macro-scale) finite elements
— Use of the meso-scale correlated distribution as a random field
— Meso-scale random field from a generator
— Monte-Carlo simulations at the macro-scale

Stochastic model of meso-scale
elasticity tensors

jk& .............

I

Stochastic model

N

Cur Cuz Cys
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The meso-scale random field

« Generation of the elasticity tensor C,,(x, 8) (matrix C,,) spatially correlated field*
— Define a lower isotropic lower bound €; from the silicon crystal tenor Cs

r%lln”CL(E, V) — Csll WlthCL(E, V) < CS
YV
— Define the positive semi-definite tensor AC(x, 8)such that

Cy(x,0)=C,+ AC(x,0)

« This will ensure the existence of the expectation of C,, !
«  We now need to generate the spatially correlated random field AC(x, )

— Cholesky decomposition Homogeneous

- random field
AC(x,0) = A(x,0)A(x,0)T with A(x,0) = A+

— A'(x,0) is generated using the spatial correlation matrix Ry, (1)

* Here we use the spectral method*
« Assumed Gaussian (can be changed)

* Lucas, Golinval, Paquay, Nguyen, Noels, Wu, 2016
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The meso-scale random field

« (Good agreement between:
— The samples of elasticity tensors computed from the homogenization
— The generated elasticity tensors

Young’s modulus distribution Young’s modulus spatial correlation
( : | L .
I Micro-Samples 10 — Micro-Samples
0.08 [ Spectral generator 04 — Spectral generator
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variance of E 0,97 Kurtosis of E 2,93 3,02
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From the meso-scale to the macro-scale

Stochastic finite element method (SFEM)

Macro-scale beam elements of size [esh
Use the meso-scale random field obtained using SVEs of size lgyg

LSVE =0.1 um

E[E,] £ op,
Samples of the random field

o
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Young’s modulus [GPa]

0.0

— The meso-scale random field is characterized by the correlation length L

17 Random field with different SVEs sizes _l

Lgyg = 0.4 pm
..... E[E,] £ op,
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From the meso-scale to the macro-scale

L¢

 Theratio a =

mesh

— Links the (macro-scale) finite element size to the correlation length
— Is related to the SVE size thought the correlation length

[ Young’s modulus correlation
& 1.0 g w ‘ ‘ ‘ _— lSVE =0.1 Hm
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From the meso-scale to the macro-scale

« Convergence of the 3-scale process
I

— Interms of a =
mesh

— First flexion mode of a 3.2 um-long beam

lSVE = 0.1 Hm

CoV = M - 100% E lSVE = 0.2 um
mean

lSVE =04 Hm
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lSVE = 0.6 Hm
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—
Ut

-/

Coefficient of variation [%]

=
fa

0.5 1.0 1.5 2.0 2.5
Ratio o .
Coarse macro-scale Fine macro-scale

mesh mesh
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From the meso-scale to the macro-scale

 Effect of the ratio a =

Big SVEs

Le >

lc

lmesh

|
One mesh size

Small SVEs
Lc <

« For extreme values of a:<

2

C

]
{

e,

L¢

mesh

>1—=>

The spatial correlation
can be accounted for

For the spatial
correlation to  be
accounted for, we
need more integration
points

a > 1. no more scale separation if Lgyg~Lmacro

a « 1: loss of microstructural details if Lgyg~Lmicro
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From the meso-scale to the macro-scale

« Verification of the 3-scale process (a~2) with direct Monte-Carlo simulations

— First bending mode of a 3.2 um-long beam _
Eigen frequency

[ Direct procedure
40 [1 3-scale procedure
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CM3

Perspectives

Validate the 1D model on a bigger beam with experimental results
— Measures for appropriate data as inputs: grain sizes, preferred direction, ...
— Samples of 15t mode frequency
— Is the grain orientation the main contribution to the scatter of the first mode?

Extend the model to 3D
— Extension to 3D macroscale SFEM (generator already 3D)

— Extension to thermoelasticity

—  Will permit to study the influence of the clamp and thermoelastic damping

Study geometric uncertainties
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Thank you for your attention !
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