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The problem 

• MEMS structures 

– Are not several orders larger than their micro-structure size 

– As a result, their macroscopic properties can exhibit a scatter 

• Due to the fabrication process 

• Due to uncertainties of the material  

• … 

    The objective of this work is to estimate this scatter 
 

• Up to now, the only sources of uncertainty is due to the material 

 

– Silicon crystals are anisotropic 

 

– Polysilicon is polycrystalline 

 

• Characteristics of our model: 

– Clamped microbeam 

– Macroscopic property of interest: first mode eigenfrequency 

• For a MEMS gyroscope for example 

 

Each grain has a random 

orientation 
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Monte-Carlo for a fully modelled beam 

• The first mode frequency distribution can be obtained with 

– A 3D beam with each grain modelled 

– and a Monte-Carlo simulation of this model 

 

 

 

 

 

 

 

 

 

 

• Considering each grain is expensive and time consuming 

 Motivation for stochastic multi-scale methods 
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Motivations 

• Multi-scale modelling 

– 2 problems are solved 

concurrently 

• The macro-scale problem 

• The meso-scale problem (on 

a meso-scale Volume 

Element) 

 

 

 

• Length-scales separation 

 

 

 

 

Lmacro>>LVE>>Lmicro 

BVP 

Macro-scale 

Material 

response 

Extraction of a meso-

scale Volume Element 

 

For accuracy: Size of the meso-

scale volume element smaller than 

the characteristic length of the 

macro-scale loading 

To be statistically representative: 

Size of the meso-scale volume 

element larger than the 

characteristic length of the micro-

structure 
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Motivations 

• For structures not several orders larger than the micro-structure size 

 

 

 

 

 

 

 

 

 

• Possibility to propagate the uncertainties from the micro-scale to the macro-scale 

  

Lmacro>>LVE>~Lmicro 

For accuracy: Size of the meso-

scale volume element smaller than 

the characteristic length of the 

macro-scale loading 

Meso-scale volume element no 

longer statistically representative: 

Stochastic Volume Elements* 

*M Ostoja-Starzewski, X Wang, 1999 

P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrali, 2015 

X. Yin, W. Chen, A. To, C. McVeigh, 2008 

J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011 

…. 
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A 3-scale procedure 

Grain-scale or micro-scale Meso-scale Macro-scale 

 Samples of the 

microstructure (volume 

elements) are generated 

 

 Each grain has a random 

orientation 

 Intermediate scale 

 

 The distribution of the 

material property ℙ(𝐶) is 

defined 

 Uncertainty quantification 

of the macro-scale quantity 

 

 E.g. the first mode 

frequency ℙ 𝑓1  

SVE size 

Mean value of 

material property 

SVE size 

Variance of 

material property 

Quantity of 

interest 

Probability density 

Stochastic 

Homogenization 

 

 

      SFEM 
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• Definition of Stochastic Volume Elements (SVEs) 

– Poisson Voronoï tessellation 

– Each grain 𝑖 is assigned an elasticity tensor ℂ𝑖 

– ℂ𝑖 defined from silicon crystal properties 

– Each ℂ𝑖 is assigned a random rotation  

– Mixed BCs 

 

 

• Stochastic homogenization 

– Several realizations 

 

 

 

 

 

– Homogenized elasticity tensor not unique as statistical representativeness is lost* 

• It is thus called apparent elasticity tensor 

 

From the micro-scale to the meso-scale 

Computational 

homogenization 

ℂ𝑖 

ℂ𝑖 

ℂ𝑖 

ℂ𝑖 

ℂ𝑖 

𝝈
𝑚𝑖 = ℂ𝑖: 𝝐𝑚𝑖     , ∀𝑖 𝝈𝑀 = ℂ𝑀 ∶ 𝝐𝑀 

Samples of the meso-

scale homogenized 

elasticity tensors 

*“C. Huet, 1990 
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From the micro-scale to the meso-scale 

𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100% 

 

• Distribution of the apparent meso- 

      scale elasticity tensor ℂ𝑀  

 

– For large SVEs, the apparent tensor 

     tends to the effective (and unique) 

     one 

 The bounds do not depend  

      on the SVE size but on the silicon 

      elasticity tensor 

 

 However, the larger the SVE, the lower 

the probability to be close to the bounds  
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• Use of the meso-scale distribution with macro-scale finite elements  

– Beam macro-scale finite elements 

– Use of the meso-scale distribution as a random variable 

– Monte-Carlo simulations  

 

 

 

 

 

 

 

 

 

 

 

 

 

From the micro-scale to the meso-scale 

ℂ𝑀1 ℂ𝑀2 ℂ𝑀3 

Coarse macro- mesh Fine macro- mesh 
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• Use of the meso-scale distribution with macro-scale finite elements  

– Beam macro-scale finite elements 

– Use of the meso-scale distribution as a random variable 

– Monte-Carlo simulations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• No convergence: the macro-scale distribution (first resonance frequency) depends 

on SVE and mesh sizes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the micro-scale to the meso-scale 

ℂ𝑀1 ℂ𝑀2 ℂ𝑀3 

Convergence 

Coarse macro- mesh Fine macro- mesh 
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• Use of the meso-scale distribution with macro-scale finite elements  

– Beam macro-scale finite elements 

– Use of the meso-scale distribution as a random variable 

– Monte-Carlo simulations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the micro-scale to the meso-scale 

Convergence 

More random variables having the same distribution  

C
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Coarse macro- mesh Fine macro- mesh 

ℂ𝑀1 ℂ𝑀2 ℂ𝑀3 
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• Introduction of the (meso-scale) spatial correlation 

– SVEs extracted at different distances 

– Spatial correlation of the rth and sth components of the 

apparent (homogeneous) elasticity tensor ℂ𝑀   

 

 

 

– Represented by the correlation length: 

 

 

 

• The correlation length increases  

     with the SVE size 

𝑅ℂ
𝑟𝑠

𝝉 =
𝔼 ℂ 𝑟 𝒙 − 𝔼 ℂ 𝑟 ℂ 𝑠 𝒙 + 𝝉 − 𝔼 ℂ 𝑠

𝔼 ℂ 𝑟 − 𝔼 ℂ 𝑟 2 𝔼 ℂ 𝑠 − 𝔼 ℂ 𝑠 2
 

From the micro-scale to the meso-scale 

𝐿ℂ
𝑟𝑠

=
 𝑅ℂ

𝑟𝑠∞

−∞

𝑅ℂ
𝑟𝑠

0
 

Young’s modulus correlation 
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• Use of the meso-scale distribution with stochastic (macro-scale) finite elements  

– Use of the meso-scale correlated distribution as a random field 

– Meso-scale random field from a generator 

– Monte-Carlo simulations at the macro-scale 

    

The meso-scale random field 

Stochastic model 

ℂ𝑀1 ℂ𝑀2 ℂ𝑀3 

Stochastic model of meso-scale 

elasticity tensors 
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• Generation of the elasticity tensor ℂ𝑀(𝑥, 𝜃) (matrix 𝑪𝑀) spatially correlated field* 

– Define a lower isotropic lower bound 𝑪𝐿 from the silicon crystal tenor 𝑪𝑆   

min
𝐸,𝜈

𝑪𝐿(𝐸, 𝜈) − 𝑪𝑆  with𝑪𝐿(𝐸, 𝜈) ≤ 𝑪𝑆 

– Define the positive semi-definite tensor Δ𝑪(𝑥, 𝜃)such that 

    𝑪𝑀(𝑥, 𝜃) = 𝑪𝑳 + Δ𝑪(𝑥, 𝜃)  

• This will ensure the existence of the expectation of 𝑪𝑀
−𝟏 

• We now need to generate the spatially correlated random field Δ𝑪(𝑥, 𝜃) 

 

– Cholesky decomposition 

 Δ𝑪 𝑥, 𝜃 = 𝑨 𝑥, 𝜃 𝑨 𝑥, 𝜃 T    with  𝑨(𝑥, 𝜃) = 𝑨 + 𝑨′(𝑥, 𝜃) 

– 𝑨′(𝒙,𝜽) is generated using the spatial correlation matrix 𝑅𝑨′ 𝜏  

• Here we use the spectral method* 

• Assumed Gaussian (can be changed) 

Homogeneous 

random field  

The meso-scale random field 

* Lucas, Golinval, Paquay, Nguyen, Noels, Wu, 2016 
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• Good agreement between: 

– The samples of elasticity tensors computed from the homogenization 

– The generated elasticity tensors 

            

The meso-scale random field 

Young’s modulus distribution Young’s modulus spatial correlation 

Micro-samples Generator 

Skewness of 𝐸 −0,11 0,26 

Kurtosis of 𝐸 2,93 3,02 

Relative error [%] 

mean of 𝐸 0,026 

variance of 𝐸 0,97 
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• Stochastic finite element method (SFEM) 

– Macro-scale beam elements of size 𝑙mesh 

– Use the meso-scale random field obtained using SVEs of size 𝑙SVE 

– The meso-scale random field is characterized by the correlation length 𝐿ℂ 

   

From the meso-scale to the macro-scale 

𝑳𝐒𝐕𝐄 = 𝟎. 𝟏 𝝁𝒎 𝑳𝐒𝐕𝐄 = 𝟎. 𝟒 𝝁𝒎 

Random field with different SVEs sizes 
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• The ratio 𝛼 =
𝐿ℂ

𝑙mesh
 

– Links the (macro-scale) finite element size to the correlation length  

– Is related to the SVE size thought the correlation length 

   

From the meso-scale to the macro-scale 

ℂ𝑀1 ℂ𝑀2 ℂ𝑀3 

𝑙SVE 

𝑙mesh 

Young’s modulus correlation 

𝐿ℂ =
 𝑅ℂ
∞

−∞

𝑅ℂ 0
 

Stochastic model 
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𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100% 

 

• Convergence of the 3-scale process 

– In terms of  

– First flexion mode of a 3.2 𝜇m-long beam 

 

From the meso-scale to the macro-scale 

Coarse macro-scale 

mesh 

Fine macro-scale 

mesh 

 𝛼 =
𝑙ℂ

𝑙mesh
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• Effect of the ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• For extreme values of a:  

 

 

  

From the meso-scale to the macro-scale 

𝛼 ≫ 1: no more scale separation if 𝐿SVE~𝐿macro 

𝛼 ≪ 1: loss of microstructural details if 𝐿SVE~𝐿micro 

 𝛼 =
𝑙ℂ

𝑙mesh
 

 𝛼 =
𝐿ℂ

𝑙mesh
> 1 

 𝛼 =
𝐿ℂ

𝑙mesh
< 1 

For the spatial 

correlation to be 

accounted for, we 

need more integration 

points 

The spatial correlation 

can be accounted for 

Big SVEs 

𝑳ℂ ≫ 

Small SVEs 

𝑳ℂ ≪ 

 

One mesh size 
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• Verification of the 3-scale process (𝛼~2) with direct Monte-Carlo simulations 

– First bending mode of a 3.2 𝜇m-long beam 

 

 

 

 

 

 

 

– Second bending mode of a 3.2 𝜇m-long beam 

From the meso-scale to the macro-scale 

Relative difference 

in the mean: 0.57 % 

Eigen frequency 

Relative difference 

in the mean: 0.44 % 

Eigen frequency 
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Perspectives 

• Validate the 1D model on a bigger beam with experimental results 

– Measures for appropriate data as inputs: grain sizes, preferred direction, … 

– Samples of 1st mode frequency 

– Is the grain orientation the main contribution to the scatter of the first mode? 

 

• Extend the model to 3D 

– Extension to 3D macroscale SFEM (generator already 3D) 

 

– Extension to thermoelasticity 

 

– Will permit to study the influence of the clamp and thermoelastic damping 

 

 

• Study geometric uncertainties 
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Thank you for your attention !  


