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Abstract

Soil moisture is an important state variable acting in many environmental,
hydrologic and climatic processes. There is thus a pressing scientific demand for
revealing the soil moisture dynamics in the biosphere at various temporal and
spatial scales. Despite the huge development of remote sensing of soil moisture
techniques, there is still a lack of soil moisture measurement techniques available
at high spatial resolution (~ m). This thesis aimed to validate and apply advanced
proximal ground penetrating radar (GPR) for soil moisture sensing at the field
scale. For field acquisition, the GPR system was mounted on a mobile platform
that allowed for a fast acquisition rate at high resolution. The impact of shallow
soil layering on the GPR backscattered signal was investigated in numerical
and laboratory experiments and the best GPR data inversions strategies for
dealing with shallow soil layering were determined. Then, coherent two-layered
and continuous soil moisture profiles could be...
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fait partagé autant que possible les arcanes de l’institution UCL
et la Recherche scientifique. Merci également aux autres membres
de mon Jury, Pierre Defourny, Niko Verhoest, Sander Huisman et
Laurent Pfister pour leurs remarques qui m’ont aidé à améliorer ce
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iii





Contents

Remerciements iii
Remerciements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures ix

List of Tables xvii

Introduction 1
Scientific context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 A frequency domain reflectometry technique for soil electrical
properties determination 9
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Electromagnetic properties of materials . . . . . . . . . 12
1.4.2 Modeling of the FDR system . . . . . . . . . . . . . . . 12
1.4.3 Model inversion . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.4 Petrophysical models . . . . . . . . . . . . . . . . . . . . 17
1.4.5 Laboratory experiments setup . . . . . . . . . . . . . . . 18

1.5 Laboratory experiments results . . . . . . . . . . . . . . . . . . 19
1.5.1 Probe transfer functions determination . . . . . . . . . . 19
1.5.2 Inversion of FDR measurements in salt water . . . . . . 21
1.5.3 Determination of the sand water content . . . . . . . . . 25

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Soil moisture estimation by ground penetrating radar in the
presence of thin layers: Numerical and laboratory experiments 31
2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 34

v



vi Contents

2.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 Numerical experiments . . . . . . . . . . . . . . . . . . . 35
2.4.3 Laboratory experiments . . . . . . . . . . . . . . . . . . 36

2.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.1 Numerical experiments . . . . . . . . . . . . . . . . . . . 40
2.5.2 Laboratory experiments . . . . . . . . . . . . . . . . . . 48

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Soil moisture mapping by ground penetrating radar in profile
conditions: Numerical and field experiments 59
3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 GPR forward and inverse modeling . . . . . . . . . . . . . . . . 62

3.4.1 GPR system modeling . . . . . . . . . . . . . . . . . . . 62
3.4.2 Inversion of GPR data . . . . . . . . . . . . . . . . . . . 62
3.4.3 Multilayered medium models . . . . . . . . . . . . . . . 63

3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.1 Model configurations . . . . . . . . . . . . . . . . . . . . 65
3.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . 65

3.6 GPR Field Measurements . . . . . . . . . . . . . . . . . . . . . 68
3.6.1 Materials and methods . . . . . . . . . . . . . . . . . . . 68
3.6.2 Field measurements results . . . . . . . . . . . . . . . . 71
3.6.3 Error sources in field acquisition . . . . . . . . . . . . . 81

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Validation of ground penetrating radar full-waveform inversion
for field scale soil moisture mapping 85
4.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Study site . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.2 Soil moisture sensing by ground penetrating radar . . . 89
4.4.3 Uncertainties assessment . . . . . . . . . . . . . . . . . . 92

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5.1 Surface soil moisture maps . . . . . . . . . . . . . . . . 95
4.5.2 Inversion uncertainties . . . . . . . . . . . . . . . . . . . 97
4.5.3 Repetition uncertainties . . . . . . . . . . . . . . . . . . 100
4.5.4 Comparison with soil sampling measurements . . . . . . 100

4.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6.1 Inversion uncertainties . . . . . . . . . . . . . . . . . . . 102
4.6.2 Repetition uncertainties . . . . . . . . . . . . . . . . . . 104
4.6.3 Comparison with soil sampling measurements . . . . . . 104
4.6.4 Comparison of the uncertainties . . . . . . . . . . . . . 105

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



Contents vii

5 Temporal stability of soil moisture patterns measured by a
proximal ground penetrating radar in an agricultural field 109
5.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Study site . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.2 Soil moisture mapping by ground penetrating radar . . 113
5.4.3 Temporal stability of soil moisture pattern identification 114

5.5 Soil moisture patterns . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.1 Geostatistical analysis . . . . . . . . . . . . . . . . . . . 115
5.5.2 Line effect . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.5.3 Comparison with soil core sampling measurements . . . 120

5.6 Temporal stability of soil moisture patterns . . . . . . . . . . . 121
5.6.1 Intersection of field-average soil moisture areas . . . . . 121
5.6.2 Relative difference to field-average . . . . . . . . . . . . 123
5.6.3 Comparison of the two methods . . . . . . . . . . . . . 125
5.6.4 Temporal stability of soil moisture from soil core sam-

pling measurements . . . . . . . . . . . . . . . . . . . . 125
5.6.5 Comparison with previous studies . . . . . . . . . . . . 126

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Effect of high-resolution spatial soil moisture variability on
simulated runoff response using a distributed hydrologic model129
6.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 132

6.4.1 Agricultural fields . . . . . . . . . . . . . . . . . . . . . 132
6.4.2 Sensing of soil moisture by ground penetrating radar . . 133
6.4.3 Antecedent soil moisture scenarios . . . . . . . . . . . . 134
6.4.4 Hydrologic model . . . . . . . . . . . . . . . . . . . . . . 138

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.5.1 Soil moisture data measured by ground penetrating radar 139
6.5.2 Effect of antecedent soil moisture on hydrographs . . . . 142
6.5.3 Evaluation of soil moisture modeling scenarios . . . . . 148

6.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.6.1 Effect of spatial variability of soil moisture on simulated

runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.6.2 Soil moisture patterns and its relation with topographic

wetness index . . . . . . . . . . . . . . . . . . . . . . . . 154
6.6.3 Disaggregation of soil moisture . . . . . . . . . . . . . . 155

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



viii Contents

Conclusions and Perspectives 157
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Ground penetrating radar limitations and perspectives . . . . . . . . 160
Perspectives in soil moisture sensing . . . . . . . . . . . . . . . . . . 163

Appendices 165

Bibliography 167

Soil moisture maps 183

Publications and Conferences 191



List of Figures

1.1 Modeling of the frequency domain reflectometry (FDR) system
by a one dimensional multilayered medium: (a) schematic of the
measurement system with vector network analyzer (VNA), (b)
corresponding representation as a multilayered medium, where
S11 is the scatter function, R are reflection coefficients, and ε is
the dielectric permittivity, σ is the electrical conductivity, and µ
is the magnetic permeability at depths d, and (c) probe reflection
and transmission coefficients R and T characterizing the FDR
probe head. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Frequency domain reflectometry (FDR) probe transfer functions
reflection coefficients RC,0(ω) (a) and R0,C(ω) (c) and trans-
mission coefficients T (ω) (b) determined throughout the entire
frequency range (f) from 10 MHz to 8 GHz, depicted in ampli-
tude (upper graphs) and phase (lower graphs), for three different
number of measurements (three, seven, and 17) used to solve the
systems of equations. . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Measured, predicted and inverted scatter functions S11(ω) de-
picted in the frequency (a) and time domains (b) for water with
a salt concentration of 0.154 gL−1. . . . . . . . . . . . . . . . . 22

1.4 Measured, predicted and inverted global reflection coefficients
R0,N (ω) depicted in the frequency (a) and time domains (b) for
water with a salt concentration of 0.154 gL−1. . . . . . . . . . . 23

1.5 Inverted electrical conductivity (σ) at the minimal frequency
(10 MHz) from frequency domain reflectometry (FDR) measure-
ments as a function of the measured σ in the 10 different salt
water solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Relative dielectric permittivity (εr) estimated from time domain
reflectometry (TDR) measurements and frequency domain re-
flectometry (FDR) inversions as a function of the sand water
content (θv) measured by volumetric sampling. The model of
Ledieu et al. (1986) was fitted over the TDR and FDR data. . 26

ix



x LIST OF FIGURES

1.7 Frequency-dependent, apparent electrical conductivity (σ) re-
trieved from frequency domain reflectometry (FDR) inversions
for sand media at 10 different water contents (WC) and for dem-
ineralized water depicted with theoretical values from the model
of Debye (a); enlargement of the electrical conductivity of the
sand media (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Model configuration used for the numerical experiments and in-
verse modeling flowchart. . . . . . . . . . . . . . . . . . . . . . 36

2.2 Schematic of the laboratory experimental setup showing the
GPR horn antenna above the two-layered sandbox (a) and pic-
ture of the experimental setup viewed from the top (b). . . . . 38

2.3 Time domain representation (b-scan) of the measured Green’s
functions for the 50 configurations in the laboratory experiments.
Vertical lines delineate the configurations according to the 10
different first layer water content (θ1). For each θ1, five different
first layer thicknesses were set. . . . . . . . . . . . . . . . . . . 39

2.4 Error on the dielectric permittivity of the first layer ∆ε1 for
each top layer thickness h1, with inversions performed with the
two-layered model in the frequency domain. Results from the
numerical experiments. . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Error on the dielectric permittivity of the second layer ∆ε2 for
each top layer thickness h1, with inversions performed with the
two-layered model in the frequency domain. Results from the
numerical experiments. . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Generated and inverted Green’s functions for a first layer water
content of 0.36, a second layer water content of 0 and a first layer
thickness of 0.01 m, depicted in frequency (a) and time domain
(b). Results from the numerical experiments. . . . . . . . . . . 43

2.7 Response surfaces of the objective function logarithm log10(ϕ)
in the (a) ε1-ε2, (b) ε1-log10(σ1), (c) ε1-h1, (d) ε1-log10(σ2), (e)
ε2-h1 and (f) h1-log10(σ1) parameter planes. These objective
functions are plotted for the particular case depicted in Fig. 2.6,
i.e., h1 = 0.01 m, θ1 = 0.36, and θ2 = 0. True parameter
values are represented by the white star marker. Results from
the numerical experiments. . . . . . . . . . . . . . . . . . . . . 44

2.8 Response surfaces of the objective function logarithm log10(ϕ)
in the (a) ε1-ε2, (b) ε1-log10(σ1), (c) ε1-h1, (d) ε1-log10(σ2), (e)
ε2-h1 and (f) h1-log10(σ1) parameter planes. These objective
functions are plotted for the case where h1 = 0.08 m, θ1 = 0.36,
and θ2 = 0. True parameter values are represented by the white
star marker. Results from the numerical experiments. . . . . . 45



LIST OF FIGURES xi

2.9 Error distribution of the dielectric permittivity of the top layer,
as a function of the contrast in water content between the layers.
The box extent shows interquartile range (i.e., the range between
the first and the third quartiles), while the median of the error
distribution is represented by the horizontal line that cuts the
box. Whiskers length is 1.5 times the vertical length of the
boxes. Outlier error values are displayed as crosses outside of the
whiskers. Comparison between inversions performed with the
two-layered (a) and the one-layered (b) models in the frequency
domain. Results from the numerical experiments. . . . . . . . . 46

2.10 Soil surface relative dielectric permittivity estimated from GPR
data inversion (ε1,GPR) as a function of soil volumetric water
content θv. Dielectric permittivities are depicted with differ-
ent symbols according to the top layer thickness. The model of
Ledieu et al. (1986) is fitted on the observed data (solid line).
The dotted vertical line at value θv = 0.064 indicates the soil
water content of the second layer (constant for all configura-
tions). (a) Two-layered inversion in the frequency domain. (b)
One-layered inversion in the frequency domain. (c) Two-layered
inversion in the time domain. (d) One-layered inversion in the
time domain. (e) Two-layered inversion in the time domain as-
suming no PEC as lower-halfspace. (f) Inversion in the time do-
main by focusing on the surface reflection only (Lambot et al.,
2006b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.11 Comparison between first layer thickness measured in the sand-
box and derived from GPR signal inversion using the TIME 2L*
scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.12 Response surfaces of the logarithm of the objective function in
the ε1-ε2 (a), ε1-σ1 (b) and ε1-h1 (c) parameter planes for a GPR
laboratory measurements inversion (FREQ 2L scenario) where
θv = 0.115 and h1 = 8 cm. The unique value retrieved by the
GMCS-NMS inversion is depicted with a star. Points of the pa-
rameter space sampled by the DREAM algorithm are projected
(in red) over the response surfaces. Histograms of the posterior
distributions are drawn along the axis of the parameters. Confi-
dence intervals using a linear approximation of the slope of the
objective functions are drawn in red rectangles. . . . . . . . . . 52

2.13 Error between the ground measurements and GPR-derived soil
surface water content as a function of the contrast between the
two layers for TIME L-M inversion scenario. Coefficient of de-
termination r2 is depicted in the upper-left corner. . . . . . . . 54

2.14 Absolute difference in the top-layer dielectric permittivities be-
tween one- and two-layered models in frequency domain as a
function of the top-layer volumetric water content. Dielectric
permittivities are depicted with different symbols according to
the first-layer widths. The dotted vertical line at value θv =
0.064 indicates the soil water content of the second layer. . . . 55



xii LIST OF FIGURES

2.15 Measured and modeled Green’s functions on the frequency band-
width from 0.8 to 2.6 GHz, depicted (a) in the frequency and
(b) time domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.16 Error boxplots between the GPR-derived and the sampled volu-
metric soil water content of the top layer, for inversions with dif-
ferent frequency bandwidths. The box extent shows interquartile
range (i.e., the range between the first and the third quartiles),
while the median of the error distribution is represented by the
horizontal line that cuts the box. Whiskers length is 1.5 times
the vertical length of the boxes. Outlier error values are dis-
played as crosses outside of the whiskers. . . . . . . . . . . . . . 57

3.1 Flowchart of the inversion of the Green’s function G↑
xx with the

three different multilayered soil moisture models, that are, the
one-layered, two-layered and profile models. . . . . . . . . . . . 63

3.2 Numerically generated soil moisture profiles with the van Genuchten
model (dotted lines) and two-layered profile (plain lines) re-
trieved by inversion using the two-layered model, for four dif-
ferent van Genuchten parametrizations (n = 14 and α = 16, 20,
24 and 28 m−1). Results from the numerical experiments. . . . 66

3.3 Comparison between the first layer thickness h1 retrieved by
inversion using the two-layered model and the position of the
inflexion point zi of the generated soil moisture profile. Results
from the numerical experiments. . . . . . . . . . . . . . . . . . 67

3.4 Study site for the GPR acquisitions near Walhain, Belgium. The
3741 GPR measurements are depicted over the field. . . . . . . 68

3.5 All-terrain vehicle holding the GPR system constituted of a horn
antenna linked to a vector network analyzer, the DGPS device
and the PC. Picture taken on the 23th of March 2009 in a barley
field near Walhain, Belgium. . . . . . . . . . . . . . . . . . . . . 69

3.6 Soil moisture map retrieved by one-layered model inversions
from the field acquisition near Walhain on the 23th of March
2009. Size of the symbols are inversely related to their uncer-
tainty by the weight function, which is,Weight = max(RMSE)−
RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Variogram for soil moisture computed on the whole field with
a class distance from 0 to 200 m by a step of 5 m. Variogram
along and perpendicular to the sampling line is denoted by circle
and plus symbols, respectively. Exponential models are fitted
for both variograms. The sampling variance is indicated by the
horizontal dashed line. . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 Soil moisture maps from two-layered model inversions for the
first layer (a) and the second layer (b) and from the profile model
inversions for the top (c) and the bottom (d) of the profile for
the 300 points outlined with the red polygon in Fig. 3.6. . . . . 74



LIST OF FIGURES xiii

3.9 Variograms for soil moisture computed on the 300 selected points
for the first layer (a) and the second layer (b) from the two-
layered model inversions and for the top (c) and the bottom
(d) from the profile model inversions. Exponential models are
fitted for all variograms. The total variance is indicated by the
horizontal dashed line. . . . . . . . . . . . . . . . . . . . . . . . 77

3.10 Soil moisture profiles retrieved from the two-layered inversion
and the model inversion and unique soil moisture value retrieved
from the one-layered model inversion for two GPR measured
points ((a) and (b)). . . . . . . . . . . . . . . . . . . . . . . . . 78

3.11 Measured and modeled Green’s functions in the frequency do-
main depicted in amplitude (a) and phase (b) and in time do-
main for the one-layered model (c) and for the two others models
(d). The one-layered modeled Green’s function is defined on the
frequency range from 200 to 800 MHz. Two-layered and profile
modeled Green’s functions are defined on the frequency range
from 200 to 1600 MHz. . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Study site of Burnia near Louvain-la-Neuve, Belgium. The GPR
acquisition was performed along 12 parallel lines. Soil core sam-
pling was performed in 20 locations. . . . . . . . . . . . . . . . 88

4.2 All-terrain vehicle holding the GPR system constituted of a horn
antenna linked to a vector network analyzer, the DGPS device,
an EM38 sensor and the PC. Picture taken on the 15th of March
2010 in a Burnia near Louvain-la-Neuve, Belgium. . . . . . . . 89

4.3 Measured and modeled Green’s function depicted in the fre-
quency domain in amplitude and phase (a) and in time domain
(b). The time-window corresponding to the surface reflection is
delineated in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Soil moisture maps for the three acquisitions. Topographic con-
tour lines with an interdistance of one meter are depicted in grey
lines. The black arrows indicate the location and the direction
of the slope of the main thalweg in the field. . . . . . . . . . . . 95

4.5 Variogram for soil moisture computed along the acquisition lines
for the three repetitions. An exponential model is fitted on the
variogram estimates. The sampling variance is indicated by the
horizontal dashed line. . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Maps of the interpolated modeling error ϕ(b∗). Topographic
contour lines with an interdistance of one meter are depicted in
grey lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Observed sensitivity of the electromagnetic model, expressed by
the sum of the elements of the Jacobian matrix for the permit-
tivity, as a function of inverted soil moisture. . . . . . . . . . . 98

4.8 Maps of the soil moisture uncertainty σθ,GPR [m3m−3] computed
using Eqs (4.3) to (4.6). Topographic contour lines with an
interdistance of one meter are depicted in grey lines. . . . . . . 99



xiv LIST OF FIGURES

4.9 Maps of the repetition uncertainties for the three acquisitions.
The repetition uncertainty is computed as the difference between
the interpolated values of each repetitions. The black lines de-
lineated the zones where the two repetitions of the acquisition
resulted in different soil moisture estimates, at 95 % of confidence.101

4.10 Comparison between interpolated GPR-derived soil dielectric
permittivity εGPR and volumetric sampling soil moisture θV . . 102

5.1 Study site of Burnia near Louvain-la-Neuve, Belgium. The slope
is expressed in percents. . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Air temperature and precipitation depicted from the 04 March
to 10 April 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 GPR-derived soil moisture point-measurements depicted with
the same color scale for the five GPR surveys. . . . . . . . . . . 116

5.4 Variograms for soil moisture computed for the five field acquisi-
tions along (‘o’) and perpendicular (‘+’) to the acquisition lines.
Exponential models are fitted for the parallel variograms. The
total variance is indicated by the horizontal dashed line. . . . . 118

5.5 Comparison between interpolated GPR-derived soil dielectric
permittivity εGPR and volumetric sampling soil moisture θV for
all dates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Soil moisture maps for the five dates. The locations where soil
moisture is equal to the field-average within a tolerance of ±
0.02 m3m−3 are outlined by black lines. The intersection of
these zones between the five dates are outlined by red lines. . . 122

5.7 Temporal stability of the field-average soil moisture computed by
indicators based on the relative difference of soil moisture to the
field-average. From top to bottom, the mean of the relative dif-
ference δi, the standard deviation of the relative difference σ(δ)i
and the RMSE of these differences RMSEδi are presented. The
time-stable zones determined by the first method are outlined
by black lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 Rank ordered mean relative difference of GPR-derived soil mois-
ture to the field-average δi (dashed line) depicted with standard
deviation σ(δ)i (in gray). The RMSE of the relative differences
RMSEδi is presented in a plain line. Results from GPR mea-
surements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.9 Rank ordered mean relative difference of volumetric soil mois-
ture to the field-average δi (dashed line) depicted with standard
deviation σ(δ)i (in gray) for the 20 soil core sampling locations.
The RMSE of the relative differences RMSEδi is presented in a
plain line. Results from soil core sampling measurements. The
four sampling points that are within the time-stable area are
depicted with a thick green errorbar. . . . . . . . . . . . . . . . 126



LIST OF FIGURES xv

6.1 Maps of soil moisture point-values retrieved by GPR inversions
from the field acquisition in Marbaix, 15 April 2009. Contour
lines with an interdistance of one meter are depicted in black
lines. The outlet of the field is indicated by the black arrow.
Projected coordinate system: Belgian Lambert 1972. . . . . . . 135

6.2 Antecedent soil moisture maps for Marbaix, 15 April 2009, used
as an input in the hydrologic model with measured grided values
(a), measured values rearranged according the TWI (b), mea-
sured values inversely rearranged according the TWI (c), ran-
domly permuted values (d), simulated values using a variogram
(e) and connected simulated values (f). The outlet location and
direction are indicated with an arrow. . . . . . . . . . . . . . . 136

6.3 Variogram of soil moisture computed for the field campaign in
Marbaix, 15 April 2009 with a class distance from 0 to 150 m by
a step of 5 m. A variogram using an exponential model is fitted
on the data. The total variance of soil moisture is depicted with
the dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 Hydrographs from hydrologic simulations using the antecedent
soil moisture maps from all scenarios for 4 field campaigns: Wal-
hain - 07/04/2008 (a), Marbaix - 15/04/2009 (b), Walsdorf -
21/07/2009 (c) and Burnia - 06/04/2010 (d). For stochastic soil
moisture scenarios, i.e., random, variogram, connected, the av-
erage hydrographs on the 1000 realizations are depicted. The
rainfall is depicted by the bars of the second Y-axis. . . . . . . 142

6.5 Relative difference between structured and structuredinv runoff
volume as a function of the mean soil moisture in the field. . . 145

6.6 Hydrographs from hydrologic simulation using the antecedent
soil moisture maps from scenarios 1 to 5 for the field campaign
in Marbaix, 15 April 2009. The average random hydrograph is
depicted as a dotted line on top of the 1000 hydrographs from
the random antecedent soil moisture maps. . . . . . . . . . . . 146

6.7 Hydrographs from hydrologic simulation using the antecedent
soil moisture maps from scenarios 1 to 4 and 6 for the field
campaign in Marbaix, 15 April 2009. The average variogram
hydrograph is depicted in a dashed line on top of the 1000 hy-
drographs from the simulated antecedent soil moisture maps. . 147

6.8 Hydrographs from hydrologic simulation using the antecedent
soil moisture maps from scenarios 1 to 4 and 7 for the field
campaign in Marbaix, 15 April 2009. The average connected
hydrograph is depicted in a dashed-dotted line on top of the
1000 hydrographs from the simulated antecedent soil moisture
maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.9 Nash-Sutcliffe efficiency coefficients of the structured scenario
with respect to the reference scenario (NSEstructured) as a
function of the correlation between measured soil moisture and
the TWI (rTWI,θ). . . . . . . . . . . . . . . . . . . . . . . . . . 150





List of Tables

1.1 Root mean square error RMSE of the fits according to the model
of Ledieu et al. (1986) and coefficient of determination r2 be-
tween the square root of the relative dielectric permittivity

√
εr

and the volumetric water content θv for time domain reflectome-
try (TDR) and frequency domain reflectometry (FDR) measure-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Number of convergent configurations for time and frequency do-
mains and for the one-layered and the two-layered inversion mod-
els in the numerical experiments. . . . . . . . . . . . . . . . . . 48

2.2 Statistics on the comparison between ground measurements of
volumetric water content and GPR-measured dielectric permit-
tivities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Summary of the inversions of GPR field data for the three models. 70
3.2 Statistics of GPR-derived soil moisture from the one-, two-layered

and profile inversions for the 300 selected points. The mean (µ)
and the standard deviation (σ) of soil moisture and three vari-
ogram parameters (Nugget effect, Sill and Range) are presented. 76

4.1 Statistics of GPR-derived volumetric soil moisture [m3m−3] (non-
interpolated values) . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Summary of the soil moisture uncertainties [m3m−3] determined
by the different methods . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Presentation of the five GPR acquisitions . . . . . . . . . . . . 114
5.2 Statistics of GPR-derived volumetric soil moisture expressed in

[m3m−3] and variograms parameters (Nugget [m3m−3]2, Sill [m3m−3]2

and Range [m]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3 Soil moisture [m3m−3] statistics from soil core sampling and

RMSE of the petrophysical relationships . . . . . . . . . . . . . 121

6.1 Description of the agricultural fields and resolutions used in hy-
drologic simulations . . . . . . . . . . . . . . . . . . . . . . . . 133

xvii



xviii LIST OF TABLES

6.2 GPR soil moisture ([m3m−3]) acquisitions. The number of mea-
sured points, the duration of the acquisition, the mean (µθ) and
standard deviation (σθ) of soil moisture, variogram parameters
(Nugget effect [m3m−3]2, Sill [m3m−3]2 and Range), the ratio
between the nugget effect and the sill (Nug./Sill), the coefficient
of correlation between the TWI and soil moisture (rTWI,θ) and
the resolution for hydrologic simulations are presented. . . . . . 141

6.3 Runoff peak Qmax and total runoff volume V for each antecedent
soil moisture scenario for the 10 field campaigns. For the stochas-
tic scenarios, the average Qmax and V were computed and the
standard deviations are depicted in brackets. Maximum and
minimum values for each field campaign are highlighted in bold
and italic, respectively. . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 Nash-Sutcliffe efficiency coefficients of the different scenarios of
antecedent soil moisture maps compared to the reference sce-
nario for the 10 field campaigns. The mean and the standard de-
viation of normalized Nash-Sutcliffe coefficients were computed
for the 10 field campaigns. Maximum and minimum values for
each field campaign are highlighted in bold and italic, respectively.149

6.5 Nash-Sutcliffe efficiency coefficients of the different scenarios of
antecedent soil moisture maps compared to the reference sce-
nario for Marbaix, 15 April 2010 for varying grid sizes. The
coefficients of correlation between the TWI and soil moisture
(rTWI,θ) are presented in the second column. . . . . . . . . . . 151



Introduction

Scientific context

Surface soil moisture, i.e., the water held in the first centimeters of soils, plays
an important role in many environmental, agricultural, hydrologic and climatic
processes. In hydrology, soil moisture governs the partitioning of rainfall into
runoff and infiltration, and neglecting its variability largely impacts on the
prediction of solute leaching (e.g., Zhang et al., 1996; Wendroth et al., 1999),
erosion (e.g., Fitzjohn et al., 1998), runoff (e.g., Merz and Bardossy, 1998; Zehe
et al., 2005) and evaporation (e.g., Yang et al., 2007). In agriculture and irri-
gation applications, plant growth and seed germination are largely controlled
by soil water availability (e.g., Borgogno et al., 2010), particularly when saline
stress is encountered. Knowing the spatiotemporal distribution of soil moisture
and soil water storage capacity is therefore an important asset for the optimiza-
tion of irrigation under variable environment. Soil moisture also exerts a strong
control on soil biogeochemistry (Robinson et al., 2008b), especially with respect
to the cycling of nitrogen and carbon from soil to the hydro-, bio- and atmo-
sphere (Porporato et al., 2003; D’Odorico et al., 2003; Herbst et al., 2009). In
climatology and meteorology, the importance of the soil moisture in the water
balance and land surface energy budget has been widely acknowledged (Senevi-
ratne et al., 2010), as it controls the evaporation and the sensible heat fluxes
between soil and atmosphere. In digital soil mapping applications, transitory
soil moisture measurements at the field scale may actually provide information
about (nearly) time-invariant soil attributes as soil hydraulic properties, which
are dependent on soil structure and texture. Facing environmental contamina-
tion and increasing scarcity of resources, knowing the spatial variability of soil
properties at the field scale with a high resolution is considerably appealing
for designing new optimal agricultural practices, in the framework of precision
agriculture (Adamchuk et al., 2004).

Soil moisture is known to vary drastically in time and space across many
scales, especially in highly heterogeneous environments in terms of soil type,
vegetation and topography. Hence, soil moisture appears sometimes as an
ephemeral, erratic, imperceptible and capricious variable. When it is measured
by an indirect method, over an uncertain extent and penetration depth, and in
a complex soil environment made not only of soil particles, air and water but
also roots and others biological features, it is worth claiming that the meaning
of what is measured as “soil moisture” is actually ambiguous.
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Determining temporal and spatial soil moisture variability is therefore es-
sential for many scientific issues and applications from the field to the global
scale. In that respect, a large number of soil moisture sensing techniques were
used and developed in the last 50 years (Evett and Parkin, 2005; Robinson
et al., 2008a,b; Vereecken et al., 2008). The reference and the only direct soil
moisture measurement method is the gravimetric method, which consists in
weighting a soil sample after and before oven-drying the sample at 105◦C. The
difference between the humid and dry weights gives the amount of soil water
that was present in the sample. If the soil sample volume is known, the vol-
umetric soil water content (m3 of water m−3 of soil) can be determined, in
addition to the gravimetric soil water content (g of water g−1 of soil).

In the field of hydrogeophysics, numerous indirect methods for soil moisture
sensing exist and rely on the measurement of a physical variable that is a sur-
rogate for soil moisture. Most of these methods are based on the measurement
of the soil response when it is exposed under electric current or electromag-
netic field, which is dependant on the soil electromagnetic properties. As the
relative dielectric permittivity of water overwhelms the one of the other soil
components, the soil electromagnetic response is principally determined by its
water content. Two main categories of soil moisture measurement techniques
are often distinguished: contact-based (or invasive) and contact-free methods
(Vereecken et al., 2008). The contact-based methods require direct contact with
the soil medium and include time domain reflectometry methods (TDR) (Topp
et al., 1980; Robinson et al., 2003), capacitance sensors (e.g., Bogena et al.,
2007), electrical resistivity tomography (ERT) (e.g., Michot et al., 2003), neu-
tron probes (e.g., Hupet and Vanclooster, 2002), heat pulse sensors (Campbell
et al., 1991) and fiber optics sensors (e.g., Garrido et al., 1999). Recently, wire-
less sensor networks using clusters of invasive sensors were deployed, offering
the potentiality of measuring soil moisture over large extent with high temporal
resolution (Bogena et al., 2010).

Among the contact-free or non-invasive methods, we may distinguish be-
tween spaceborne or airborne remote sensing and proximal (or ground-based)
sensing methods. There has been a huge development in the recent years in
spaceborne remote sensing instruments and platforms for soil moisture. Re-
mote sensing of soil moisture methods include passive (radiometers, >5 km of
resolution) and active (scatterometer and synthetic aperture radar, 3-30 m of
resolution) microwave methods that operate at various spatial and temporal
resolutions (Wigneron et al., 2003; Wagner et al., 2007). Probably the great-
est asset of remote sensing methods is that they can cover large areas with a
large temporal resolution. For instance, the Soil Moisture and Ocean Salin-
ity (SMOS) mission launched by the European Space Agency in November
2009 intents to provide global soil moisture estimates at 50 km of spatial res-
olution and a 3 days revisiting time (ESA, 2002). However, remote sensing
methods still suffer from several limitations. Measurements capabilities are
limited over dense vegetation cover and by the scattering effect of surface soil
roughness (Verhoest et al., 2008) because of the relatively high frequencies at
which these sensors usually operate. An important drawback is the shallow
penetration depth of the remote sensing instruments (on the order of the cm),
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while a deeper characterization of soil moisture is desirable in many applica-
tions (Capehart and Carlson, 1997; Vereecken et al., 2008). Finally, the large
support scale of remote sensing technique hides the within-pixel soil moisture
variability, which is generally resulting in a poor agreement with small-support
scale calibrating measurements (e.g., Ceballos et al., 2005). The difference in
support scales between large-scale remote sensing methods and small-scale in-
vasive sensors may indeed reach several orders of magnitude, therefore making
these two methods hardly comparable.

Proximal soil moisture sensing methods, that are ground-based but non-
invasive, may bridge the scale gap that remains in soil moisture sensing tech-
niques, making possible the characterization of soil moisture at an intermedi-
ate scale between remote sensing and invasive sensors. Proximal soil moisture
sensing includes ground penetrating radar (GPR), electromagnetic induction
sensors (EMI) (e.g., Martinez et al., 2010) and ground-based radiometers (e.g.,
Jonard et al., 2010). Proximal soil moisture sensing can be seen as the coun-
terpart of the spaceborne remote sensing but operating at ground. While GPR
and radiometers are mostly sensitive to soil moisture, it is worth mentioning
that EMI sensors are sensitive not only to soil moisture, but also to soil salin-
ity, clay and organic matter contents. GPR for soil moisture sensing is based
on the propagation of an electromagnetic wave into the soil, which is mainly
governed by the soil water content. A review about recent GPR developments
can be found in Slob et al. (2010) while a complete review of GPR applications
for soil moisture sensing was given in Huisman et al. (2003). Several techniques
were developed to infer soil moisture from GPR surface measurements:

The most commonly used surface GPR approach for soil moisture sensing
is based on the analysis of the ground wave propagation velocity (Huisman
et al., 2002a; Grote et al., 2003; Galagedara et al., 2005; Lunt et al., 2005;
Grote et al., 2010). The ground wave is the signal that travels directly from
the emitting to the receiving antenna through the soil surface. Generally, three
different acquisition types are used for acquiring the ground wave (Huisman
et al., 2003), which are: (1) wide angle reflection and refraction (WARR), (2)
common mid point (CMP), and (3) fixed offset (FO) methods. The two first
acquisition types are multi-offset acquisitions, namely, they consist in making
several measurements over the same target by increasing the offset between
emitter and receiver antennas, while a single offset is used in the fixed offset
method. The ground wave method has proven its effectiveness and its accuracy
in relatively simple soil conditions. However, the technique presents a number
of drawbacks, including the following: 1) the required contact between the
antennas and the soil; 2) the identification of the ground wave; which may be
ambiguous or even impossible in some conditions; 3) the presence of ambiguous
guided waves when near-surface layering is present (van der Kruk, 2006; Strob-
bia and Cassiani, 2007); and 4) the limited adequacy of the used straight-ray
approximation for modeling electromagnetic wave propagation (Ernst et al.,
2007).
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The second approach is the surface reflection coefficient method, which
uses off-ground radar configurations (Chanzy et al., 1996; Redman et al., 2002;
Serbin and Or, 2003, 2004). The soil surface dielectric permittivity (and cor-
related soil moisture) is derived from the Fresnel reflection coefficient, which is
determined from the ratio between the amplitude of the reflection at the soil
surface and the one obtained for a calibrating perfect electric conductor. How-
ever, this method still remains mostly unused nowadays for real-time mapping
applications, mainly due to the requirement for such calibration (Lambot et al.,
2006b).

Recently, some authors proposed innovative soil moisture retrieval approaches
using the same GPR sensors. In that respect, van der Kruk (2006) and van der
Kruk et al. (2010) developed an inversion method of dispersed waveforms
trapped into a surface waveguide (i.e., when soil is layered by freezing, thawing
or by a wetting front) for retrieving its dielectric permittivity and thickness.
Oden et al. (2008) used a catalog of finite-difference time-domain (FDTD)
simulations of early-time waveforms received by the GPR system for various
model parameters that is to be compared with received waveforms. Recently,
Benedetto (2010) used a Rayleigh scattering based method for directly de-
termining soil moisture, without the need of a petrophysical relationship and
calibration of the GPR system.

While they have shown in general a relatively good accuracy in soil mois-
ture sensing compared to spaceborne platforms, current GPR methods mainly
suffer from the cumbersomeness of their application in field conditions and the
resulting limited extent they can cover. For instance, a high resolution (∼dm)
three-dimensional imaging of soil moisture can be achieved using borehole GPR
(Binley et al., 2001, 2002; Looms et al., 2008), but this method necessitates the
drilling of boreholes in the soil, that hampers its use for characterizing large
areas with a high resolution. Using the ground wave method, multi-offset
acquisitions (i.e., CMP and WARR acquisitions) might be necessary to cor-
rectly identify the ground wave. For a single soil moisture measurement, mul-
tiple GPR data acquisitions are then necessary, which is too time-consuming
to perform mapping of large areas. Although fixed offset methods that uses
single-offset configuration were developed (e.g., Steelman and Endres, 2010),
the resulting accuracy might be lower compared to multi-offset measurements
and the effectiveness in high-resolution mapping is still limited by the required
contact of the antenna with soil.

The off-ground GPR system developed by Lambot et al. (2004b, 2006b) can
be seen as an advanced surface reflection method and has shown particularly
promising potentialities for soil moisture sensing and mapping. The use of an
off-ground configuration is particularly suited for rapid soil moisture sensing
in field conditions, as no contact with soil is required. The method is based
on an accurate modeling of the GPR system by a three-dimensional solution
of Maxwell’s equations for wave propagation in multi-layered media and by
an antenna calibration using frequency-dependent transfer functions including
antenna-soil interactions. Soil dielectric permittivity and correlated soil mois-
ture are retrieved by full-waveform inversion of the GPR data. Full-waveform
inversion of ultra-wideband GPR data (i.e., acquired in a large frequency band-
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width) permits to maximize information retrieval capabilities. Low frequency
antenna permits to avoid surface roughness scattering and vegetation atten-
uation. Although this GPR method appeared highly accurate in laboratory
experiments, its effectiveness in field conditions, especially for real-time map-
ping, has to be demonstrated.

Objectives

This PhD research was performed in the framework of the HYDRASENS re-
search project. This project aims at exploring new strategies to integrate radar
remote sensing, hydrologic, and hydraulic modeling for water management
purposes through data assimilation. In that context, we developed a GPR
approach for high-resolution soil moisture mapping at the field scale.

The first main objective of this thesis is to test, validate and apply the
off-ground GPR system developed by Lambot et al. (2004b, 2006b) for soil
moisture sensing and mapping in field conditions. We aim at developing an
operational GPR solution for real-time mapping of surface soil moisture in
nearly-bare agricultural fields at high resolution over large extents (several ha).
The applicability and reliability of the method is evaluated under usual and
critical conditions through numerical, laboratory and field experiments. This
overall goal was distributed in several specific objectives:

� to extend and validate the electromagnetic modeling approach to a fre-
quency domain reflectometry application, i.e., on a TDR probe, for local
soil moisture determination;

� to investigate by numerical experiments the well-posedness of the GPR
inversion and to compare different inversion strategies to deal with shal-
low soil moisture layering and vertical profile;

� to test by laboratory experiments the reliability of the GPR method for
soil moisture determination in the presence of shallow soil layering;

� to test in field conditions the capability of the GPR method to retrieve
layered or continuously-varying vertical profiles of soil moisture;

� to comprehensively validate the GPR method and quantify the soil mois-
ture measurements uncertainties by independent uncertainty assessment
methods in field conditions, including the determination of inversion un-
certainties, comparison with ground-truth measurements and repetitions
of the acquisition.

Using the soil moisture maps measured by GPR, the second main objective
is to study the spatiotemporal variability of soil moisture at the field scale and
its implications in hydrological applications. The GPR method for soil moisture
mapping developed in the first part of this thesis may bring new insights about
the understanding of surface soil moisture dynamics and its implication in
surface hydrology. In particular, the specific objectives are as follows:
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� to study the spatiotemporal soil moisture patterns in a 2.5 ha agricultural
field;

� to study the temporal stability of soil moisture patterns for determining
time-stable areas;

� to investigate the effect of different measured soil moisture pattern or-
ganizations on simulated runoff response using a distributed hydrologic
model;

� to determine which soil moisture pattern organization could be used for
high resolution soil moisture modeling at the field scale.

Outline of the thesis

Chapter 1 starts with the development of a new frequency domain reflectometry
application based on the electromagnetic modeling and calibration approaches
used in this thesis for improving the determination of the soil electrical prop-
erties. A general description of electromagnetic wave propagation modeling in
multi-layered media that is used in other parts of the thesis is presented in this
chapter.

Chapter 2 deals with the impact of shallow soil layering on the soil moisture
characterization by GPR through numerical and laboratory experiments. GPR
data may be affected by interferences in the presence of shallow layering, which
may be widely encountered in the environment under rapid soil wetting or
drying. In chapter 3, we extend the issues raised in chapter 2 to real complex
soil profile conditions in a field application. The purpose is to investigate the
retrieval of vertical profile soil moisture information by continuously-varying
soil moisture profile and two-layered model configurations in field conditions.
The GPR method for soil moisture sensing and mapping in field conditions
is then comprehensively validated in chapter 4, with different soil moisture
uncertainties assessment methods. The uncertainties in surface soil moisture
retrieved from surface reflection GPR data inversion are quantified and the
reliability of the technique in field conditions is assessed.

Chapter 5 shows an application of the GPR technique for investigating high-
resolution spatiotemporal patterns and their temporal stability in an agricul-
tural field. In chapter 6, we use numerous soil moisture surveys by GPR to
analyze the effect of antecedent soil moisture variability on the runoff response
using a distributed hydrologic model. In these two last chapters, the high spa-
tial resolution of the soil moisture measurements by GPR provides new insights
about the investigation of soil moisture spatial variability at the field scale and
its impacts in hydrologic modeling. Finally, a summary of the main findings of
this thesis and perspectives for future researches in GPR development and soil
moisture sensing are drawn in the conclusion of the thesis.

The organization of this thesis is based on articles published or submitted
to international peer-reviewed journals (cf. Publications and Conferences).
Redundancies were avoided, although the different chapters can still be read
independently.



Outline of the thesis 7



8 Introduction



Chapter 1

A frequency domain
reflectometry technique for
soil electrical properties
determination∗

1.1 Outline

We present a generalized frequency domain reflectometry (FDR) technique for
soil electrical properties determination, which is based on an electromagnetic
model decoupling the cable and probe head from the ground using frequency-
dependent reflection and transmission transfer functions. The FDR model
represents an exact solution of Maxwell’s equations for wave propagation in
one-dimensional multilayered media. The benefit of the decoupling is that
the FDR probe can be fully described by its characteristic transfer functions,
which are determined using only a few measurements. The soil properties are
retrieved after removing the probe effects from the raw FDR data by inverting
iteratively a global reflection coefficient. The proposed method was validated
in laboratory conditions for measurements in water with different salt concen-
trations and sand with different water contents. For salt water, inversions of
the data led to dielectric permittivity and electrical conductivity values very
close to the expected theoretical or measured values. In the frequency range for
which the probe is efficient, a good agreement was obtained between measured,
inverted and theoretically-predicted signals. For sand, results were consistent
with the different water contents and also in close agreement with traditional
time domain reflectometry measurements. The proposed method offers great

*This chapter is adapted from:
Minet, J.; Lambot, S.; Delaide, G.; Huisman, J. A.; Vereecken, H. & Vanclooster, M. A
generalized frequency domain reflectometry forward and inverse modeling technique for soil
electrical properties determination, in Vadose Zone Journal, 2010, 9(4), 1063-1072.
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promise for accurate soil electrical characterization as it inherently permits to
maximize the information that can be retrieved from the FDR data.

1.2 Introduction

Time domain reflectometry (TDR) has become a standard in geophysical ap-
plications for measuring the soil dielectric permittivity (and correlated soil
moisture) and electrical conductivity. Since TDR for soil characterization was
first developed by Topp et al. (1980, 2003) in the early 1980s, many applica-
tions and enhancements have been reported regarding (1) the development of
the physical measurement system, e.g., in the design of the TDR probe (Robin-
son et al., 2003) and by the multiplexing of several probes (Heimovaara and
Bouten, 1990), and (2) the interpretation and modeling of the TDR waveform
(Heimovaara, 1993; Noborio, 2001; Robinson et al., 2003). The calibration of
petrophysical relationships that link the dielectric permittivity and the soil
water content has also received a specific attention (Topp et al., 1980; Ledieu
et al., 1986; Sihvola and Kong, 1988; Yu et al., 1999).

Traditionally, dielectric permittivity is derived from the TDR signal by the
analysis of the travel time of the electromagnetic wave along the transmission
line. Chung and Lin (2009) showed that different dielectric permittivity esti-
mations can be obtained by comparing the methods that have been proposed
to determine the reflection arrivals in the travel time analysis (e.g., the tangent
method, the derivative method). Indeed, Hook and Livingston (1996) demon-
strated that a dominant source of error in estimating soil water content using
TDR was the uncertainty in determining the propagation travel time. High
soil electrical conductivity in clay and/or saline soils can also significantly af-
fect the propagation of the waveform and the determination of the travel time,
leading to erroneous estimation of the real part of the dielectric permittivity if
not taken into account (Pepin et al., 1995; Sun et al., 2000).

Soil electrical conductivity is usually retrieved from the TDR signal by
depicting the reflection coefficient at long times and applying the Giese and
Tiemann (1975) method. However, several authors have pointed out the limi-
tations of this method (Lin et al., 2008; Huisman et al., 2008), as well as the
dielectric permittivity determination methods above-cited. In addition, these
methods are not suited for determining the frequency dependence of the soil
electrical properties.

To overcome these limitations, more advanced forward and inverse modeling
methods, usually performed in the frequency domain, have shown promising
perspectives (Heimovaara, 1994; Lin, 2003; Schaap et al., 2003; Huisman et al.,
2004; Heimovaara et al., 2004; Mattei et al., 2005; Shuai et al., 2009). In ad-
dition, operating in the frequency domain permits to increase the bandwidth
and, thereby, increases the information content in the data. As a result, fre-
quency domain analysis offers more potential than the common time domain
and travel time analysis methods for the determination of soil water content
(Lin, 2003). In these previous studies, the FDR system was modeled using
recursive scatter functions describing the propagation of the electromagnetic
signal, accounting for transmission and reflection phenomena occurring at each
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change of impedance of the FDR system. Nevertheless, modeling of the FDR
system could require numerous system calibrations with a high number of pa-
rameters to be determined (e.g., 40 as reported by Heimovaara et al. (2004))
and the necessity of disconnecting the elements of the FDR system, as stated
by Shuai et al. (2009). In addition, in these previous studies, assumptions
about the cable and probe impedances have to be made for modeling the FDR
system.

Electromagnetic wave generation can be performed using other wave gen-
erator devices than the commonly used and commercialized cable testers. In
particular, FDR systems that have been conceived with vector network ana-
lyzer (VNA) (Campbell, 1990; West et al., 2003; Huisman et al., 2004; Shuai
et al., 2009) have shown an unprecedented precision and control on the input
generated signal as well as on the reception and the analysis of the returned
waveform. In addition, the calibration of a VNA is well-defined, constituting an
international standard, and thereby ensures repeatability of the measurements.
Finally, unified models and techniques have been developed for soil electromag-
netic characterization based on the same VNA technology but using different
sensors (e.g., ground penetrating radar (GPR) (Lambot et al., 2004b), electro-
magnetic induction (EMI) (Moghadas et al., 2010)) operating with different
frequency ranges and measuring at different scales.

1.3 Objectives

In this chapter, the electromagnetic modeling approach presented by Lambot
et al. (2004b) for GPR is extended to a VNA-based FDR system in order to
improve the retrieval capabilities of a TDR probe. A generalized FDR mod-
eling approach is formulated and a practical probe calibration procedure is
proposed. The approach is based on an electromagnetic model decoupling the
cable and probe head from the ground using frequency-dependent reflection
and transmission transfer functions. The FDR model represents an exact so-
lution of Maxwell’s equations for wave propagation in one-dimensional (1-D)
multilayered media, and in particular, in transmission lines. The FDR probe
is fully described by its characteristic transfer functions, which are determined
using three or more measurements for known model configurations. The soil
properties are retrieved after removing the probe effects from the raw FDR
data by inverting iteratively a multilayered global reflection coefficient. This
approach is not limited to the VNA-based FDR setup used here and could be
extended to the traditional TDR cable testers.

In order to validate the method, we conducted laboratory experiments with
measurements taken in salt water with increasing salt concentrations and sand
with different moisture conditions. The results were compared to theoretical
values and traditional TDR estimates. The advantage of the proposed approach
compared to other existing methods is mainly the simple calibration procedure
for determining the probe characteristics.
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1.4 Materials and methods

1.4.1 Electromagnetic properties of materials

The electromagnetic parameters governing wave propagation are the dielectric
permittivity ε, electrical conductivity σ and magnetic permeability µ. The
magnetic permeability of the major natural materials encountered in the en-
vironment is assumed to be equal to the magnetic permeability of free space,
namely, µ0 = 4π10−7 Hm−1. However, soil with magnetic materials (e.g., iron
oxides) may exhibit non negligible higher magnetic permeabilities (Robinson
et al., 1994; van Dam et al., 2002; Stillman and Olhoeft, 2008; Mattei et al.,
2008).

Due to relaxation phenomena, the soil electromagnetic properties present
a frequency dependence, which is usually described with the extended Debye
relaxation model (e.g., Heimovaara, 1994; Feng et al., 1999; Huisman et al.,
2004). It is worth noting that this model assumes only one single relaxation
phenomenon, while the soil is a mix of air, soil particles and water and thus
exhibits a complicated dielectric behavior due to the overlapping spectra of its
different components (Logsdon, 2005). In the limited frequency range from 500
MHz to 3 GHz, however, it has been shown that the frequency dependence of
the dielectric permittivity can be neglected for most soils (Zhou et al., 2001;
Weerts et al., 2001; Huisman et al., 2002b; Robinson et al., 2005). Herein,
we assume a constant dielectric permittivity in the frequency range 10 MHz
- 1 GHz. Dielectric permittivity of sand can be assumed as constant in that
frequency range (Kelleners et al., 2005) and dielectric permittivity of water or
salt water decreases as a function of the frequency above 2 GHz only (Meissner
and Wentz, 2004).

Nevertheless, the frequency-dependence of the apparent electrical conduc-
tivity (which includes dielectric losses) in this frequency range can be signif-
icant, especially for high water contents. In a such limited frequency range,
this dependence can be well accounted for using a linear model, thereby repre-
senting a local linear approximation of the full frequency-dependence function
(Lambot et al., 2004b):

σ(f) = σfmin + s(f − fmin) (1.1)

where σfmin
is the apparent electrical conductivity at the minimal frequency

fmin of the frequency range and s the slope of the linear function σ(f).

1.4.2 Modeling of the FDR system

An FDR (or TDR) system is typically constituted by an electromagnetic wave
generator, a coaxial cable and a FDR probe. The wave generator transmits an
electromagnetic wave into the system and the FDR probe acts as a waveguide
transmitting the wave into the medium in which the probe is inserted. The
FDR rods thus emulate a coaxial medium where an alternating electric field os-
cillates between the central and the external rods, with the investigated medium
acting as the insulating material of the coaxial line. Each sequential element of
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the FDR system is characterized by its internal electromagnetic properties, i.e.,
its dielectric permittivity ε, electrical conductivity σ, magnetic permeability µ,
and dimensions, determining its complex impedance. A change in the charac-
teristic properties above-cited produces a partial reflection and transmission of
the wave. The FDR system thereby constitutes a transmission line or a 1-D
multilayered medium.

An FDRmeasurement using VNA technology is represented by the frequency-
dependent scatter function S11(ω), defined as the complex ratio between the
reflected and incident waves, namely:

S11(ω) =
B(ω)

A(ω)
(1.2)

where B(ω) and A(ω) are the reflected and incident waves at the VNA cali-
bration plane, respectively, and ω is the angular frequency. The subscripts of
S11(ω) refer to the fact that the same port of the VNA (i.e., port 1) is used
for simultaneously transmitting (2nd subscript) and receiving (1st subscript)
the waves. Electromagnetic wave propagation through the FDR probe results
from a combination of infinite multiple reflections and transmissions, occurring
at each change of impedance or interface.

In the time domain, using traditional TDR cable testers, the measured
reflected wave b(t) can be calculated by a convolution integral of the incident
wave a(t) and the system function s(t) (Heimovaara, 1994):

b(t) =

∫ +∞

−∞
a(t− τ)s(τ)dτ (1.3)

where τ is the integration variable. The measured reflected wave b(t) in the
time domain can then be transformed in the frequency domain wave B(ω) using
a Fourier transform (Heimovaara, 1994).

The overall FDR system is shown in Fig. 1.1(a) and its corresponding rep-
resentation in terms of a 1-D multilayered medium is shown in Fig. 1.1(b).
The variable S11(ω) therefore represents a global reflection coefficient, mea-
sured at the calibration plane up to the end of the probe, formally referred
to as RC,N (ω), for fields incident from layer C (cable before the calibration
plane) onto the interface with layer N (end of the rods). The probe head is
defined here as the layered medium P, with unknown layers, situated between
the calibration plane and the base of the FDR rods. The FDR probe head
characteristics can only be determined owing to a decoupling of the probe head
and rods in the electromagnetic model, in order to ensure that the probe head
characteristics are independent from the measured medium. In order to mathe-
matically decouple the probe head from the FDR rods, a fictive air layer (layer
0) is added in between, whose thickness d0 tends to zero. This layer has there-
fore no effect on the wave propagation. The FDR rods are then discretized into
a number of layers representing a multilayered medium, with each soil layer be-
ing characterized by its own electromagnetic parameters, and by extension, its
soil properties. For non short-circuited probes, the end of the rods is modeled
by an infinite half-space whose properties are defined such that they lead to a
reflection coefficient RN−1,N = 1. This can typically be emulated using εr = 1,
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Figure 1.1: Modeling of the frequency domain reflectometry (FDR) system by a one
dimensional multilayered medium: (a) schematic of the measurement sys-
tem with vector network analyzer (VNA), (b) corresponding representa-
tion as a multilayered medium, where S11 is the scatter function, R are
reflection coefficients, and ε is the dielectric permittivity, σ is the electri-
cal conductivity, and µ is the magnetic permeability at depths d, and (c)
probe reflection and transmission coefficients R and T characterizing the
FDR probe head.
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σ = 0, and µr → ∞ for layer N. The unknown layered medium P can be theo-
retically replaced by an equivalent medium with global reflection (RC,0(ω) and
R0,C(ω)) and transmission (TC,0(ω) and T0,C(ω)) coefficients, defined as shown
in Fig. 1.1(c), which fully characterize the probe head. Indeed, the presence of
the fictive air layer permits to make independent these global functions from
the soil properties. The scatter function S11(ω) can then be derived as:

S11(ω) = RC,N (ω) = RC,0(ω) +
TC,0(ω)R0,N (ω)T0,C(ω)

1−R0,C(ω)R0,N (ω)
(1.4)

Defining T (ω) = TC,0(ω)T0,C(ω), the number of independent unknown char-
acteristic probe head functions reduces to three, namely, RC,0(ω), R0,C(ω),
and T (ω). It is worth noting that these characteristic probe transfer functions
inherently contain the information about the probe characteristic as, e.g., the
probe impedance, which is integrated in the T (ω) and R0,C(ω) transfer func-
tions. Once these probe characteristic functions are known, the probe effects
can be filtered out from the S11(ω) measurements and the response of the soil
only can be derived, namely:

R0,N (ω) =
S11(ω)−RC,0(ω)

S11(ω)R0,C(ω) + T (ω)−RC,0(ω)R0,C(ω)
(1.5)

The three probe characteristic functions RC,0(ω), R0,C(ω), and T (ω) can
be determined by solving a system of equations as (1.4), for which at least
three independent measurements S11(ω) should be performed and the corre-
sponding R0,N (ω) should be calculated. Practically, this can be realized using
well known model configurations such as shortcuts at different sections of the
rods (assuming Rn,n+1(ω) = -1 at the shortcut position) and a measurement
with the probe in free space (air). To ensure independency of the calibrating
equations for the whole frequency range, the system should be ideally over-
determined using more than three model configurations.

In case of time domain measurements using classical TDR devices, the
scatter function S11(ω) measured by the VNA in (1.4) can be replaced by
the reflected wave B(ω), that is, the Fourier transform of b(t) measured by the
TDR cable tester. In that case, the incident wave A(ω) is integrated in the
probe characteristic functions RC,0(ω) and T (ω), therefore, it is not necessary
to know it. In TDR system, the actual incident wave may differ from the
one which is given by the TDR constructor because of distortions caused by
internal electronics of the voltage generator and the transmission line (Mattei
et al., 2005).

The global reflection coefficient from the FDR rods (R0,N (ω)) can be re-
cursively derived as (e.g., Feng et al., 1999; Heimovaara et al., 2004):

Rn,N (ω) =
Rn,n+1(ω) +Rn+1,N (ω) exp(−2γn+1(ω)dn+1)

1 +Rn,n+1(ω)Rn+1,N (ω) exp(−2γn+1(ω)dn+1)
(1.6)

where subscript n refers to the layer (n = N − 1, N − 2, · · · , 0), γn(ω) is
the propagation constant, Rn,n+1(ω) is the local reflection coefficient for fields
incident from layer n onto the interface with layer n + 1, and dn is the layer
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thickness. The recursion is initiated assuming RN−1,N (ω) = 1 for an open-
ended probe (Feng et al., 1999; Schaap et al., 2003). The electromagnetic
wave is assumed to propagate in the transverse electromagnetic mode (TEM),
meaning that the electric and magnetic fields are transverse to the direction
of the propagation of the wave. The propagation constant γ depends on the
dielectric permittivity ε, electrical conductivity σ and magnetic permeability µ
of the medium. It is expressed as follows:

γ(ω) =

√
−ω2µ(ε− jσ

ω
) (1.7)

The propagation constant γ is a complex quantity which can also be ex-
pressed as:

γ = α+ ȷβ (1.8)

The real part α is the attenuation constant

α =

√
ω2µε

2

(√
1 + tan2 δ − 1

)
(1.9)

and the imaginary part β is the phase constant

β =

√
ω2µε

2

(√
1 + tan2 δ + 1

)
(1.10)

where
tan δ =

σ

ωε
(1.11)

is defined as the loss tangent. The phase constant β determines wave propaga-
tion velocity v as:

v =
ω

β
=

1√
µε
2

(√
1 + tan2 δ + 1

) (1.12)

It is worth noting that for non-magnetic materials with a relatively low elec-
trical conductivity and considering high frequencies, wave propagation velocity
can be approximated by:

v ≈ 1
√
µε

=
c

√
εr

(1.13)

where c is the wave velocity in free space and εr is the relative dielectric permit-
tivity (εr = ε/ε0 with ε0 being the dielectric permittivity of free space). This
assumption is commonly used when characterizing soil using classical TDR
approaches. In our case, such an assumption is not applied.

The local reflection coefficient Rn,n+1(ω), resulting from the electromag-
netic boundary conditions at an interface, is defined as :

Rn,n+1(ω) =
µn+1γn(ω)− µnγn+1(ω)

µn+1γn(ω) + µnγn+1(ω)
(1.14)

In previous studies, elements of the FDR system were modeled using char-
acteristic impedances of the elements, assuming that they were known based
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on the system characteristics or that they could be retrieved by optimization
(Heimovaara et al., 2004). The cable impedance was usually assumed to be
equal to 50 Ω and the probe impedance could be determined based on the
probe geometry (i.e., with the inner and outer diameter of the coaxial medium
(e.g., Heimovaara, 1994)). In this study, the probe head impedance and the
FDR rods impedance are inherently accounted for in the probe transfer func-
tions, i.e., they are determined by measurements in known media.

1.4.3 Model inversion

The unknown parameter vector p to be determined (containing the dielectric
permittivity, frequency-dependent apparent electrical conductivity, and thick-
ness of the investigated soil layers) is retrieved by a full-waveform inversion
procedure, which is applied to the probe-filtered FDR signal (see Eq. (1.5)).
The inverse problem is formulated in the least squares sense and the objective
function is defined as follows:

ϕ(p) =
∣∣R∗

0,N −R0,N

∣∣T ∣∣R∗
0,N −R0,N

∣∣ (1.15)

where R∗
0,N = R∗

0,N (ω) and R0,N = R0,N (ω,p) are the vectors containing,
respectively, the observed and simulated global reflection coefficients of the
soil. As these global reflection coefficients are complex vectors, the objective
function is expressed by the amplitude of the difference of the filtered data in
the complex plane.

Considering a multilayered soil sampled by the FDR probe, parameters for
each soil layer can theoretically be retrieved by inversion, depending on the
information content with respect to the number of parameters to optimize.
Nevertheless, for thin layers compared to the signal wavelength and for small
contrast between the layers, the information content in the waveform may
be insufficient to distinguish the layers and to determine the layers properties,
leading to non-unicity problems in the inversion, as it is shown in chapter 2 and
Minet et al. (2010a). Although the optimization problem is generally simple
for a single soil layer, the topography of the objective function to minimize can
be relatively complex when considering several soil layers, including multiple
local minima. To properly solve such inverse problems, a global optimization
procedure is required. Following the approach of Lambot et al. (2002), we
used the global multilevel coordinate search (GMCS) algorithm (Huyer and
Neumaier, 1999) combined sequentially with the classical Nelder-Mead Simplex
algorithm (Lagarias et al., 1998).

1.4.4 Petrophysical models

A petrophysical model is necessary for translating the optimized dielectric per-
mittivity εr into volumetric soil moisture θ. Two main approaches can be dis-
tinguished in the petrophysical models. The first approach is empiric and uses
measurements of dielectric permittivity for a variety of soil types at different
water contents to construct regressive polynomial formulas relating the water
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content with the dielectric permittivity. The most frequently used empirical
formula is the relationship suggested by Topp et al. (1980):

θ = −5.3× 10−2 + 2.92× 10−2ε− 5.5× 10−4ε2 + 4.3× 10−6ε3 (1.16)

This equation has been widely applied to predict soil moisture from TDR
and GPR measurements and its validity was established in many studies (Roth
et al., 1992; Steelman and Endres, 2010).

The second approach is more theoretical and derives the water content from
dielectric mixing models of soil. According to this approach, soil is a complex
mixture of air, water and soil particles and the permittivity of soil is predicted
from the permittivity of each component weighted by their volume fraction.
Among these models, the complex refractive index model (CRIM) (Birchak
et al., 1974; Dobson et al., 1985) appeared to be the most suitable in many
studies. A combination of the two approaches consists in an empirical version
of the CRIM model as developed by Ledieu et al. (1986) and Yu et al. (1999):

θ = a
√
εr + b (1.17)

with a and b being optimized soil specific parameters. This model was used in
this chapter and further to fit the inversely-retrieved soil dielectric permittivity
to the volumetric water content.

1.4.5 Laboratory experiments setup

The objective of the laboratory measurements was threefold: (1) to characterize
the FDR probe transfer functions, (2) to validate these transfer functions in a
well-known medium, i.e., salt water, and (3) to apply the inversion procedure
in order to retrieve the electromagnetic properties of a humid sand in which
the probe was inserted.

We set up the FDR system using a VNA (ZVT8, Rohde & Schwarz, Münich,
Germany) as transmitter and receiver, which we connected to a homemade
FDR probe with high quality N-type connectors and a 50 Ω impedance coax-
ial cable of 2.5 m length (Sucoflex 104PEA, Huber + Suhner AG, Herisau,
Switzerland). The FDR probe was a 9.60 cm length, three-rod stainless steel
device hold by an epoxy probe head and equipped with a N-type connector.
The spacing between the two external rods was 28 mm and the diameter of
the rods was 3 mm. The VNA was accurately calibrated with a high precision
(|S11(ω)| < −90 dB for a “Match” measurement) with a 50 Ω OSM (Open,
Short, Match) series of standard, N-type calibration kit (ZV-Z21, Rohde &
Schwarz, Münich, Germany). The calibration of the VNA was made at the
connector between the coaxial cable and the probe head, as illustrated in Fig.
1.1. It is worth noting that the calibration could have also been performed at
port 1 of the VNA. In that case, the probe transfer functions would have also
accounted for the coaxial cable.

For the probe transfer functions determination, S11(ω) measurements were
first performed in different well-known media, namely, in air and with the



1.5. Laboratory experiments results 19

FDR rods short-circuited at 16 different distances, accounting in total for 17
measurements, although three measurements are sufficient to determine the
transfer functions. Probe length and position of short-cuts along the probe
were precisely measured in order to compute the theoretical global reflection
coefficient in these media. Second, measurements in 10 salt water solutions were
made in order to validate the probe calibration and the inversion procedure.
Lastly, we set up 10 different humid sand (Fontainebleau sand) media by mixing
calculated volumes of dry sand and demineralized water to test the technique for
the retrieval of the dielectric permittivities and frequency-dependent electrical
conductivities. The same volume of water was added to the known volume of
sand in order to obtain regularly increasing sand water content. These two
last media (i.e., salt water and humid sand) were chosen as they permit to test
the FDR method for the retrievals of the electrical conductivity and dielectric
permittivity, respectively, as the water electrical properties are known.

The frequency dependent scatter function S11(ω) was measured sequen-
tially at 3996 stepped frequencies from 10 MHz to 8 GHz with a step of 2
MHz. Nevertheless, inversions of the measured signals were performed on a
limited frequency range, namely, 10-1000 MHz, where the signal-to-noise ratio
appeared to be optimal, especially due to the higher performances of the probe
in that frequency range. It is worth mentioning that Lin (2003) suggested a
similar optimal frequency range (500-1000 MHz).

For the measurements performed in humid sand, TDR measurements were
also carried out using a Tektronix 1502C metallic cable tester (Tektronix, Inc.,
Beaverton, OR, USA) connected to a traditional TDR probe (95 mm long and
3 mm diameter with a 25 mm rod spacing). The dielectric permittivity was
derived from the TDR waveforms using the WinTDR 6.0 software (Soil Physic
Group, Utah State University, Logan, Utah, USA).

1.5 Laboratory experiments results

1.5.1 Probe transfer functions determination

The global reflection coefficients R0,N (ω) corresponding to the 17 measure-
ments (1 air + 16 short-cuts) performed for the probe transfer functions deter-
mination were first calculated using (1.6). The probe transfer functions were
then retrieved by solving a system of equations as (1.4), assuming not only
three model configurations but also more (seven and 17) to over-determine the
system.

Figure 1.2 shows the amplitude and phase of the FDR probe transfer func-
tions RC,0(ω), T (ω), and R0,C(ω) determined over the full frequency range
from 10 MHz to 8 GHz. The transfer functions determined with the minimal
number of measurements (i.e., three) show very good results for frequencies in
which the probe is the most efficient (low R(ω) and high T (ω) values in the
lower frequency range), yet, local errors appear for some frequencies, especially
in the higher frequency range where the signal-to-noise ratio becomes poor as
a result of lower probe efficiency and sensitivity to measurement errors (e.g., in
the measurement of the distance between the probe head and the short-cut).
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Figure 1.2: Frequency domain reflectometry (FDR) probe transfer functions reflec-
tion coefficients RC,0(ω) (a) and R0,C(ω) (c) and transmission coefficients
T (ω) (b) determined throughout the entire frequency range (f) from 10
MHz to 8 GHz, depicted in amplitude (upper graphs) and phase (lower
graphs), for three different number of measurements (three, seven, and
17) used to solve the systems of equations.
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Over-determining the system of equations using at least seven or higher model
configurations led to very similar values of the transfer functions over the whole
frequency range, with smooth trends in terms of both amplitude and phase of
the transfer functions, thereby denoting a good accuracy. For the analysis of
the FDR data taken in salt water and humid sand (see the following section),
the transfer functions determined with the maximal number of measurements
(i.e., 17) were used, but, as it can be observed in Fig. 1.2, a number of seven
measurements is already sufficient to obtain a high accuracy.

The analysis of these probe transfer functions permitted to determine in
which frequency range the probe is the most efficient. In particular, high
RC,0(ω) values (e.g., > 0.5) indicate that, at these frequencies, most of the wave
is reflected within the probe and is not transmitted to the ground. In contrast,
high T (ω) values indicate that the probe is efficient to transmit waves into the
ground. In particular, we can see in Fig. 1.2(b) that the probe efficiency is
strongly decreasing above 2 GHz because of the low T (ω) values. R0,C(ω) can
be analyzed similarly to RC,0(ω) and low R0,C(ω) are observed for the same
frequency values than for RC,0(ω), namely, around 3 and 6.5 GHz. Once they
are characterized, these probe transfer functions can be used to filter out the
raw measured data S11(ω) from all the FDR probe head effects and obtain the
global reflection coefficient of the FDR rods medium only (R0,N (ω)), namely,
the soil. It is worth noting that in practice, only three reference measurements
are required to accurately calibrate the probe, provided it is sufficiently efficient
in the frequency range of concern.

1.5.2 Inversion of FDR measurements in salt water

The validity of the probe calibration and of the inversion procedure was assessed
by comparing measured, theoretically-predicted and inverted (fitted) signals,
as well as the theoretical or laboratory-measured and inverted parameters (i.e.,
εr, σfmin and s) for the 10 measurements in salt water. The inversion was set
in a large parameter space, namely, 2 < εr < 90, 10−2 < σfmin <10 Sm−1

and 10−11 < s < 10−7 sSm−1 and more than 5400 iterations were performed.
Salt concentrations were regularly increased from 0.154 gL−1 to 1.540 gL−1 by
adding precise quantities of salt (NaCl) into demineralized water. The solution
electrical conductivity, as well as the solution temperature, was measured by a
WTW LF318 (WTW, Weilheim, Germany) conductivity meter. Bulk electrical
conductivity measurements were then temperature-corrected in order to obtain
the actual electrical conductivity at the solution temperature. According to the
datasheet of the conductivity meter, measurements errors are 10−4 Sm−1 and
10−3 Sm−1 for conductivities, respectively, smaller and larger than 0.2 Sm−1.

Figure 1.3 shows measured, predicted and inverted scatter functions S11(ω)
arising from the whole FDR probe, including the probe head, for a measurement
in salt water with the lowest salt concentration (0.154 gL−1) depicted in the
frequency domain in amplitude and phase (Fig. 1.3(a)) and in the time domain
(Fig. 1.3(b)). In laboratory conditions, measured scatter functions showed a
good repeatability, with identical measured signals when repeating the mea-
surement. The inverted parameters were used to compute the inverted global
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Figure 1.3: Measured, predicted and inverted scatter functions S11(ω) depicted in the
frequency (a) and time domains (b) for water with a salt concentration
of 0.154 gL−1.
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Figure 1.4: Measured, predicted and inverted global reflection coefficients R0,N (ω)
depicted in the frequency (a) and time domains (b) for water with a salt
concentration of 0.154 gL−1.
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reflection coefficient, which was then translated backward in the inverted scat-
ter function S11(ω) using (1.4). The predicted scatter function was computed
using the electromagnetic model and theoretical permittivity and conductivity
values estimated by a formulation of the model of Debye for salt water from
Meissner and Wentz (2004), using measured bulk electrical conductivity and
temperature. This accurate model accounts for frequency- and temperature-
dependence of the electrical parameters, but it is restricted to salt water only.
Measurement errors of the bulk electrical conductivity (∆σ = 0.0001 Sm−1)
and of the solution temperature (∆T = 0.1◦C) do not have a visible impact
on the predicted signal when propagating the errors to the predicted scatter
function S11(ω) (RMSE of 0.00110 in terms of amplitude of the scatter function
in the frequency domain).

In the frequency domain, some discrepancies are observed between the mea-
sured and inverted or predicted signals, both in amplitude and phase, especially
with increasing frequencies. These discrepancies may be attributed to a lower
signal-to-noise ratio, as a result of the stronger attenuation of the waves due to
increasing relaxation phenomena with frequency. In the time domain, the re-
flection at the beginning of the FDR rods is observed around 1 ns and the final
reflection from the end of the probe after 6 ns. Arrival times of the reflection
are identical between the measured, inverted and predicted signals, whereas
there is a poorer agreement between the amplitudes of the reflection peaks.
For the inverted signal, this indicates a high sensitivity of the model to the
dielectric permittivity, that mainly governs the propagation time, rather than
the electrical conductivity.

Figure 1.4 shows the corresponding measured, predicted and inverted global
transfer coefficients R0,N (ω) depicted in the frequency domain in amplitude and
phase (Fig. 1.4(a)) and in the time domain (Fig. 1.4(b)) for the same salt water
medium as shown in Fig. 1.3. In the frequency domain, discrepancies between
the measured and inverted or predicted signals are smaller compared to Fig.
1.3(a), although increasing errors with frequency are still observed. For low
frequencies (e.g., < 600 MHz), the inverted signal fits well the measured signal.
In the time domain, the same agreements between the measured and inverted,
as well as the predicted signals, are also observed. It is worth noting that the
signal appears to be better modeled when expressed in terms of R0,N because
it is referenced with respect to the fictive air layer, resulting in a larger contrast
at the beginning of the FDR rods. In particular, the reflection of the end of the
probe is relatively higher for the signal expressed in terms of S11 (Fig. 1.3(b))
when comparing with R0,N (Fig. 1.4(b)) because R0,N is computed assuming
that less signal is transmitted in the FDR rods.

Corresponding to the case depicted in Fig. 1.4, the inverted parameters
that were retrieved are εr = 84.4, σ10MHz = 0.0210 Sm−1 and s = 10−9.55

sSm−1. The dielectric permittivity εr at the solution temperature (13.5◦C) is
expected to range from 82.2 to 82.6 in the limited frequency range of 10-1000
MHz (Meissner and Wentz, 2004), which is close to the inverted dielectric per-
mittivity value. The slight overestimation of the water dielectric permittivity
is expected to come from the fact that during the measurements with the probe
in the water, some water wetted the inside of the probe head through the rods.
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Figure 1.5: Inverted electrical conductivity (σ) at the minimal frequency (10 MHz)
from frequency domain reflectometry (FDR) measurements as a function
of the measured σ in the 10 different salt water solutions.

The measured solution bulk conductivity with the conductivity meter was, for
that case, 0.0242 ± 0.0001 Sm−1.

Figure 1.5 compares measured and inverted electrical conductivity values
for the ten different salt water solutions. Inverted frequency-dependent elec-
trical conductivities are chosen at the minimal frequency of 10 MHz. There is
a good agreement between these two variables, with a coefficient of determi-
nation equal to 0.997. Inverted values are slightly underestimated compared
to the measured electrical conductivities, but inverted values can be higher
considering higher frequencies. The relation between the mass of added salt
in the solution and the measured electrical conductivity appears to be linear
in this range of salinity (not shown) and also well-determined, with a coeffi-
cient of determination of 0.999. Inverted dielectric permittivity values are very
similar between the ten salt water solutions, ranging from 84.39 to 84.69. The
good agreement of the measured or theoretical and inverted parameters, as
well as the small discrepancies between theoretically-predicted, inverted and
measured signals, demonstrate the accuracy of the electromagnetic model and
probe transfer functions determination with respect to real measurements, as
well as the well-posedness of the inverse problem.

1.5.3 Determination of the sand water content

The measured FDR signals from the 10 humid sand media were filtered for
the probe effects using (1.5) and then inverted in the limited frequency range
10-1000 MHz to retrieve the soil dielectric permittivity and the frequency-
dependent apparent electrical conductivity. The parameter space for the in-
version was set as follows: 2 < εr < 90, 10−4 < σfmin < 10−1 Sm−1 and
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Figure 1.6: Relative dielectric permittivity (εr) estimated from time domain re-
flectometry (TDR) measurements and frequency domain reflectometry
(FDR) inversions as a function of the sand water content (θv) measured
by volumetric sampling. The model of Ledieu et al. (1986) was fitted over
the TDR and FDR data.

10−12 < s < 10−5 sSm−1. The media were assumed to be homogeneous in the
electromagnetic model (N = 2 in Fig. 1.1). Subsequently to the FDR mea-
surements, volumetric samples of the humid sand were collected to determine
the actual water content, using the oven-drying method at 105◦C for at least
48h.

Figure 1.6 shows the relative dielectric permittivity estimated from TDR
measurements and FDR inversions as a function of the sand water content
measured by volumetric sampling. The model of Ledieu et al. (1986) (Eq.
(1.17)) linking the volumetric water content and the dielectric permittivity
was fitted on both TDR and FDR data. The root mean square error RMSE of
the fits and the coefficient of determination r2 between

√
εr and θv are shown

in Table 2.1.
Both TDR and FDR relationships show similar good agreements, with r2

close to 1 and RMSE to 0.5 in terms of dielectric permittivity, corresponding
to an error of less than 1 % in terms of volumetric water content. The dif-
ferences between FDR and TDR estimates may originate from the different
locations where the FDR and TDR probes were inserted, given the inherent
heterogeneities in the sand water content and densities.

Figure 1.7 shows the frequency-dependent electrical conductivity σ(f) in-
verted from FDR signals for the ten different sand water contents (depicted
from WC1 to WC10 in Fig. 1.7(b)) as a function of the frequency range in
which the data were inverted. Frequency-dependent electrical conductivity de-
termined from a FDR measurement in demineralized water and the theoretical
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Table 1.1: Root mean square error RMSE of the fits according to the model of Ledieu
et al. (1986) and coefficient of determination r2 between the square root of
the relative dielectric permittivity

√
εr and the volumetric water content θv

for time domain reflectometry (TDR) and frequency domain reflectometry
(FDR) measurements.

RMSE r2

TDR 0.461 0.948
FDR 0.514 0.965

Debye model for pure water according to the parameterization of Meissner and
Wentz (2004) are shown for comparison purposes.

The slopes of the linear frequency dependence for the different humid sands
are different, ranging from 10−25.3 to 10−10.6 sSm−1, for the lowest and high-
est sand water content, respectively. Not surprisingly, the apparent electrical
conductivity increases with the sand water content, tending to the slope of dem-
ineralized water (s = 10−9.59 sSm−1). Nevertheless, the apparent frequency-
dependent electrical conductivity of the most humid sand remains far from the
frequency-dependent electrical conductivity of water because of the multiple
composition of humid sand, which is a mix of air, water and soil particles. The
assumption of the linearity of the frequency-dependence appears to be quite
acceptable for pure water, with a line approaching the curved Debye model.
It is worth noting that, at the lowest and highest frequencies, the inverted
frequency-dependent electrical conductivities of demineralized water measure-
ment correspond to the values calculated with the theoretical Debye model.

1.6 Conclusions

We developed a new FDR technique based on an electromagnetic model decou-
pling the FDR probe head from the measured medium using three frequency-
dependent transfer functions. At least three laboratory measurements in per-
fectly known media and modeling of the global reflection coefficients in these
configurations can be used to fully determine the probe transfer functions,
owing to the decoupling of the FDR probe and the accurate electromagnetic
modeling. The technique was validated with measurements in salt water media.
Measured, inverted and theoretically-predicted signals in the frequency range
in which the probe is efficient were in close agreement, thereby demonstrating
the accuracy of the whole forward model and the well-posedness of the inverse
problems dealt with.

A good agreement was also observed when comparing measured or theo-
retical and inverted parameters, i.e., the dielectric permittivities and electrical
conductivities. Measurements in ten different humid sands were then conducted
and the dielectric permittivities retrieved from FDR inversions were close to
the values derived from classical TDR measurements and in a good agreement
with volumetric water contents, with a coefficient of determination between

√
ε
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Figure 1.7: Frequency-dependent, apparent electrical conductivity (σ) retrieved from
frequency domain reflectometry (FDR) inversions for sand media at 10
different water contents (WC) and for demineralized water depicted with
theoretical values from the model of Debye (a); enlargement of the elec-
trical conductivity of the sand media (b).
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and θ of 0.948 and 0.965 for the TDR and FDR, respectively. Moreover, the
frequency-dependent electrical conductivity could also be retrieved.

The proposed method appears promising for simple calibration of the FDR
probe, for assessing the frequency dependence of the electrical properties and
for inverting waveforms coming from multilayered media. Compared to previ-
ous studies, the proposed calibration method bypasses the determination of the
cable and probe impedances. As such, the complete profile of soil electromag-
netic properties along the FDR probe could be retrieved using a multi-layered
model, depending on the information content in the data, as indeed, the inverse
problem may be ill-posed. However, in practice, this may be limited by the
narrow frequency bandwidth in which the probe is efficient, thereby limiting
the information content in the FDR waveform. In that respect, the design and
construction of an optimal probe is particularly important.
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Chapter 2

Soil moisture estimation by
ground penetrating radar
in the presence of thin
layers: Numerical and
laboratory experiments∗

2.1 Outline

We analyzed the effect of shallow thin layers on the estimation of surface soil
moisture using full-waveform inversion of off-ground ground penetrating radar
(GPR) data in numerical and laboratory experiments. Strong dielectric con-
trasts are expected to occur under fast wetting or drying weather conditions,
thereby leading to constructive and destructive interferences with respect to
the surface reflection in the presence of shallow thin layers. Soil moisture
retrieval in layered soil conditions was poorly investigated in previous GPR
studies while shallow soil layering is believed to be prevalent in the environ-
ment. First, synthetic GPR data were generated and subsequently inverted
considering different thin-layer model configurations. The resulting inversion
errors when neglecting the thin layer were quantified, and then, the possibility
to reconstruct these layers was investigated. Second, laboratory experiments
reproducing some of the numerical experiments configurations were conducted
to assess the stability of the inverse solution with respect to actual measurement

*This chapter is adapted from:
Minet, J.; Lambot, S.; Slob, E. & Vanclooster, M. Soil surface water content estimation by
full-waveform GPR signal inversion in the presence of thin layers, in IEEE Transactions on
Geoscience and Remote Sensing, 2010, 48, 1138 - 1150
Minet, J.; Patriarca, C.; Slob, E.; Vanclooster, M. & Lambot, S. Characterization of lay-
ered media using full-waveform inversion of proximal GPR data, Proceedings of the URSI
International Symposium on Electromagnetic Theory - EMTS2010, 2010.
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and modeling errors. Results showed that neglecting shallow thin layers may
lead to significant errors on the estimation of soil surface water content (∆θ >
0.03 m3m−3), depending on the contrast. In the laboratory, the proposed full-
waveform method permitted to reconstruct thin layers with a high resolution
up to 2 cm and to retrieve the soil surface water content with an RMSE less
than 0.02 m3m−3, owing to the full-waveform inverse modeling. These results
suggest that the proposed GPR approach is promising for surface soil moisture
sensing for instances when soil layering is encountered.

2.2 Introduction

At the field scale, evaluating the soil moisture spatial variability is an im-
portant issue for many research and engineering applications (Western et al.,
2003). Usual soil moisture measurement techniques at the field scale are in-
vasive methods, like gravimetric sampling, capacitance probe or time domain
reflectometry (TDR). Although the TDR technology has been automated to
some extent, the method remains problematic for mapping large areas due to
the local measuring support of the TDR probe (Robinson et al., 2003). On
the other hand, airborne and spaceborne microwave remote sensing methods
have been proven to be effective tools for estimating surface soil moisture over
larger areas, with either passive radiometry or active radar instruments (Wag-
ner et al., 2007). However, microwave remote sensing techniques are limited
by its large support scale, resulting in an unknown within-pixel heterogene-
ity and the usually poor agreement with calibrating and gravimetric sampling
(Jackson et al., 1996; Wagner et al., 1999; Ceballos et al., 2005; Famiglietti
et al., 2008). Hence, no absolute relation between the backscattered signals
from synthetic aperture radar (SAR) and the soil moisture exist, necessitating
site-specific calibrations (D’Urso and Minacapilli, 2006). In particular, remote
sensing radar systems are highly affected by soil roughness, due to the rela-
tively high frequencies used in SAR systems, such that many studies have also
addressed that problem (Verhoest et al., 2008). Radar sensing is also affected
by high apparent electrical conductivity values when not taken into account
(Lasne et al., 2008).

To bridge the scale gap between remote sensing and small-scale soil moisture
determination methods, noninvasive techniques are required to characterize soil
moisture at the intermediate field scale and with a spatial resolution in the
order of 1 m. In that respect, ground penetrating radar (GPR) techniques are
specifically suited for field scale soil moisture characterization (Annan, 2002;
Huisman et al., 2003; Lambot et al., 2008a). Several techniques were developed
to infer the soil moisture from GPR measurements, but two approaches are
commonly used: the direct ground wave propagation analysis (Huisman et al.,
2002a; Grote et al., 2003; Galagedara et al., 2005; Lunt et al., 2005; Grote
et al., 2010) and the surface reflection coefficient methods (Chanzy et al., 1996;
Redman et al., 2002; Serbin and Or, 2003, 2004). A more recent advance was
developed by Lambot et al. (2004b) for the particular case of off-ground and
zero-offset GPR. Specific inversion strategies were developed for the retrieval of
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surface soil dielectric permittivity and correlated water content (Lambot et al.,
2006b).

The soil surface is a particularly active layer in terms of water dynamics,
as it is directly exposed to the varying atmospheric conditions, while the soil
water dynamics in the subsurface is more stable. Similarly to soil tempera-
ture, soil moisture temporal variations are larger in surface than in subsurface
(De Lannoy et al., 2006). As a result, soil layering in terms of soil moisture
may appear, either in wet soils subject to fast evaporation or dry soils subject
to precipitation, because of physical decoupling between surface and subsurface
soil moisture (Vereecken et al., 2008). This may occur preferentially in coarse
materials, but not limited to, whereas pedogenetic processes and agricultural
practices can lead to vertically-varying soil moisture conditions, according to
the different soil layer properties (Schaap et al., 2003). When surface soil
moisture is sensed by a radar wave (in remote sensing or GPR applications),
shallow soil moisture layering gives rise to two limitations in soil moisture sens-
ing. First, soil layers may cause destructive or constructive interferences in
the backscattered radar signal (Lambot et al., 2006b). Under critical cases,
resulting soil moisture measurement can be drastically different from the two
soil layers moisture as well as from their average. Second, remotely-sensed
surface soil moisture may largely diverge from the whole soil moisture profile
(Capehart and Carlson, 1997). While the root-zone soil moisture (0-30 cm) is
important for most hydrological and environmental processes, remote sensing
of soil moisture is restricted to the first centimeters of the soil surface.

The effect of thin layers has been addressed in a rather large number of
studies in the area of remote sensing of soil moisture (Capehart and Carlson,
1997; Wagner et al., 1999; Li and Islam, 2002; Ceballos et al., 2005; Das and
Mohanty, 2006) whereas few studies have addressed this issue in the field of
GPR (van der Kruk, 2006; van der Kruk et al., 2007; Strobbia and Cassiani,
2007; Kao et al., 2007). Currently, due to the single-frequency remote sens-
ing sensors, root-zone soil moisture can only be estimated through the fusion
of remotely-sensed shallow soil moisture data into soil hydrodynamic models.
However, this requires a strong knowledge of the soil hydraulic properties for
the correct parameterization of the hydrodynamic model. Field or watershed
scale hydraulic parameters are often derived from soil texture information using
pedotransfer functions (Vereecken et al., 1989), but the soil parameterization
schemes remain inadequate due to their inability to incorporate the natural
heterogeneity of soils and the lack of detailed soil property maps. However,
in contrast to single-frequency sensors, ultra-wideband GPR provides depth-
dependent information and has, thereby, the potential to reconstruct thin lay-
ers.

2.3 Objectives

In this chapter, we analyze the effect of thin layers on the retrieval of soil surface
water content from zero-offset, normal incidence, and proximal GPR and we
addressed the reconstruction of these layers by full-waveform inversion. Shallow
soil layering may give rise to interferences in the backscattered GPR data that
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alter the inversion results. First, numerical experiments were performed for the
following reasons: 1) to investigate the well-posedness of the inverse problem
when thin layers are accounted for; 2) to quantify the errors resulting from
the homogeneous medium assumption; and 3) to compare different inversion
strategies to deal with the reconstruction of these thin layers. Then, laboratory
experiments were conducted in order to corroborate the statements inferred
from the synthetic experiments and analyze the stability of the inverse problem
with respect to real measurement and modeling errors. GPR measurements
were made above a two-layered medium set up in a sandbox with 50 different
model configurations.

2.4 Materials and methods

2.4.1 Theory

GPR is based on the propagation of an electromagnetic wave into the ground,
which is governed by its electromagnetic parameters, i.e., the dielectric permit-
tivity ε, the electrical conductivity σ and the magnetic permeability µ . As the
dielectric permittivity of water (εw ≈ 80) is much larger than the one of the
soil particles (εs ≈ 5) and air (εa = 1), the GPR wave propagation in the soil
is principally determined by its water content.

The GPR system that we used consists of a vector network analyzer (VNA)
connected to an ultra-wideband monostatic (zero-offset transmitter and re-
ceiver) horn antenna placed off the ground. For this configuration, the following
equation is applied to filter out the antenna effects (Lambot et al., 2004b):

S11(ω) = Hi(ω) +
H(ω)G↑

xx(ω)

1−Hf (ω)G
↑
xx(ω)

(2.1)

where S11(ω) is the quantity measured by the VNA,Hi(ω) is the antenna return
loss, H(ω) is the antenna transmitting-receiving transfer function, Hf (ω) is the
antenna feedback loss, G↑

xx(ω) is the transfer function of the air-subsurface sys-
tem modeled as a multilayered medium, the so-called Green’s function, and ω is
the angular frequency. The Green’s function represents an exact solution of the
3-D Maxwell’s equations for electromagnetic wave propagation in multilayered
media. The consideration of a 3-D model is essential to take into account spher-
ical divergence (geometric spreading) in GPR wave propagation. Solutions of
Maxwell’s equations for wave propagation in 3-D multilayered media are well
known (Michalski and Mosig, 1997). We derived this specific Green’s function
using a recursive scheme to compute the transverse electric and magnetic global
reflection coefficients of the multilayered medium in the spectral domain (Slob
and Fokkema, 2002; Lambot et al., 2004b). The transformation back to the
spatial domain is performed by evaluating numerically a semi-infinite, complex
integral. A specific procedure was applied for a fast and accurate evaluation of
that integral (Lambot et al., 2007), which inherently contains singularities.

The electromagnetic properties (i.e., the dielectric permittivity and the elec-
trical conductivity) of the multilayered medium are retrieved by a full-waveform
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inversion of the Green’s function. This inversion can be done in the frequency
domain, where the wave is actually modeled and measured, or in the time
domain. For the time domain analysis, the generated and modeled frequency
domain Green’s functions are first transformed in the time domain using the in-
verse Fourier transform. The inverse problem is formulated in the least-squares
sense and the objective function is accordingly defined as follows:

ϕ(p) =
(
g↑∗
xx − g↑

xx

)T (
g↑∗
xx − g↑

xx

)
(2.2)

where g↑∗
xx and g↑

xx are, respectively, the generated and the modeled Green’s
function vectors (arranged versus frequency) and p is the vector of parameters
to be estimated, i.e., electromagnetic properties and dimensions of the multi-
layered medium. This objective function is minimized by means of the global
multilevel coordinate search algorithm (Huyer and Neumaier, 1999) combined
sequentially with the classical Nelder-Mead simplex algorithm (Lagarias et al.,
1998). The reader is referred to the study by Lambot et al. (2004b, 2006b)
for additional details on this model and the optimization procedure for GPR
signal inversion.

2.4.2 Numerical experiments

The objective of these numerical experiments is to investigate and compare
different inversion strategies for the estimation of thin layer properties and
examine the well-posedness of the inverse problem. Synthetic radar datasets
were generated assuming a two-layered model. Inversions were performed in
both the frequency and time domains, assuming either the correct two-layered
configuration or a simplified one-layered model. This resulted in four different
inversion strategies.

The GPR frequency bandwidth used for these synthetic experiments ranges
from 0.8 to 2.6 GHz, with a frequency step of 6 MHz. The antenna phase center
(S) was situated at 0.5 m in air above the soil surface (see Fig. 2.1). Different
thicknesses h1 were considered for the top thin layer (0.005, 0.01, 0.02, 0.04
and 0.08 m, as used in Lambot et al. (2006b)), while the bottom layer was an
infinite half-space. We chose 13 different volumetric water contents for each
layer, evenly ranging from 0 to 0.36. This resulted in 845 two-layered model
configurations (13 × 13 × 5).

The relations between the soil water content and its electromagnetic prop-
erties were described, respectively, by (1) the model of Ledieu et al. (1986)
to derive the relative soil dielectric permittivity from water content (see Eq.
(1.17)) with the parameters a = 0.1264 and b = −0.1933, and by (2) the model
of Rhoades et al. (1976) to relate soil electrical conductivity σ to water content
θ:

σ = (cθ2 + dθ)σw + σs (2.3)

where the parameters were set to c = 1.85, d = 3.85× 10−2, σw = 0.075 Sm−1

and σs = 5.89× 10−4 Sm−1. These parameters were determined in the labora-
tory for that specific sand subject to different water contents and salinities in
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Figure 2.1: Model configuration used for the numerical experiments and inverse mod-
eling flowchart.

Lambot et al. (2004b). Both dielectric permittivity and electrical conductivity
are thus related to the soil water content by these specific relationships.

As the generated data are created with a two-layered model, the inversion
procedure taking into account this layering with the two-layered model is natu-
rally exact in contrast to the model with a one-layered configuration. However,
the two-layered inversion may suffer from uniqueness and optimization prob-
lems. The inverse problem assuming a single layer is more simple, but modeling
errors are then introduced. A one-layered model counts 3 parameters to invert
(the electromagnetic parameters ε and σ and the antenna height h0) while 5
parameters are inverted with the two-layered model (ε1, σ1, h1, ε2, σ2), as the
antenna height above the soil is assumed to be exactly known. The error in the
estimation of a parameter is defined as the absolute value of the difference be-
tween the true parameter and the value obtained by inversion. The estimation
errors are computed for each inverted parameter.

2.4.3 Laboratory experiments

The objective of the laboratory experiments was to analyze in realistic con-
ditions the same configurations of layering as for the numerical experiments.
Indeed, inverse modeling of actual data are expected to show the same diver-
gences as a function of the different model configurations and inversion strate-
gies, plus issues related to measurement and modeling errors. Modeling errors
can be caused by the antenna calibration model, the assumption of a plane
layered soil surface and by the fact that the models of Ledieu et al. (1986) and
Rhoades et al. (1976) may not be the correct models to relate water content to
the electric properties of the layers. A schematic representation and a picture
of the laboratory experimental setup are depicted in Fig. 2.2(a) & (b), respec-
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tively. A square sandbox made of wood (with 1.50 m on each side and 0.50
m in height) was filled with two layers of sand subject to specific water con-
tents. A perfect electrical conductor (PEC), namely, an aluminum sheet, was
placed on the bottom of the sandbox in order to control the bottom boundary
condition in the electromagnetic model. As a result, deeper laboratory mate-
rials (concrete with rebar) did not influence the measured backscattered GPR
signal.

The water content in the sand layers was controlled by mixing calculated
volumes of dry sand and demineralized water. Volumetric samples were then
collected to determine the actual water content of the sand layers. The top thin
layer (layer 1 in Fig. 2.2) was subject to ten different water contents, ranging
from 0 to 0.270. Its thickness was set to 0.005, 0.01, 0.02, 0.04 and 0.08 m,
respectively. The second layer (layer 2 in Fig. 2.2) was subject to a constant
water content of about 0.064. Its thickness was kept constant and was equal to
0.32 m. The two sand layers were separated by a thin plastic sheet that had no
influence on the propagation of the electromagnetic waves. The resulting total
number of model configurations was then 50 (10 × 5). The radar antenna was
at a fixed position above the sandbox, at about 30 cm above the sand surface
depending on the thin-layer thickness.

We used an ultra-wideband stepped frequency continuous wave radar sys-
tem using a vector network analyzer (VNA) (ZVRE, Rohde & Schwarz, Münich,
Germany) combined with an off-ground monostatic horn antenna. The antenna
system was a linear polarized double-ridged broadband horn (BBHA 9120 A,
Schwarzbeck Mess-Elektronik, Schönau, Germany). Antenna dimensions are
22 cm in length and 14 × 24 cm2 in aperture area, and the nominal frequency
range is from 0.8 to 5 GHz. The antenna was connected to the reflection port
of the VNA with a high-quality coaxial cable of 2.5 m length. We calibrated
the VNA at the antenna feed point using a 50-Ω OSM calibration kit. The
frequency-dependent complex ratio S11 between the returned and the emitted
signal was measured sequentially at 301 stepped frequencies from 0.8 to 2.6
GHz, with a frequency step of 6 MHz. Measured signals from the laboratory
(S11) were first transformed in Green’s functions using Eq. (2.1) and previously
determined transfer functions (Lambot et al., 2004a). Figure 2.3 presents the
measured Green’s functions in the time domain according to the 50 configura-
tions. These measured Green’s functions were then used for inverse modeling
in order to retrieve the parameters of the two-layered medium.

Sampling for volumetric water content determination using the oven-drying
method at 105◦C for at least 48h was performed using different sampling vol-
umes for the different thin-layer thicknesses. Laboratory-made metallic rings
were used to collect the sand samples, with heights corresponding to the thin-
layer thicknesses. The bulk density of the sand was found to be 1.39 g/cm3.
Five samples were taken for each mix of sand and water, accounting in total
for 50 water content measurements.

The same models as the ones used in the numerical experiments (one- and
two-layered models) were used for performing the inversions in both the fre-
quency and time domains, except that the width of the second layer (h2) was
inverted in addition as the second layer is not a half-space medium anymore in
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(a)

(b)

Figure 2.2: Schematic of the laboratory experimental setup showing the GPR horn
antenna above the two-layered sandbox (a) and picture of the experimen-
tal setup viewed from the top (b).
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Figure 2.3: Time domain representation (b-scan) of the measured Green’s functions
for the 50 configurations in the laboratory experiments. Vertical lines
delineate the configurations according to the 10 different first layer water
content (θ1). For each θ1, five different first layer thicknesses were set.

the laboratory experiments. Furthermore, two other inversion scenarios were
performed: 1) a two-layered model in the time domain ignoring the reflections
from the PEC situated at the bottom of the sandbox (TIME 2L*), and 2) a
one-layered model in the time domain with inversions focused on the surface
reflection only (TIME L-M). In the TIME 2L* inversion scenario, the final
reflection from the PEC is avoided by focusing on a time window defined be-
tween 0 and 5 ns, and hence, it is naturally not accounted for in the layered
model. This simplified model permits a decrease in the number of unknowns
in the inversion from seven to six (ε1, σ1, h1, ε2, σ2 and h0). In the TIME L-M
inversion scenario, the GPR signal is reduced to the sand surface reflection in
the time domain. In this case, the soil model reduces to a half-space and the
number of parameters to estimate is two, i.e., the surface dielectric permittiv-
ity ε1 and the antenna height h0. This highly simplifies the inverse problem
and inversions can be performed using local optimization, in our case with the
Levenberg-Marquardt algorithm. This last inversion strategy has shown to be
practical and suitable in different field conditions (Lambot et al., 2008b).

In order to estimate the posterior distributions of the optimized parameters,
the parameter space was also sampled by a Markov-Chain Monte-Carlo method
using the Metropolis-Hastings algorithm implemented in the framework of the
differential evolution adaptive metropolis (DREAM) algorithm (Vrugt et al.,
2009).
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2.5 Results and discussion

2.5.1 Numerical experiments

Inversion with the correct two-layered model

Figure 2.4 shows the observed errors on inverted ε1 with the correct two-layered
model for the 845 considered model configurations, presented as a function of
the water content of the two layers and the thickness of the thin layer. Although
the model used for inverse modeling is the same as the one used for generating
the synthetic radar data (i.e., a two-layered model), some discrepancies between
the true and optimized parameters can be observed. For cases where there
is no contrast between the two soil layers (i.e., homogeneous medium), the
error is almost always null and, in all cases, negligible. For very thin layers
(Fig. 2.4(a) and (b)), the amplitude of the error generally increases with the
dielectric contrast between the two layers. For thicker layers, the error is more
randomly distributed as a function of the contrast. In general, errors decrease
with increasing top layer thickness. The statistical behavior of this error follows
a strong negative exponential distribution (i.e., the mean error is 1.0059 while
the median error is only 0.0107) with the majority of the errors that are null.
The results for ε2 are presented in Fig. 2.5. Again, the amplitude of the error
increases with the contrast between the two layers, especially for thin layers.
The errors in ε2 are globally correlated with errors in ε1 but they are larger
than errors in ε1.

The observed behaviors in the error can be partly attributed to the max-
imum resolution that can be theoretically achieved with the considered fre-
quency range, namely, 0.8-2.6 GHz. The range resolution is usually assumed
as one quarter of the average wavelength. In dielectric media, the wavelength
is decreasing proportionally to the square root of the dielectric permittivity.
Hence, the range resolution increases with water content. In our case, for an
average relative dielectric permittivity of nine and for a central frequency of 1.8
GHz, the range resolution is found to be 1.4 cm. This corroborates the results
in Fig. 2.4, as significant errors are mostly observed for thinner layers. It is
worth noting that in a series of cases, the observed errors for sub-resolution
characterization may be also negligible. For cases where the layer thickness
is larger than the range resolution, still some errors can be observed. These
errors are to be attributed to optimization issues, as the global minimum of
the objective function (equal to zero) could not be reached by the optimization
algorithm.

For instance, Fig. 2.6 represents the synthetic and fitted Green’s functions,
in both the frequency and time domains, for the largest error observed for ε1
(for h1 = 0.01 m, θ1 = 0.36, and θ2 = 0). Although the fit is relatively good,
the error in the estimated parameter is quite large. It was not possible to find
a better solution with the optimization algorithm, even subject to a relatively
large number of iterations (> 10000). In the time domain, the reflections
from the two layer interfaces cannot be clearly distinguished, as a result of the
subresolution conditions. However, a slight misfit can still be observed beyond
the main reflection peak.



2.5. Results and discussion 41

Figure 2.4: Error on the dielectric permittivity of the first layer ∆ε1 for each top
layer thickness h1, with inversions performed with the two-layered model
in the frequency domain. Results from the numerical experiments.
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Figure 2.5: Error on the dielectric permittivity of the second layer ∆ε2 for each top
layer thickness h1, with inversions performed with the two-layered model
in the frequency domain. Results from the numerical experiments.
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Figure 2.6: Generated and inverted Green’s functions for a first layer water content
of 0.36, a second layer water content of 0 and a first layer thickness of
0.01 m, depicted in frequency (a) and time domain (b). Results from the
numerical experiments.

Figures 2.7 and 2.8 show 2-D slices of the 5-D objective function for a num-
ber of parameter pairs considering, respectively, a top thin layer of 1 cm (under
range resolution) and 8 cm (above range resolution). In the case of the thinner
layer (Fig. 2.7), the global minimum for the thin layer dielectric permittivity
(ε1) is well defined in all parameter planes. However, some correlation and
weaker sensitivity can be observed in the ε1 − h1 plane (Fig. 2.7(c)), which is
disadvantageous for its estimation. Accounting for the geometrical spreading
of the wave and for the electrical losses due to the electrical conductivity is
thus crucial in the model inversion, as these phenomena also depend of h1, so
that h1 can be determined independently from ε1.

The objective function topography with respect to the electrical conductiv-
ity for both layers is always flat, which denotes a poor sensitivity of the model
to these parameters. It is also worth noting that the objective function topog-
raphy is relatively complex, including oscillations and local minima. In the 5-D
objective function, this is therefore expected to strongly affect the optimiza-
tion procedure. In Fig. 2.8, we observe that, compared to the 1-cm layer case,
the global minimum of the objective function is better defined with increased
sensitivity of the model to all parameters (except for σ1 and σ2). This was
expected as the radar data contain sufficient information to ensure a unique
estimate of the layer parameters.

One-layer model inversions and effect of the contrast

Fig. 2.9 shows the error in the estimated dielectric permittivity of the top layer
(∆ε1) with respect to the dielectric contrast between the two layers, expressed
in terms of water content contrast. Results are presented for both inversion
strategies in the frequency domain, assuming the correct two-layered model
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Figure 2.7: Response surfaces of the objective function logarithm log10(ϕ) in the (a)
ε1-ε2, (b) ε1-log10(σ1), (c) ε1-h1, (d) ε1-log10(σ2), (e) ε2-h1 and (f) h1-
log10(σ1) parameter planes. These objective functions are plotted for the
particular case depicted in Fig. 2.6, i.e., h1 = 0.01 m, θ1 = 0.36, and
θ2 = 0. True parameter values are represented by the white star marker.
Results from the numerical experiments.
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Figure 2.8: Response surfaces of the objective function logarithm log10(ϕ) in the (a)
ε1-ε2, (b) ε1-log10(σ1), (c) ε1-h1, (d) ε1-log10(σ2), (e) ε2-h1 and (f) h1-
log10(σ1) parameter planes. These objective functions are plotted for the
case where h1 = 0.08 m, θ1 = 0.36, and θ2 = 0. True parameter values
are represented by the white star marker. Results from the numerical
experiments.
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Figure 2.9: Error distribution of the dielectric permittivity of the top layer, as a
function of the contrast in water content between the layers. The box
extent shows interquartile range (i.e., the range between the first and the
third quartiles), while the median of the error distribution is represented
by the horizontal line that cuts the box. Whiskers length is 1.5 times
the vertical length of the boxes. Outlier error values are displayed as
crosses outside of the whiskers. Comparison between inversions performed
with the two-layered (a) and the one-layered (b) models in the frequency
domain. Results from the numerical experiments.
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and the simplified one-layered model, respectively. Errors for null contrast
|θ1 − theta2 = 0| are not presented in this graph as they are negligible.

For the two-layered model [Fig. 2.9(a)], there is no clear relationship be-
tween the contrast and the error on the dielectric permittivity. We can observe
the presence of numerous outliers with high error values that are out of the
whisker ranges. These outliers are expected to originate from nonconvergence
of the optimization algorithm.

For the one-layered model [Fig. 2.9(b)], a positive relationship between the
median values of the errors on ε1 and the contrast can be observed. In that
respect, it is worth noting that the errors are shown on a logarithmic scale and,
therefore, the observed trend is significant, in particular for lower contrasts. As
expected, the errors for the one-layered model are larger compared to the exact
model inversion (modeling errors are introduced). Large contrasts between
the layers lead to significant errors as a result of constructive and destructive
interferences in subresolution conditions (Lambot et al., 2006b) [e.g., the two
reflection peaks in the time domain cannot be distinguished in Fig. 4(b)].
In case of inversion with the exact model configuration, these interferences
are inherently properly accounted for. When the top layer is thick enough
compared to the wavelength, the reflections at the interfaces are well separated
in time and, as shown by Lambot et al. (2006b), the one-layered model performs
well for estimating the surface dielectric permittivity.

Comparison between model inversion routines

Table 2.1 shows the number of convergent configurations for both time and
frequency domains and for the one-layered and the two-layered inversion mod-
els. Values number the convergent cases among the 845 model configurations
and percentages refer to the proportions with respect to the total. A case is
counted as convergent according to the error on the dielectric permittivity of
the first layer and on the first layer thickness, as classified in Table 2.1. This
last parameter can obviously only be determined with the inversions performed
with the two-layered model.

The largest convergence rate is encountered with the inversion performed
in the frequency domain for the two-layered model. The one-layered model
clearly shows less convergent cases than the two-layered model. This is ob-
vious since the one-layered model does not take into account the presence of
electromagnetic contrast between the layers. All the same, inversions with the
one-layered model (three parameters) are about 6 times faster in terms of com-
putation time compared to the two-layered model inversions (five parameters).
Comparing time- and frequency-domain analysis, for the one-layered model,
better results are obtained in the time domain than in the frequency domain,
while it is not the case with the two-layered model. As time- and frequency-
domain data are equivalent in terms of information content, these differences
are to be attributed to the different model sensitivities with respect to the
surface dielectric permittivity. Indeed, the transformation of the frequency do-
main data to the time domain alters the shape of the objective function and
different global minima may be found.
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Table 2.1: Number of convergent configurations for time and frequency domains and
for the one-layered and the two-layered inversion models in the numerical
experiments.

Error on surface dielectric permittivity
∆ε1 ≤ 0.1 ∆ε1 ≤ 0.5

Frequency domain
1-layer 104 (12.3%) 268 (31.7%)
2-layer 485 (57.4%) 624 (73.8%)
Time domain
1-layer 150 (17.7%) 324 (38.3%)
2-layer 342 (40.5%) 426 (50.4%)

Error on the first layer thickness
∆h1 ≤ 0.005 m ∆h1 ≤ 0.01 m

Frequency domain (2-layer) 522 (61.8%) 646(76.4%)
Time domain (2-layer) 352 (41.6%) 383 (45.3%)

∆ε1 & ∆h1
∆ε1 ≤ 0.1 & ∆ε1 ≤ 0.5 &

∆h1 ≤ 0.005 m ∆h1 ≤ 0.01 m

Frequency domain (2-layer) 403 (47.7%) 535 (63.3%)
Time domain (2-layer) 280 (33.1%) 314 (37.1%)

Hence, this results in different shapes for the objective function topography,
with more or less well-defined global minima. Differences may also partly origi-
nate from the relation between a specific objective function topography and the
used optimization algorithm (GMCS-NMS), for which the same parametriza-
tion among the scenarios was kept.

2.5.2 Laboratory experiments

Comparison with ground-truth measurements

Figure 2.10 shows the soil surface relative dielectric permittivity estimated from
GPR data inversion as a function of the ground-truth soil volumetric water
content for six different inversion scenarios. The symbols discriminate the
values according to the five top layer thicknesses that were set in the sandbox
for each water content. The dotted vertical line at θv = 0.064 indicates the soil
water content of the bottom layer that was determined by inverse modeling of
the measured GPR signal above the bottom layer without the top thin layer.
In that case, the inverse problem is expected to result in accurate estimates
(Lambot et al., 2004b). For each scenario, the relationship between εGPR and
θv is fitted assuming the model of Ledieu et al. (1986) (Eq. (1.17)).
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Figure 2.10: Soil surface relative dielectric permittivity estimated from GPR data
inversion (ε1,GPR) as a function of soil volumetric water content θv.
Dielectric permittivities are depicted with different symbols according
to the top layer thickness. The model of Ledieu et al. (1986) is fitted
on the observed data (solid line). The dotted vertical line at value θv =
0.064 indicates the soil water content of the second layer (constant for
all configurations). (a) Two-layered inversion in the frequency domain.
(b) One-layered inversion in the frequency domain. (c) Two-layered
inversion in the time domain. (d) One-layered inversion in the time
domain. (e) Two-layered inversion in the time domain assuming no
PEC as lower-halfspace. (f) Inversion in the time domain by focusing
on the surface reflection only (Lambot et al., 2006b).



50 Chapter 2. Soil moisture estimation in the presence of thin layers

Table 2.2: Statistics on the comparison between ground measurements of volumetric
water content and GPR-measured dielectric permittivities.

a b RMSE r2

Frequency domain
2-layer 0.094 -0.097 1.912 0.714
1-layer 0.114 -0.151 1.542 0.780
Time domain
2-layer 0.079 -0.054 2.479 0.579
1-layer 0.114 -0.150 1.548 0.781
Time 2-layer* 0.092 -0.082 1.651 0.699
Time L-M 0.086 -0.093 2.682 0.665

The relationships between the first-layer dielectric permittivities and water
content are quite well defined and consistent for all scenarios. In general, the
fits are relatively good, except for higher water contents. It is worth noting
that the measured water contents are expected to be also subject to significant
uncertainties, due to the following: 1) the difficulty to properly sample so thin
layers with a loose material and 2) the sampling scale (5-10 cm2), which is
different from the GPR characterization scale (order of 2500 cm2), and this is
in relation to the inherent heterogeneity. The mean confidence interval at 95%,
calculated for each mix of humid sand, is equal to 0.010. Outlier permittivity
values can be observed and are either very low [FREQ 2L Fig. 2.10(a), TIME
2L Fig. 2.10(c) and TIME 2L* Fig. 2.10(e)] or very high [TIME L-M Fig.
2.10(f)] compared to expected values from the fitted model of Ledieu et al.
(1986). For overestimated values, their origin may be theoretically twofold
(Lambot et al., 2006b). First, they can result from a too high electrical con-
ductivity, as this parameter is neglected in the TIME L-M inversion. Second,
they can originate from constructive interferences in presence of thin layers in
the near surface. In our case, as we observe that these discrepancies occur only
for thin layers (especially 2 cm), they are believed to come from constructive
interferences. In addition, the electrical conductivity is expected to be low for
a sand wetted with demineralized water.

It is worth noting that the values obtained with the largest layer thickness
(h1 = 8 cm) are very similar among the inversion scenarios. Indeed, with such
layer thickness, the reflection from the second layer interface does not affect the
first reflection within the given range resolution. These results for the thicker
layer are therefore expected to be the most accurate.

Table 2.2 shows parameters a and b of the model of Ledieu et al. (1986),
the root mean square error (RMSE) between the fitted and measured dielectric
permittivities, and the coefficient of determination r2 between θv and

√
εGPR

for the corresponding six scenarios. Except for the TIME L-M scenario, the
one-layered models show the lowest RMSE and largest coefficients of determi-
nation r2. In general, better results are obtained with the one-layered model
as the dimensionality of the inverse problem is lower. Similarly, the TIME 2L*
scenario also presents relatively low RMSE as, in that case, only six parameters
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are to be inverted for (see also Fig. 2.10(e)). For scenario TIME L-M, a large
RMSE and a low r2 are obtained, arising from the presence of numerous out-
liers. These outliers come from low model adequacy, as it does not account for
the constructive and destructive interferences produced by the two interfaces.

The two-layered models show intermediate performances in terms of RMSE
and r2, as a trade-off between model adequacy and inverse problem complex-
ity. A smart parameterization of the inverse algorithm is required because of
the high non-linearity of the model to its parameters. In that way, reducing
the number of parameters to optimize considerably makes the inverse problem
easier. For instance, the best performance of the model TIME 2L* compared
to FREQ 2L and TIME 2L comes simultaneously from the limited number of
parameters (passing from seven to six) and high model adequacy.
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Figure 2.11: Comparison between first layer thickness measured in the sandbox and
derived from GPR signal inversion using the TIME 2L* scenario.

Figure 2.11 shows the GPR-derived top layer thickness (h1) as a function of
the real thickness measured using a millimetric ruler. Inversions were performed
with the TIME 2L* scenario, which produces the best results. The observed
errors are relatively small, ranging from a few millimeters up to two centime-
ters. The most accurate estimations are obtained for the 4-cm-thick layer. For
thicknesses lower than 2 cm, discrimination between the two interfaces cannot
always be achieved, because, in that case, the range resolution limit is reached.
As it was shown in the numerical experiments, this range resolution is about
1.5 cm for a center frequency of 1.7 GHz and a dielectric permittivity of nine.
For larger thicknesses, the larger errors are to be attributed to the negative
correlation between the layer thickness and its dielectric permittivity (see Fig.
2.8(c) & 2.12(c)).
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Figure 2.12: Response surfaces of the logarithm of the objective function in the ε1-
ε2 (a), ε1-σ1 (b) and ε1-h1 (c) parameter planes for a GPR laboratory
measurements inversion (FREQ 2L scenario) where θv = 0.115 and h1

= 8 cm. The unique value retrieved by the GMCS-NMS inversion is
depicted with a star. Points of the parameter space sampled by the
DREAM algorithm are projected (in red) over the response surfaces.
Histograms of the posterior distributions are drawn along the axis of the
parameters. Confidence intervals using a linear approximation of the
slope of the objective functions are drawn in red rectangles.
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Response surfaces

Response surfaces of the objective functions for a laboratory measurement (θv
= 0.115 and h1 = 8 cm) inverted with the FREQ 2L scenario are depicted
in Fig. 2.12 in the ε1-ε2, ε1-σ1 and ε1-h1 parameter planes (other parameter
values were fixed at their optimized values). Similar response surfaces were
obtained when compared with the numerical experiment results (Figs. 2.7 &
2.8), especially for the ε1-σ1 parameter plane. The response surface of the ε1-
ε2 parameter plane (Fig. 2.12(a)) shows some local minima, pointing out the
need of a global search optimization algorithm to find the global minimum. It
is worth remarking that, in the presence of measurements and modeling errors
due to the real conditions, the response surface becomes flatter, as it can be
noticed for the ε1-h1 parameter plane in Figs. 2.8(c) & 2.12(c).

Markov-Chain Monte-Carlo sampling with the DREAM algorithm led to
the sampling of more than 400,000 sets of parameter values that represent
probable solutions of the inverse problem. These points generally match the
locations of the parameter space where objective function values are low, as in
Fig. 2.12(b) and (c), whereas the points in Fig. 2.12(a) do not match exactly
the minimum valley along ε1. Confidence intervals were also drawn on the
response surfaces using a linear approximation of the objective function in the
proximity of the global minimum (see chapter 4, Inversion uncertainties, for
a description of the method). This method resulted in an overestimation of
the parameter intervals because of the complexity of the inverse problem. It is
worth mentioning that the response surface planes are cut in the 7-dimensions
parameter space at the optimized values, which may not be the exact values.
Therefore, the topography of the objective function depicted in the ε1-ε2 plane
may be incorrect, leading to the observed mismatch with the points sampled
by the DREAM algorithm. Hence, the Markov-Chain Monte-Carlo sampling
permits to overcome the difficulty of drawing objective functions in a multi-
dimension parameter space. Histograms of the posterior distributions of the
parameters were derived from the points sampled by the DREAM algorithm,
resulting in an uncertainty assessment of each parameter. In particular, it can
be observed that ε2 is less sensitive than ε1, as the cloud of points is more
spread along ε2 than ε1. The poor sensitivity of σ1 is well represented, with
sampling points covering almost the entire parameter range.

Effect of the contrast

As it was already observed in the numerical experiments, high contrasts be-
tween the two soil layers lead, in general, to larger errors in the estimation
of the surface dielectric permittivity with one-layered models. In Fig. 2.10,
the dotted vertical lines correspond to the water content of the bottom layer,
which is 0.064, and therefore, at this line, the contrast between the two layers
is zero. Accordingly, we clearly see that, for this water content, the dispersion
of the dielectric permittivities around the model of Ledieu et al. (1986) for
the one-layered models is minimal. Indeed, the two-layered configuration then
reduces to a one-layered configuration. We can also observe that, for the zero
contrast, inversion results are better for the one-layered inversion, because of



54 Chapter 2. Soil moisture estimation in the presence of thin layers

the lower dimensionality of the inverse problem. When the contrast between
the two layers increases, the inadequacy between the one-layered model and
the reality (two layers) increases, which results in proportionally larger errors.

For the two-layered inversions, in general, error also increases with the con-
trast. As in that case the forward model is correct, these discrepancies are
to be attributed either to optimization issues or a badly defined global min-
imum of the objective function. As this was not observed for the numerical
experiments, we believe that the problem mainly originates from the objec-
tive function topography, which inherently becomes flatter when measurement
errors are present.
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Figure 2.13: Error between the ground measurements and GPR-derived soil surface
water content as a function of the contrast between the two layers for
TIME L-M inversion scenario. Coefficient of determination r2 is depicted
in the upper-left corner.

Figure 2.13 shows the absolute value of the difference between the measured
and the fitted top layer water content as a function of the contrast between
the layers for the TIME L-M inversion scenario. This figure emphasizes the
positive correlation between the contrast and the error on the GPR-derived
soil properties, as already observed in Fig. 2.10. It is important to mention
here that this inversion strategy (i.e., a time domain inversion focusing on
the surface reflection only) appears to be very robust in general when dealing
with field data (Weihermüller et al., 2007; Lambot et al., 2008b). In that
respect, these laboratory experiments show that one-layered inversions even
perform relatively well in the presence of thin layers with low contrasts. For
high contrasts, however, accounting for thin layers is necessary.
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second layer.

Comparison between one- and two-layered models for estimating the
surface dielectric permittivity

Figure 2.14 shows the absolute difference in dielectric permittivities of the
top layer between the one- and two-layered inversions, as a function of the
ground-truth top-layer water content. This figure allows the evaluation of the
resulting error when a one-layered model is assumed for a two-layered medium.
Gray areas in the graph delineate two dielectric permittivity error thresholds,
namely, ∆ε1 ≤ 1 and ∆ε1 ≤ 3. Dielectric permittivities are depicted with
different symbols according to the first-layer thickness.

All the values that are above the two thresholds pertain to configurations
with small layer thicknesses, i.e., h1 = 0.5 cm, h1 = 1 cm and, to a lesser extent,
h1 = 2 cm. On the other side, configurations whose first-layer thickness are
h1 = 8 cm systematically lead to low differences (i.e., very close dielectric
permittivity estimations are obtained with the two model configurations). As
expected, this shows that a top layer thick enough compared to the wavelength
can be characterized from the surface reflection only. It also appears that errors
sightly increase with higher water contents, denoting the dielectric contrast
effect.

Effect of the frequency bandwidth sampling

Information content in the radar data increases with increasing bandwidth.
An important asset of using VNA technology is that the bandwidth is fully
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controllable and, in particular, ultrawideband GPR can be set up. The only
limitation is the operating frequency range of the antenna. However, in some
cases, other factors may also affect the utilizable bandwidth. In our case, in the
laboratory conditions, lower frequencies were subject to ambiguous reflections
from extraneous objects present in the laboratory, given the limited size of the
sandbox. Measurements for higher frequencies were also influenced to some
extent by the inherent heterogeneities present in the sandbox, including slight
surface roughness. For instance, Fig. 2.15 shows that the GPR measured signal
becomes of poorer quality for the lowest and highest frequencies of the 0.8-2.6
GHz bandwidth we used, and in particular below 1 GHz and above 2 GHz. The
correct two-layered model used for the inversion could reproduce remarkably
well the measured signal in both the frequency and time domains.
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Figure 2.15: Measured and modeled Green’s functions on the frequency bandwidth
from 0.8 to 2.6 GHz, depicted (a) in the frequency and (b) time domain.

In order to determine the optimal frequency bandwidth for the top layer
dielectric permittivity estimation, we performed inversions in different limited
frequency ranges selected from the full range, and we assumed the correct two-
layered model (FREQ 2L). Fig. 2.16 presents boxplots of the errors in the
top-layer water content estimation for inversions performed in eight different
frequency ranges. The errors are defined as the bias between the GPR soil
water content derived from the dielectric permittivities using the model of
Ledieu et al. (1986) with a given parametrization and the soil water content
determined by volumetric sampling. Start frequencies were set to either 0.8 or
1 GHz and stop frequencies to 2, 2.2, 2.4 or 2.6 GHz, respectively.

Clearly, the full frequency bandwidth leads to the best estimations for the
sand water content. Narrower bands lead, in particular, to outliers with signif-
icant errors. Reducing the frequency bandwidth is clearly contraindicated for
estimating the soil parameters in the presence of thin layers. For layers that
are thick compared to the wavelength, a bandwidth as small as 0.4 GHz still
leads to accurate results (Lambot et al., 2005). Although the radar data for
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Figure 2.16: Error boxplots between the GPR-derived and the sampled volumetric
soil water content of the top layer, for inversions with different frequency
bandwidths. The box extent shows interquartile range (i.e., the range
between the first and the third quartiles), while the median of the er-
ror distribution is represented by the horizontal line that cuts the box.
Whiskers length is 1.5 times the vertical length of the boxes. Outlier
error values are displayed as crosses outside of the whiskers.

frequencies between 0.8 GHz and 1 GHz are contaminated by some noise, inver-
sions without these frequencies do not lead to significantly different results. A
large bandwidth is important for thin-layer retrieval because, in the frequency
domain, thin layers lead to oscillations of the amplitude of the Green’s func-
tion with a large period. This period is inversely proportional to the electric
thickness of the layer. It is worth noting that the problem is similar in the
time domain where the limitation of the bandwidth results in less well-defined
reflection (the bandwidth defines range resolution). For instance, with remote
SAR acquisition, it is well known that using various frequencies enhances the
extraction of information for the retrieval of soil surface moisture (D’Urso and
Minacapilli, 2006). Moreover, D’Urso and Minacapilli (2006) have shown that
relatively low frequencies (L-band, 1.6 GHz) lead to better results, mainly due
to the lower sensitivity to soil surface roughness and vegetation compared to
higher frequencies.

2.6 Conclusions

We performed numerical and laboratory experiments to evaluate the effect of
shallow thin layers on the retrieval of soil electromagnetic properties by full-
waveform inversion of GPR data. Shallow soil layering may occur in various
conditions in natural conditions and alter the backscattered GPR data. First,
inversions of numerical data, assuming the correct model configuration (two-
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layered), showed some discrepancies between true and inverted dielectric per-
mittivities. This was attributed to the complexity of the inverse problem (five
parameters to be retrieved) and the not well-defined global minimum of the
objective function for subresolution layer thicknesses. We also showed that the
errors increase, as expected, with the use of a simplified one-layered model (i.e.,
when the true two-layered medium is not taken into account). However, pro-
vided limited contrast between the two layers, such approach remains robust
owing to the low dimensionality of the inverse problem (three parameters). For
relatively large contrasts (e.g., > 0.10 in terms of water content), significant
errors arise with the simplified model (> 0.10 in terms of water content).

For the laboratory experiments, a good agreement was obtained between
volumetric water content determined by sampling and GPR-derived dielectric
permittivity. The same limitations as for the numerical experiments were ob-
served. In addition, part of the observed discrepancies was attributed to the
inherent variability of the water content within the sand layers with respect to
the different measurement support, making the water content measurements
not fully reliable in comparing the larger-scale GPR measurements. Retrieval
of the thin-layer thickness led to relatively small errors, ranging from a few
millimeters up to a maximum of two centimeters (corresponding to the range
resolution). Markov-Chain Monte-Carlo sampling permitted to assess the pos-
terior distribution of the optimized parameters in the GPR data inversion.

The benefit of these experiments and analysis is that it shows both the
theoretical and practical limits in terms of thin layers reconstruction using
zero-offset, off-ground GPR. These results also apply to other radar remote
sensing, but considering a much larger bandwidth. When shallow soil layering
conditions are to be encountered, two-layered inversions would be preferred if
there is a large contrast between soil layers. One-layered inversions can deal
with shallow layering for low contrast conditions. The proposed methods ap-
pear to be promising for surface soil moisture estimation in layered soil moisture
conditions and for reconstructing these layers.



Chapter 3

Soil moisture mapping by
ground penetrating radar
in profile conditions:
Numerical and field
experiments∗

3.1 Outline

Full-waveform inversions were applied to retrieve surface, two-layered and con-
tinuous soil moisture profiles from ground penetrating radar (GPR) data ac-
quired in an 11-ha agricultural field situated in the loess belt area in central Bel-
gium. The radar system consisted of a vector network analyzer combined with
an off-ground horn antenna operating in the frequency range 200-2000 MHz.
The GPR system was computer controlled and synchronized with a differential
GPS for real-time data acquisition. Several inversion strategies were also tested
using numerical experiments, which in particular demonstrated the potentiality
to reconstruct simplified two-layered configurations from more complex, con-
tinuous dielectric profiles as prevalent in the environment. The surface soil
moisture map obtained assuming a one-layered model showed a global mois-
ture pattern mainly explained by the topography while local moisture patterns
indicated a line effect. Two-layered and profile inversions provided consistent
estimates with respect to each other and field observations, showing significant
moisture increases with depth. However, some discrepancies were observed be-
tween the measured and modeled GPR data in the higher frequency ranges,

*This chapter is adapted from:
Minet, J.; Wahyudi, A.; Bogaert, P.; Vanclooster, M. & Lambot, S. Mapping shallow soil
moisture profiles at the field scale using full-waveform inversion of ground penetrating radar
data, in Geoderma, 2011, 161, 225-237.
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mainly due to surface roughness effects which were not accounted for. The
proposed GPR method and inversion strategies showed great promise for high-
resolution mapping of soil moisture at the field scale and for reconstructing
continuous or layered soil moisture profiles.

3.2 Introduction

Soil moisture dynamics is a key component in many researches and applications
like precision agriculture, hydrological studies, meteorological and climatologi-
cal modeling and other environmental studies. In hydrology, soil moisture is a
highly sensitive state-variable in runoff, solute transport, evaporation and ero-
sion processes, as it governs the partitioning between runoff and infiltration,
and reducing its uncertainty largely improves modeling precision (Zehe et al.,
2005). In global circulation models, soil moisture largely controls the energy
fluxes between the land surface and the atmosphere (Schumann et al., 2009).

Recent developments in microwave remote sensing of surface soil moisture
bring increasing opportunities for extensive soil moisture characterization at
different spatial and temporal scales, as new remote sensing data products (e.g.,
from SMOS and SMAP) become available (Wagner et al., 2007). Nevertheless,
a poor agreement still exists between remote sensing derived soil moisture and
ground-truth measurements (i.e., gravimetric sampling, time domain reflectom-
etry measurements). Ground-based soil moisture measurement techniques may
fail to match the remote sensing retrievals as a result of the different support
scales of the techniques, particularly with respect to the depth of characteriza-
tion, as it was stated by Stevens et al. (2008). In addition, the inherent large
spatial variability of soil moisture within a remote sensing pixel implies that
a large number of ground measurements must be collected to adequately com-
pare the data. Hence, no absolute relation between the backscattered signals
from remote sensing sensors and the surface soil moisture exists, necessitating
site-specific calibrations (D’Urso and Minacapilli, 2006; Verhoest et al., 2008).

Furthermore, the value of remotely-sensed surface soil moisture may be
limited by a lack of correlation between surface and subsurface soil moisture
(Vereecken et al., 2008). As it is directly exposed to atmospheric forcing, surface
soil moisture dynamics is a lot more active than subsurface soil moisture (see
chapter 2) . Surface soil moisture may therefore fail to reflect the soil moisture
conditions in the subsurface that are actually of interest for a lot of processes
(Capehart and Carlson, 1997). Some studies have addressed this issue in remote
sensing acquisition, using transfer functions based on statistical relationships
or physically-based hydrodynamic models to relate the soil moisture profile to
the remotely-sensed surface soil moisture (Wagner et al., 1999; Ceballos et al.,
2005). Nevertheless, soil moisture profile information cannot be inherently
inferred from the single-frequency satellite sensors.

In that respect, ground penetrating radar (GPR) has shown further poten-
tialities to increase the extraction of information about surface and subsurface
soil moisture (Huisman et al., 2003; Galagedara et al., 2005; Serbin and Or,
2005; Lunt et al., 2005; Doolittle et al., 2006; Lambot et al., 2008a). Character-
ization of soil moisture in multilayered media using inversion of GPR data was
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performed by Lambot et al. (2004b), van der Kruk (2006) and Strobbia and
Cassiani (2007). In particular, borehole GPR applications can accurately recon-
struct 2-D images (tomograms) of the complete soil moisture profile between
borehole locations (Binley et al., 2001; Looms et al., 2008), but these tech-
niques remain limited at small-scale (a few meters) studies, as it requires the
installation of vertical wells into the soil. Hence, although they showed a good
accuracy, these techniques remain largely cumbersome and time-consuming,
hampering for the mapping of large areas. Surface soil moisture determination
by the surface reflection coefficient method, using off-ground GPR antennas,
have shown a potential for proximal soil moisture sensing at a much larger
scale compared to the borehole methods (Redman et al., 2002; Serbin and Or,
2003, 2005). However, this method still remains unused in real field applica-
tions due to several practical and theoretical limitations. A more practical and
accurate GPR approach for mapping surface soil moisture at the field scale
is the one developed by Lambot et al. (2004b), which is based on off-ground,
zero-offset GPR and full waveform inverse modeling. Owing to an accurate
radar model that accounts for three dimensional wave propagation, antenna
effects and antenna-soil interactions, information retrieval from the radar data
is inherently maximized in terms of quantity and accuracy. Specific inversion
strategies have been developed for the retrieval of soil surface dielectric per-
mittivity and correlated water content (Lambot et al., 2006b) and have been
applied to field data (Lambot et al., 2008b). The main advantages of this
advanced GPR approach are: (1) the off-ground configuration allowing for a
high-resolution on-the-go mapping of soil moisture at the field scale and (2)
the full-waveform inversion and the exactness of the modeling approach that
permit to investigate vertically-varying moisture profiles.

3.3 Objectives

In this chapter, we propose to investigate the retrieval of soil moisture vertical
profiles by full-waveform inversion of GPR data acquired in an 11-ha agricul-
tural field. This chapter attempts to apply to field conditions the two-layered
modeling approach presented in chapter 2 and a continuously-variable profile
model as studied in laboratory by Lambot et al. (2004a). The field was situ-
ated in the loess belt region in central Belgium (Walhain), consisting mainly
of loamy soils. Soil moisture conditions were described by three models, i.e., a
one-layered, a two-layered and a continuously-variable profile model. Numeri-
cal experiments are first presented, that evaluate GPR inversions assuming the
two-layered soil model facing continuous soil moisture profile conditions. Then,
GPR inversions of the field data were performed with the three models, the
two-layered and profile inversions being limited to some parts of the field where
specific profile conditions were observed. The surface soil moisture map from
the one-layered inversion is presented and interpreted in the light of in-situ
observations. Soil moisture maps from two-layered and profile inversions are
compared, as well as soil moisture profiles. Finally, the errors of the approach
with respect to the field conditions are discussed.
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3.4 GPR forward and inverse modeling

3.4.1 GPR system modeling

Following Lambot et al. (2004b, 2006b), the GPR system was set up with a
vector network analyzer (VNA) connected to an ultra-wideband monostatic
horn antenna situated off the ground. The VNA emulates a stepped-frequency
continuous wave radar, that is, the GPR measurements are performed in the
frequency domain. For this configuration, all antenna effects can be filtered
out using Eq. (2.1) where the GPR antenna is modeled as a linear system by
three frequency-dependent antenna transfer functions. A specific calibration
of the radar antenna permits to determine the transfer functions and thus
to obtain the soil response (i.e., the Green’s function G↑

xx(ω)) from the raw
measurements S11(ω) (Jadoon et al., 2010b). The reader is referred to Lambot
et al. (2004b) and chapter 2 for further details about the antenna calibration
and electromagnetic model.

The electromagnetic model calculating the Green’s function simulates the
response of the soil illuminated by the GPR antenna, depending on the soil
electromagnetic properties. The soil can be discretized in multiple layers with
homogeneous electromagnetic properties, i.e., the dielectric permittivity ε, the
electrical conductivity σ and the thickness of each layer h. A continuously
variable medium can be modeled using layer thicknesses that are smaller than
one tenth the wavelength (subresolution conditions).

The petrophysical relationships between the soil moisture and its electro-
magnetic properties are described, respectively, by 1) the model of Ledieu et al.
(1986) (Eq. (1.17)) to derive the volumetric soil moisture θ from the relative
dielectric permittivity ε and by 2) the model of Rhoades et al. (1976) (Eq.
(2.3)) to relate the soil electrical conductivity σ to the soil moisture, as pre-
sented in chapter 2. Both dielectric permittivity and electrical conductivity are
thus related to the soil moisture by these specific relationships throughout all
this chapter. The petrophysical relationship of Ledieu et al. (1986) was chosen
for its simplicity in the development of Eq. (3.2). It is worth noting that the
soil specific parameters in equations (1.17) and (2.3) may actually vary within
the field depending on soil texture and structure variations. However, the θ−ε
relationship variation is expected to be relatively small due to the very strong
correlation between these two variables and, as discussed below, σ has a small
effect on the estimation of the soil surface dielectric permittivity. The assump-
tions made for these petrophysical relationships are therefore expected not to
affect our results.

3.4.2 Inversion of GPR data

The parameters of the multilayered medium investigated by the GPR are re-
trieved by a full-waveform inversion of the filtered radar signal, i.e., the Green’s
function. This inversion is done in the frequency domain, where the wave is
actually modeled. The inverse problem is formulated in the least-squares sense
according to Eq. (2.2). Optimization is performed using a local search algo-
rithm (i.e., the Levenberg-Marquardt (L-M) algorithm) for the simplest mod-
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els with few parameters to invert for and a combination of global and local
optimization (i.e., the Global Multilevel Coordinate Search (GMCS) and the
Nelder-Mead Simplex (NMS) algorithms) for the more complex models.

In this study, the electrical conductivity of the soil is not optimized but
is directly derived from the dielectric permittivity using equations (1.17) and
(2.3). The electromagnetic model is mostly insensitive to the electrical con-
ductivity in this frequency range, as it was shown by Lambot et al. (2006b)
(negligible effects for σ < 0.01 S/m). The optimization of the electrical con-
ductivity would therefore uselessly make the inverse problems more complex
because of the larger number of parameters to optimize, leading to more CPU
time requirement and to non-uniqueness issues (especially due to insensitivity)
in the inverse problem.

3.4.3 Multilayered medium models

Figure 3.1: Flowchart of the inversion of the Green’s function G↑
xx with the three

different multilayered soil moisture models, that are, the one-layered, two-
layered and profile models.

In this chapter, the soil is modeled using three types of multilayered media.
Inversion of the GPR signals using the three different types of model permits to
get different soil moisture descriptions. Figure 3.1 shows the inversion flowchart
for the three different multilayered models.

One-layered model

The one-layered model is the most simplified one as it assumes an homogeneous
half-space for the soil, below the air layer. Only two parameters are considered
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in the inversion, i.e., the soil dielectric permittivity ε and the antenna height
above the soil h0, as the electromagnetic properties of the air layer are known
(εa = 1 and σa = 0 S/m). This robust inversion procedure was used for soil
moisture retrieval from GPR data in field conditions in Weihermüller et al.
(2007); Lambot et al. (2008b) and in chapter 2 with laboratory measurements
(FREQ 1L scenario).

Two-layered model

The two-layered model assumes a two-layered soil with a top soil layer (1st

layer) above an half-space medium (2nd layer), in addition to the air layer. This
model permits to assess two different homogeneous soil dielectric permittivity
values ε1 and ε2, the thickness of the top layer h1 and the antenna height h0.
For small top layer thicknesses, constructive and destructive interferences in
the GPR signal may occur, resulting in a less sensitivity of the model to its
parameters (see chapter 2). The method was validated in laboratory conditions
against real measurements for these critical cases in Lambot et al. (2006b) and
in chapter 2 (FREQ 2L scenario).

Profile model

The profile model assumes a soil where the soil moisture can vary continu-
ously with depth, according to a hydrostatically coherent soil moisture profile.
We chose to simulate sigmoidal soil moisture profiles with the model of van
Genuchten (1980), which describes the water retention curve between two ex-
treme soil moisture values at the top and the bottom of the profile (hydrostatic
equilibrium). The model of van Genuchten was chosen for its expected rele-
vance for most natural soil moisture profiles, although alternative profile models
could be chosen. The model of van Genuchten giving the water retention curve
as a function of the depth z taken positively downwards is given below:

θ(z) =

{
θ1 + (θ2 − θ1)(1 + |α(L− z)|n)−m for z < L
θ2 for z ≥ L

(3.1)

where θ is the volumetric soil moisture, θ1 and θ2 are the top and bottom soil
moisture respectively, L is the depth in which the profile is developed, α and
n are curve shape parameters, and m = 1 − 1/n is restricted by Mualem’s
condition with n > 1.

The soil moisture profiles must be transformed to permittivity profiles for
the need of the electromagnetic model. Introducing (1.17) into (3.1) leads to
the equation describing the soil dielectric profiles as a function of the depth z
(Lambot et al., 2004a):

ε(z) =

{
[
√
ε1 + (

√
ε2 −

√
ε1)(1 + [α(L− z)]n)−m]2 for z < L

ε2 for z ≥ L
(3.2)

where ε1 and ε2 are, respectively, the dielectric permittivity of the soil surface
and of the soil at the depth z = L.
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The dielectric profiles are discretized into 1 mm thick soil layers, resulting in
maximum 250 layers in the electromagnetic model, as the depth of the profile
L is bounded to 0.25 m in the optimization. This high resolution permits
to emulate the continuity of the profile for the computation of the Green’s
function as the layer thickness (1 mm) is far below the wavelength of the GPR
signal. It is worth noting that the coupling of the van Genuchten’s model to
the electromagnetic model considerably decreases the number of unknowns in
the optimization (from maximum 2 × 250 to 6 unknowns), the GPR inversion
being constrained by the van Genuchten’s model. The optimized parameters
in the inversion are the van Genuchten parameters α, n, θ1, θ2 and L and the
antenna height h0. This approach was validated with numerical and laboratory
experiments in Lambot et al. (2004a).

3.5 Numerical experiments

3.5.1 Model configurations

The numerical experiments aim to reproduce the real medium that was investi-
gated with the GPR in field conditions and that is expected to be a continuous
(and hydrostatically coherent to some extent in this case) soil moisture pro-
file. Synthetic Green’s functions were generated using the profile model, using
dielectric profiles that were computed by the van Genuchten model. Different
configurations of soil dielectric profiles were investigated, with α ranging from
16 m−1 to 30 m−1 and n from 6 to 20 by a step of 2, resulting in total in 120
configurations. The other parameters of Eq. (3.2) were fixed at ε1 = 3.12 and
ε2 = 12.30, corresponding to soil moisture values of θ1 = 0.03 and θ2 = 0.25,
respectively, and L = 0.10 m. The profile was discretized into 100 soil layers
of 1 mm thickness for generating the Green’s functions using the multilayered
electromagnetic model. Green’s functions were computed in a wide frequency
bandwidth, from 200 to 2000 MHz, with a frequency step of 6 MHz.

Then, synthetic Green’s functions generated with the profile model were in-
verted with the two-layered model within the same frequency range, considering
the optimization of the first (ε1) and second layer (ε2) dielectric permittivities
and of the first layer thickness (h1). The objective of the numerical experi-
ments was to assess the reliability of the simplified two-layered model facing a
continuous dielectric profile. Using a simplified model in practice is beneficial
in terms of uniqueness and computing resources. Indeed, the calculation time
of the Green’s function is almost proportional to the number of layers in the
model.

3.5.2 Numerical results

Soil moisture profile retrieval with the two-layered inversion

Figure 3.2 shows the soil moisture profiles used for generating the Green’s
functions and the two-layered discontinuous profiles retrieved by two-layered
model inversions, for four different configurations. The parameters of the model
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Figure 3.2: Numerically generated soil moisture profiles with the van Genuchten
model (dotted lines) and two-layered profile (plain lines) retrieved by
inversion using the two-layered model, for four different van Genuchten
parametrizations (n = 14 and α = 16, 20, 24 and 28 m−1). Results from
the numerical experiments.

of van Genuchten for the configurations shown here are n = 14 and α = 16, 20,
24 and 28 m−1, respectively. It is worth mentioning that inversions performed
with the same profile model as the one used for generating the synthetic Green’s
functions led to exactly the same parameter values (and thus the same moisture
profiles) than the values used for generating the data.

The general trend of the profile, that is, the soil moisture increases with
depth (θ1 < θ2), is always respected in the two-layered profile and can be
observed for all the 120 configurations (not shown). The first layer soil mois-
ture values retrieved by two-layered inversions θ1 are very close to the top soil
moisture from the profile model. However, the second layer soil moisture val-
ues θ2 are underestimated compared to the soil moisture at the bottom of the
profile, especially for configurations where α = 16 and 20 m−1. This poorer
performance of the two-layered inversion in the retrieval of the second layer
soil moisture compared to the first layer soil moisture is to be attributed to
the lower information content in the GPR waves reflection from deeper soil
layers. Although there is a larger dielectric contrast between the two extreme
soil permittivity values (∆ε1,2 = 9.18) than between the air and the soil sur-
face values (∆εair,1 = 2.12), the smooth continuously-varying interface between
the two extreme soil permittivities leads to a less well-defined wave reflection
than the clear-cut interface between the air and soil surface, especially for low
α. Hence, for configurations where the profile is more abrupt (e.g., α = 28
m−1), the retrieved second layer soil moisture is better matching the bottom
soil moisture of the continuous profile. In addition, GPR waves are attenu-
ated while penetrating deeper into the soil because of the electrical losses due
to the non-null electrical conductivity. Even though this is accounted for in
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the electromagnetic model, it reduces the information content in the soil sub-
surface waves reflections. These two reasons result in a less sensitivity of the
two-layered model to the parameters of the second layer. A better confidence
for the first layer soil moisture compared to the second layer soil moisture can
then be expected when using a two-layered model facing a continuously-varying
soil moisture profile, especially for smooth profiles. This poorer sensitivity of
the second layer soil moisture was also observed in chapter 2 (Fig. 2.12(a)) for
a two-layered configuration.

Comparison of interfaces depth between two-layered and profile in-
versions
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Figure 3.3: Comparison between the first layer thickness h1 retrieved by inversion us-
ing the two-layered model and the position of the inflexion point zi of the
generated soil moisture profile. Results from the numerical experiments.

For the four configurations shown in Fig. 3.2, the inverted first layer thick-
ness h1 retrieved by the two-layered inversion seems to match the depth at
which the generated soil moisture profile is abruptly increasing (inflexion point).
Figure 3.3 compares, for all the configurations, the first layer thickness h1, that
is, the depth of the interface between the two layers, and the position of the
inflexion point of the van Genuchten soil moisture profiles zi, determined by

solving δ2θ(zi)
δ z2 = 0. There is a very good agreement between these two vari-

ables, with a coefficient of determination of r2 = 0.992. Maximum difference
between the two variables is about 4 mm, which is very accurate knowing that
the numerical resolution of the profile (i.e., the size of the layers) is 1 mm and
that the GPR resolution (one tenth the wavelength) is equal to 8 mm for a
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dielectric permittivity of 3.2 and for the highest frequency (2000 MHz). The
use of a two-layered model to reconstruct continuously-varying profiles shows
therefore a great potential to retrieve the depth of the interface between two
extreme soil moisture values, as well as the surface soil moisture.

3.6 GPR Field Measurements

3.6.1 Materials and methods

Study site and weather conditions

The 11-ha cultivated field that was mapped with the GPR is located in the
loess belt area near the locality of Walhain in the center of Belgium (Long.
4◦41’8”E, Lat. 50◦35’59”N) (see Fig. 3.4). Soil type is uniformly a silt loam,
with a gentle topography ranging from 153 to 161 m a.s.l and slope lower than
7%. The campaign took place at the end of the winter on the 23th of March
2009, while the field was covered by winter barley with a canopy height less
than five cm. Soil was relatively dry as no rainfall were recorded for eight days
according to a weather station located at around ten km from the field*.

0 50 100 150 200

Meters

161 m

153 m

GPR acquisition

Elevation [m a.s.l]

Figure 3.4: Study site for the GPR acquisitions near Walhain, Belgium. The 3741
GPR measurements are depicted over the field.

*ASTR-UCL Weather Station http://www.climate.be/wview/
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The soil moisture was suspected to increase with depth, as we observed
in-situ a dry superficial soil layer above a wetter subsurface soil. An abrupt
profile or two-layered conditions were thus supposed to be encountered. Soil
moisture volumetric sampling could not be performed to assess actual soil layer-
ing as the dry superficial layer was very thin (<5 cm). In addition, comparison
of GPR-derived soil moisture with volumetric ground sampling measurements
is expected to be cumbersome and suspicious due to the inherent high spatial
variability of soil moisture both vertically and horizontally, to the different sup-
port scales of the measurement techniques and to the uncertain petrophysical
relationship that is used to convert the dielectric permittivity into volumetric
water content. Therefore, we decided not to take soil samples for this study.

GPR platform

Figure 3.5: All-terrain vehicle holding the GPR system constituted of a horn antenna
linked to a vector network analyzer, the DGPS device and the PC. Picture
taken on the 23th of March 2009 in a barley field near Walhain, Belgium.

The GPR system was set up by combining a vector network analyzer (VNA)
(ZVL, Rohde & Schwarz, Münich, Germany) with a linear polarized double-
ridged broadband horn antenna (BBHA 9120 F, Schwarzbeck Mess-Elektronik,
Schönau, Germany). Antenna dimensions are 95 cm in length and 68 × 96 cm2

in aperture area and the nominal frequency range is from 0.2 to 2 GHz. The
antenna was connected to the reflection port of the VNA with a high quality
N type 50-Ω coaxial cable of 2.5 m length. We calibrated the VNA three times
during the field acquisition at the connection point at the end of the cable
before the antenna feed point using a 50-Ω OSM calibration kit. The stability
of the OSM calibration in field conditions was verified, as no differences in
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Table 3.1: Summary of the inversions of GPR field data for the three models.

Number of Inverted Number of
points parameters soil layers

1-layered 3741 h0, ε 1
2-layered 300 h0, ε1, ε2, h1 2
Profile 300 h0, ε1, ε2, α, n, L 1-250

Frequency Optimization Number of CPU
range [MHz] algorithms iterations time1

1-layered 200 - 800 L-M ∼20 1
2-layered 200 - 1600 GMCS-NMS 6400 170
Profile 200 - 1600 GMCS-NMS 14400 12000
1CPU time is the relative time of computation for one GPR inversion com-
pared to the one-layered inversion.

GPR data quality was observed before and after the calibrations during the
acquisition. The frequency-dependent complex ratio S11 between the returned
and the emitted signal was measured sequentially at 301 stepped frequencies
from 200 to 2000 MHz, with a frequency step of 6 MHz.

The GPR system was mounted on an all-terrain vehicle (ATV) to allow for
fast data acquisition. Figure 3.5 shows a picture of the ATV that we used for
acquiring the data. The GPR was automatically controlled by a PC and com-
bined with an accurate differential global positioning system device (DGPS)
(Leica GPS1200, Leica Geosystems) for the georeferencing of the measured
points, with a precision of about 3 cm. Real-time GPR measurements were
performed at a regular distance spacing of two meters in the same track, ac-
cording to the DGPS position. The ATV was driven along 22 parallel tracks
with a distance spacing between the tracks of about ten meters. The GPR
antenna footprint where soil moisture is measured has a diameter of about 1.5
m. In total, 3741 GPR measurements were taken across the field in 3h48, with
a driving speed of about 5-10 km/h. As a GPR measurement takes about 1
ms, the GPR data acquisition is considered as instantaneous at the speed of
the acquisition, allowing for a continuous acquisition without stop-and-go of
the platform.

GPR field data inversions

The raw measured signals S11(ω) were first filtered from the antenna effects
using Eq. (2.1) to obtain the Green’s functions G↑

xx(ω) from the soil. Inver-
sions of the G↑

xx(ω) were conducted with the three different models described
above, namely, the one-layered, the two-layered and the profile models. For
the simplified one-layered model, GPR data were selected within the frequency
range from 200 to 800 MHz, as noise in the signal appears at frequencies higher
than 800 MHz. Noise arises at high frequencies due to interferences caused by
the soil roughness and the presence of vegetation. For roughness larger than
one tenth the GPR wavelength, constructive and destructive interferences may
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affect the GPR signal. Therefore, rejection of high frequencies (i.e., small wave-
lengths) permits to avoid interference problems, although it results in a poorer
wave resolution for detecting small layers.

For the two-layered and the profile models, a more extended frequency range
from 200 to 1600 MHz is necessary to get more information about the layered
or profile structure. According to visual in-situ observations, we selected 300
points where an abrupt soil moisture profile was expected to be encountered.
Only these selected points were thus inverted considering two-layered and pro-
file models. Inversions were set in a large parameter space, namely, 0 ≤ ε1 ≤
25, 0 ≤ ε2 ≤ 25, 1.45 ≤ h0 ≤ 1.75 m and 0 ≤ h1 ≤ 0.25 m for the two-layered
inversions and 1 ≤ α ≤ 75 m−1, 1 ≤ n ≤ 75, 0 ≤ ε1 ≤ 12, 0 ≤ ε2 ≤ 25,
1.45 ≤ h0 ≤ 1.75 m and 0 ≤ L ≤ 0.25 m for the profile inversions. Table 3.1
summarizes the status of the three inversions performed on the GPR field data.

3.6.2 Field measurements results

Map of surface soil moisture from the one-layered model inversion

Figure 3.6 shows the soil moisture point-data retrieved by one-layered model
inversions of the 3741 points that were measured during the GPR field ac-
quisition campaign. Inverted dielectric permittivities were translated into soil
moisture values using Eq. (1.17). Size of the symbols are varying accord-
ing to a weight function based on the root mean square error (RMSE) be-
tween the amplitude of measured and modeled (inverted) Green’s functions
(Weight = max(RMSE)−RMSE). The RMSE is an indicator of the uncer-
tainty associated with the inversion of the measured signal. It is worth noting
that symbols appear two or three times larger on the map than the real antenna
footprint size (∼2m2). Topography is depicted with black contour lines with
a contour interval of 1 m. The red polygon located in the driest part of the
map delineates the 300 manually selected points for the two-layered and profile
inversions.

The mean volumetric soil moisture is equal to 0.108 and its standard de-
viation is 0.0401. These values are similar to the ones observed in previous
studies for the same extent and similar support depth (e.g., Famiglietti et al.
(2008)). It is worth mentioning that the 300 selected points for the two-layered
and profile inversions are affected by a large uncertainty (i.e., smaller points
on the map), due to their large RMSE between measured and inverted signals.
These large RMSE values indicate that one-layered model fails to adequately
reproduce the Green’s functions at these points because of the non-uniform
moisture conditions.

At the global pattern scale, soil moisture is mainly explained by topography.
A wet area can be observed in the North of the field, where a thalweg flows
in the North-North-East direction. Another wet area can be observed in the
South-West part of the field, which is characterized by a flat area. Hilltops are
mainly dry, like in the South-East corner and around the zone delineated by
the red polygon.

A close examination of the map reveals that the spatial local pattern of soil
moisture exhibits a clear line effect. This line effect is translated by a high
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Figure 3.6: Soil moisture map retrieved by one-layered model inversions from the field
acquisition near Walhain on the 23th of March 2009. Size of the symbols
are inversely related to their uncertainty by the weight function, which
is, Weight = max(RMSE)−RMSE.
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spatial continuity for data retrieved along the sampling line, whereas at the
same time there is an abrupt change in soil moisture when moving to adjacent
lines. This effect is clearly visible e.g., in the North-West corner of the field,
where there are adjacent segments of high or low water contents.

Investigating the variogram by separating its estimates along the lines and
perpendicular to the lines clearly confirms this effect (Fig. 3.7). The variogram
estimated along the lines shows smoothly increasing variance with distance,
with a moderate nugget effect accounting for about 25% of the sampling vari-
ance, thus emphasizing the rather progressive changes of water content, with
correlated values up to about 130 m. This nugget effect may originate from
either the small-scale variability of soil moisture or from errors in the GPR
sensing of soil moisture (see the last section of the field measurements results).
It is believed that the spatial variability of soil moisture at the resolution scale
(2 meters along the acquisition lines) may be large enough to explain this rela-
tively high nugget effect. In contrast, the variogram perpendicular to the lines
is offset by a value that corresponds to the additional nugget effect induced by
the between-lines variability, which tends to mask the global pattern of volu-
metric soil moisture. It can presumably be assumed that the line effect is the
result of the dragging line laid by ploughing or fertilizer spreading machine, as
the machine causes compaction layer along the track of the wheels. This could
also originate from the surface soil roughness that is mainly dependent on the
soil tillage conditions, such as the tractor velocity and the depth of the plough
that may change from line to line. A more detailed discussion about this line
effect is presented in chapter 5, Line effect.
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Figure 3.7: Variogram for soil moisture computed on the whole field with a class
distance from 0 to 200 m by a step of 5 m. Variogram along and per-
pendicular to the sampling line is denoted by circle and plus symbols,
respectively. Exponential models are fitted for both variograms. The
sampling variance is indicated by the horizontal dashed line.
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Though these findings are not completely validated yet, further application
such as mapping continuous soil moisture content could require some subse-
quent work in order to remove the line effect and improves the estimation and
mapping of the moisture content in the field.

Maps of surface and subsurface soil moisture from two-layered and
profile inversions
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Figure 3.8: Soil moisture maps from two-layered model inversions for the first layer
(a) and the second layer (b) and from the profile model inversions for the
top (c) and the bottom (d) of the profile for the 300 points outlined with
the red polygon in Fig. 3.6.

Figure 3.8 shows the first layer (a) and second layer (b) soil moisture maps
from two-layered inversions and the top (c) and bottom (d) soil moisture maps
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from profile inversions, for the 300 selected points. Soil moisture values are
depicted with the same color range from 0 to 0.25 in the four maps. In addition,
Table 3.2 summarizes the soil moisture data from the one-, two-layered and
profile model inversions for the 300 selected points. Variograms for soil moisture
from the two-layered and profile model inversions are depicted in Fig. 3.9 and
the parameters of the variograms are presented in the last three columns of
Table 3.2.

Considering two-layered model inversions, first layer soil moisture values
(Fig. 3.8(a)) are very low, indicating a completely dry soil at the wilting point,
as it was visually observed in the field. Soil moisture is spatially structured
(see the variogram in Fig. 3.9(a)) with a smaller range than the one observed
in Fig. 3.7. Second layer soil moisture map (Fig. 3.8(b)) shows globally
higher values and almost no spatial structure, with a nugget effect close to
the total variance (Fig. 3.9(b)). This high nugget effect could originate from
higher errors in the GPR sensing for second-layer soil moisture, with respect
to the lower sensitivity of the two-layered model to the second layer dielectric
permittivity, as it was already explained in the numerical experiments. The
optimized first layer thickness (not shown) varies from 2 to 20 cm, although
most of the values are around 3 cm (71.3 % of the points show first layer
thickness values between 2 and 4 cm).

Soil moisture maps from the profile inversions show similar patterns than
the maps from the two-layered inversions, particularly when comparing first
layer values and values at the top of the profile (Fig. 3.8(a) and (c)), that
yield the same mean soil moisture (Table 6.2) and similar variograms (Fig.
3.9(a) and (c)). However, these two soil moisture variables are poorly corre-
lated (r = 0.365) and the RMSE (RMSE = 0.064) between these soil moisture
values indicates that some outliers are affecting this correlation. It is worth
pointing out that, whereas the overall patterns seem similar, particular points
may drastically deviate when comparing two-layered and profile model inver-
sions. These deviations may be simply explained by the different first layer
thicknesses that are retrieved in the two-layered and profile model inversions.
Soil moisture values at the bottom of the profile (Fig. 3.8(d)) are higher than
the second layer values (Fig. 3.8(b)) in the two-layered inversions, probably
because of the deeper characterization of the soil moisture with the profile in-
version. Again, these two variables are poorly correlated (r = 0.356) with a
large RMSE (RMSE = 0.077) between them. Although the nugget effect re-
mains important, the variogram for the soil moisture values at the bottom of
the profile (Fig. 3.9 (d)) shows a better spatial coherence than its counterpart
for the two-layered model.

From field visual observations, it is expected that soil moisture was in-
creasing with depth, with the presence of a shallow dry crust of soil. For
the two-layered model inversions results, first layer soil moisture values θ1(2L)
are smaller than second layer soil moisture values θ2(2L) in 265 (88.3%) points.
Moreover, comparing with one-layered model inversions, the condition θ1(2L) <
θ(1L) < θ2(2L), where θ(1L) is the value retrieved by the one-layered inver-
sion, is observed in 204 (68.0%) points. Regarding the profile model inversions,
top soil moisture values θ1(profile) are smaller than bottom soil moisture val-
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Table 3.2: Statistics of GPR-derived soil moisture from the one-, two-layered and pro-
file inversions for the 300 selected points. The mean (µ) and the standard
deviation (σ) of soil moisture and three variogram parameters (Nugget
effect, Sill and Range) are presented.

µ σ Nug. effect Sill Range [m]
1-Layered θ 0.074 0.031 2.45e-4 7.55e-4 24.6

2-Layered θ1 0.030 0.034 4.61e-4 7.21e-4 15.9
θ2 0.100 0.056 2.62e-3 4.90e-4 10.5

Profile θ1 0.030 0.032 7.90e-4 2.35e-4 12.8
θ2 0.124 0.071 2.92e-3 2.20e-3 11.8

ues θ2(profile) in 280 (93.3%) points, while the condition θ1(profile)< θ(1L) <
θ2(profile) is observed in 221 (73.7%) points. The profile coherence is therefore
more widely observed with the profile model than with the two-layered model
inversions.

Regarding these 300 points only, the one-layered model inversions lead to
intermediate values between surface and subsurface soil moisture values (Table
6.2). The pattern of the one-layered soil moisture (see Fig. 3.6) seems more
spatially coherent, with a corresponding smaller nugget effect, which is two to
three times smaller than the nugget effect observed for θ1 and ten times smaller
than the nugget effect observed for θ2. This larger nugget effect with the two-
layered and profile model inversions may originate: 1) from the fact that the
first layer thickness is actually varying from point to point and; 2) from inverse
modeling difficulties in these complex models.

Comparison of soil moisture profile between inversion models

Figure 3.10 presents soil moisture profiles retrieved from the two-layered and
profile inversions and a unique soil moisture value retrieved from the one-layered
inversion, for two GPR measured points. Both inversions with the two-layered
and profile models at these two points show an increase of the soil moisture with
depth. The top and bottom soil moisture values from the continuous profile
inversions are very close, respectively, to the first and second layer soil moisture
values from the two-layered inversions. In Fig. 3.10(b), the continuous profile
inversion leads to an abrupt soil moisture profile sharply following the discon-
tinuous two-layered dielectric profile. It is worth mentioning that a majority of
measured points shows a similar behavior, with soil moisture profiles that are
identical between two-layered and profile inversions.

The abrupt soil moisture profiles retrieved by the profile inversion could
originate from a lack of resolution of the GPR. Considering a dielectric permit-
tivity of 5.5 (i.e., corresponding to the first layer soil moisture of 0.103), the
GPR resolution at the maximal frequency of 1600 MHz is equal to 0.020 m.
Thus, inversions may be insensitive to continuous variations occurring within
a very thin layer. This can also indicate real abrupt soil moisture profile condi-
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Figure 3.9: Variograms for soil moisture computed on the 300 selected points for
the first layer (a) and the second layer (b) from the two-layered model
inversions and for the top (c) and the bottom (d) from the profile model
inversions. Exponential models are fitted for all variograms. The total
variance is indicated by the horizontal dashed line.
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Figure 3.10: Soil moisture profiles retrieved from the two-layered inversion and the
model inversion and unique soil moisture value retrieved from the one-
layered model inversion for two GPR measured points ((a) and (b)).

tions, resulting from a physical decoupling (strong pressure head gradient due
to surface evaporation) of the soil water between the soil surface and subsurface.

Comparison of interfaces depth retrieval between two-layered and
profile inversions

For the two points depicted in Fig. 3.10, positions of the interfaces retrieved by
the two-layered model inversions correspond quite well to the positions of the
inflexion point of the continuous profile inversion, indicating that both models
retrieve the same depth where the soil moisture is supposed to increase rapidly.

However, for all the 300 selected points, two-layered and profile inversions
locate the interfaces at the same depth with a tolerance of ±4 mm for 144
(48.0%) points only, contrarily to the very good agreement that was observed
in the numerical experiments with the same tolerance (Fig. 3.3). This poorer
performance with some field data are to be attributed to the lowest maximum
frequency of the GPR signal (1600 MHz instead of 2000 MHz), to the mea-
surement noise arising with real data, and to model inadequacies with respect
to the actual conditions that may not be adequately modeled with either a
two-layered or a coherent soil moisture profile.

Comparison between measured and modeled Green’s functions

Figure 3.11 shows measured and modeled Green’s functions G↑
xx(ω) with the

one-layered model, the two-layered model and the profile model, in frequency
and time domains. The GPR measurement presented here corresponds to the
point whose inverted profiles are depicted in Fig. 3.10(b). Time domain rep-
resentation of the Green’s functions is achieved by applying an inverse Fourier
transform to the frequency domain signal. As frequency bandwidths are dif-
ferent between the one-layered model (200-800 MHz) and the two other model
(200-1600 MHz) inversions, the time domain representations must be separated.
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Figure 3.11: Measured and modeled Green’s functions in the frequency domain de-
picted in amplitude (a) and phase (b) and in time domain for the one-
layered model (c) and for the two others models (d). The one-layered
modeled Green’s function is defined on the frequency range from 200
to 800 MHz. Two-layered and profile modeled Green’s functions are
defined on the frequency range from 200 to 1600 MHz.
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In the frequency domain, discrepancies between measured and modeled sig-
nals appear very large, both in amplitude and in phase of the signal, especially
at high frequencies above 1200 MHz. A regular oscillation of the measured
signal with a small frequency period can be observed in the amplitude from
600 MHz, but this oscillation could not be modeled. This oscillation may cor-
respond actually to a far-field reflector situated in the subsurface, that the two-
layered or the profile models cannot reproduce because the maximum depth at
which a reflector can be found for these models is bounded at 0.25 m.

As the noise appears to increase with frequency, i.e., with small wavelengths,
this could also originate from surface soil roughness interferences, which pro-
duce scattering in the reflected signal. Nevertheless, such discrepancies between
measured and modeled signals are not observed in the time domain represen-
tation, both for one-layered (Fig. 3.11(c)) and two-layered or profile models
(Fig. 3.11(d)). The misfits between the measured and the modeled time do-
main GPR signals were assessed by the RMSE between these two signals in
the 5-20 ns time window. The case depicted in Fig. 3.11(d) exhibits a RMSE
of 0.175 and 0.186 for the two-layered and the profile modeled signals, respec-
tively. The mean of the RMSE for the 300 points are 0.160 and 0.203, for the
two-layered and the profile modeled signals, respectively. Similar agreements
between measured and modeled GPR signals in the time domain can thus be
observed for other points. Even though the inversion is performed in the fre-
quency domain, the good agreement between measured and modeled signals
in the time domain indicates that the models used for simulating the Green’s
functions can adequately reproduce the GPR signal in the soil up to 0.25 m in
depth.

As the first layer thickness that is to be retrieved is small, it corresponds
in the frequency domain to a large oscillation, whose period is covering around
600 MHz (e.g., local maxima of the amplitude in the frequency domain can be
observed around 800 and 1400 MHz for the two-layered modeled signal). This
oscillation indicates the presence of vertically-varying soil moisture, that can
thus be detected owing to the large frequency bandwidth of the data. As a
result, a large frequency bandwidth (i.e., 1400 MHz) is required to model such
small layers or profiles with two-layered and profile models. The use of these
models on a limited frequency bandwidth as the one-layered model inversion
would hamper the retrieval of the layering conditions.

In the time domain, the air-soil surface reflection peak is centered at 10.5 ns
and is highly visible in both Fig. 3.11 (c) and (d). The signals oscillations are
larger in Fig. 3.11 (c) than in Fig. 3.11 (d) because of the lowest frequencies
(200 to 800 MHz) used in the one-layered inversion. The second reflection peak,
i.e., between the two soil layers, can be detected around 12 ns. It remarkably
well corresponds to the travel time in the first layer computed knowing the
inverted parameters of the first layer with the two-layered model. For this
point, the first layer thickness being around 0.1 m and the permittivity around
5 (see Fig. 3.10 (b)), the travel time in the first layer is equal to 1.5 ns, which
is corresponding to the position in time after the surface reflection peak.
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3.6.3 Error sources in field acquisition

In this section, we discuss the sources of errors that are affecting the soil mois-
ture values from the GPR acquisitions in field conditions. In laboratory condi-
tions, with a critical two-layered medium, Minet et al. (2010a) (chapter 2) found
a RMSE of about 0.02 in terms of volumetric water content when comparing
laboratory-measured soil water content and GPR-inverted dielectric permit-
tivities using a similar GPR setup. In field conditions, using the same GPR
antenna and setup, Jadoon et al. (2010a) obtained a RMSE of 0.025 in terms
of volumetric water content between TDR and GPR estimates.

Potential error sources in field conditions are model inadequacies and the use
of the petrophysical relationship to translate the permittivities into soil mois-
ture. Model inadequacies refer to the mismatch between the real soil structure
and the way it is represented in the electromagnetic model. In this study, the
soil is modeled as a multilayered medium of homogeneous soil layers. Lateral
variability in the soil properties within the antenna footprint may therefore
lead to a disagreement between the inverted and the footprint-averaged dielec-
tric permittivities. The non-optimization of the electrical conductivity and the
problem of soil roughness are other model inadequacies.

Soil electrical conductivity

In this chapter, the electrical conductivity was not optimized in order to reduce
the inversion complexity and because it is assumed that the electromagnetic
model is mostly insensitive to the electrical conductivity. Nevertheless, inver-
sions with the optimization of the electrical conductivity were tested for the
one-layered model only in order to evaluate the effect of neglecting the electrical
conductivity optimization on the dielectric permittivity estimation.

Compared to the initial inversions, the dielectric permittivities from the
inversions optimizing the electrical conductivity were slightly underestimated
with a mean difference of 0.536 and a RMSE of 0.695 in terms of permittivity,
corresponding to a water content difference of about 0.01 or 0.015, whereas the
overall pattern of soil moisture remained unchanged. Therefore, neglecting the
electrical conductivity in the optimization did not significantly impact on the
permittivity estimation for the one-layered model. Similar impacts are to be
expected for the two-layered and the profile model inversions.

Soil roughness

Soil roughness may affect the GPR signal for roughness heights larger than
the tenth of the radar wavelength. At the minimal frequency of 200 MHz and
considering the dielectric permittivities of the one-layered inversion, 91 % of
the points are characterized by a wavelength larger than 50 cm, corresponding
to an amplitude roughness threshold of 5 cm. However, considering larger
frequencies, the free space wavelength of the radar waves is diminishing and
roughness may affect the surface reflection by scattering. The effect of soil
roughness on the GPR signal with increasing frequencies may be observed in
Fig. 3.11(a), mainly above 800 MHz.
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The effect of soil surface roughness on the GPR signal using a similar GPR
setup was investigated in laboratory conditions in Lambot et al. (2006a). In
that study, GPR signals were acquired in the 1-3 GHz frequency range. The
largest roughness that was set had a standard deviation of 0.72 cm and an
average maximal amplitude of 3.8 cm. There was a very slight effect of the
roughness on the GPR signals in the 1-1.5 GHz frequency range. Regarding the
GPR inversion, there was an overestimation of the GPR-derived permittivities
of about 1 (in terms of absolute value) for an average maximal amplitude of
one quarter the wavelength. Furthermore, the errors in the inverted parameters
seemed to increase regularly with the roughness, so it may be expected that,
to some extent, the response of the GPR inversion to larger roughnesses is
proportional.

In our case, the field roughness is expected to be larger than the roughness
investigated in that study (up to five times larger). However, the frequencies
used are much lower than the ones considered in that study (0.2-0.8 GHz for
the one-layered inversions instead of 1-3 GHz). Still, from that laboratory
experiment results, we can expect an error of 1 in terms of absolute permittivity
(that is, about 0.02 in terms of soil moisture) for roughness equal to one quarter
the wavelength, which may be the most widely encountered situation during
the field acquisition.

Use of the petrophysical relationship

In this chapter, the petrophysical relationship of Ledieu et al. (1986) (see
Eq.(1.17)) is used to translate the GPR-derived dielectric permittivity into
volumetric soil moisture. The use of another petrophysical relationship may
however lead to different soil moisture results. A review on the use of numer-
ous petrophysical relationships for linking GPR-derived permittivity and soil
moisture can be found in Steelman and Endres (2010). In that study, using
seven different Topp’s like empirical relationships (i.e., with different parame-
terizations), the RMSE between GPR-derived permittivities and measured soil
moisture ranged from 0.048 to 0.080 in terms of absolute soil moisture. The
change in soil moisture caused by using different petrophysical relationships
was thus around 0.03, which is lower than the smallest RMSE compared to
soil sampling measurements. The error in soil moisture due to the petrophys-
ical relationship choice can therefore be expected to be lower than the error
when fitting a petrophysical model on field data. More complex models such
as volumetric mixing formulae (e.g., the Complex Refractive Index) may re-
duce fitting errors, but they require highly spatially-variable field data, such as
porosity and textural information, which is beyond the scope of this study. It
is worth noting that the petrophysical relationship is actually expected to vary
within a field because of soil properties variability.

In order to evaluate the influence of the choice of the petrophysical rela-
tionship, the differences in soil moisture estimated from the Ledieu relationship
and the widely-used relationship of Topp et al. (1980) were computed and ap-
peared negligible regarding other sources of errors in field conditions. The
mean error and the root mean square error in volumetric soil moisture were
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equal to 0.0124 and 0.0133 m3m−3, respectively, with an overestimation for
the Ledieu relationship. Nevertheless, this is not meaning that the errors due
to the petrophysical transformation are negligible per se, but merely that the
choice of another spatially-constant petrophysical relationship does not have a
large impact on the soil moisture patterns presented in this study.

3.7 Conclusions

We analyzed GPR data inversion strategies using three models, i.e., a one-
layered, a two-layered and a continuously-variable profile model for soil mois-
ture retrieval in the field facing non-uniform conditions of soil moisture with
depth. Numerical experiments showed that two-layered inversions permit to
retrieve coherent soil moisture profiles, especially for the depth of the interface
and for surface soil moisture, although more uncertainties were attributed to
the lower layer soil moisture, because of the smoothly varying interface.

A high-resolution GPR survey, including 3741 records over an 11-ha agri-
cultural field, was conducted and data were analyzed using the three inversion
strategies tested for the numerical experiments. One-layered inversions led to a
consistent surface soil moisture map, with a global soil moisture pattern mainly
explained by the topography whereas local patterns indicated a line effect pre-
sumably caused by the ploughing lines. Surface and subsurface soil moisture
maps from two-layered and profile inversions showed in general similar values
and coherent soil moisture profile with respect to terrain observations, that
is, soil moisture increases with depth. Further terrain evidences are needed
to fully validate the technique, although the ground-truthing of soil moisture
profiles remains complicated to perform at the field scale.

The off-ground GPR system appears as a promising proximal soil sensing
tool for high-resolution and soil moisture mapping at the field scale and for
soil moisture profile retrieval, when profiles conditions are encountered. It
could be used for the validation of microwave remote sensing data products by
ground-based surveys or the improvement of hydrological modeling at the field
or subcatchment scale, especially when it is relevant to differentiate between
the surface and subsurface soil moisture. Other naturally-layered media could
be investigated, such as frozen soil layers in freezing or thawing conditions. In
particular, the propagation of the GPR waves in frozen soils is alleviated and
larger characterization depths could be reached.
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Chapter 4

Validation of ground
penetrating radar
full-waveform inversion for
field scale soil moisture
mapping∗

4.1 Outline

Ground penetrating radar (GPR) is an efficient method for soil moisture map-
ping at the field scale, bridging the scale gap between small-scale invasive sen-
sors and large-scale remote sensing instruments. Nevertheless, commonly-used
GPR approaches for soil moisture characterization suffer from several limita-
tions and the determination of the uncertainties in GPR soil moisture sensing
has been poorly addressed. Herein, we used an advanced proximal GPRmethod
based on full-waveform inversion of ultra-wideband radar data for mapping soil
moisture and uncertainties in the soil moisture maps were evaluated by three
different methods. First, GPR-derived soil moisture uncertainties were com-
puted from the GPR data inversion, according to measurements and modeling
errors and to the sensitivity of the electromagnetic model to soil moisture.
Second, the repeatability of the soil moisture mapping was evaluated. Third,
GPR-derived soil moisture was compared with ground-truth measurements (soil
core sampling). The proposed GPR method appeared to be highly precise and
accurate, with spatially averaged GPR inversion uncertainty of 0.0039 m3m−3,
a repetition uncertainty of 0.0169 m3m−3 and an uncertainty of 0.0233 m3m−3

*This chapter is adapted from:
Minet, J.; Bogaert, P.; Vanclooster, M. & Lambot, S. Validation of ground penetrating radar
full-waveform inversion for field scale soil moisture mapping, in Journal of Hydrology, 2011,
submitted.
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when compared with ground-truth measurements. These uncertainties were
mapped and appeared to be related to some local model inadequacies and to
small-scale variability of soil moisture. The three methods permitted to dis-
criminate the sources of errors in the GPR sensing of soil moisture and the
interpolation was found to be the determinant source of the observed uncer-
tainties in a soil moisture mapping framework. The proposed GPR method was
proven to be largely reliable in terms of accuracy and precision and appeared
to be highly efficient for soil moisture mapping at the field scale.

4.2 Introduction

The importance of accurate soil moisture characterization at various tempo-
ral and spatial scales for hydrologic, climatic and agriculture applications has
boosted the development of different soil moisture sensing techniques. Among
the soil moisture measurements techniques, invasive sensors such as time do-
main reflectometry (TDR) and capacitance probes still suffer from their small
sampling volume (∼ dm) that can be hardly compared with the larger foot-
print of the remote sensing instrument (∼ 10 m), given the inherent high spatial
variability of soil moisture at the radar footprint scale. With an intermediate
support scale (∼ m), ground penetrating radar (GPR) for soil moisture sensing
may bridge the scale gap between invasive sensors and remote sensing instru-
ments. A review about recent GPR developments can be found in Slob et al.
(2010) while a complete review of GPR applications for soil moisture sensing
was given in Huisman et al. (2003).

Off-ground (i.e., proximal or air-launched) GPR systems offer particularly
promising perspectives in terms of proximal soil sensing, as antennas can be
rapidly moved over the soil surface when mounted on mobile platforms. Using
an approach similar to satellite remote sensing of soil moisture, the retrieval
of soil moisture using off-ground GPR is based on the measurement of the soil
surface reflection. Few studies have applied such an off-ground GPR approach
for soil moisture sensing in field conditions (Chanzy et al., 1996; Redman et al.,
2002; Serbin and Or, 2003, 2005). Based on a full-waveform inversion of the
GPR data and an accurate GPR system modeling, the off-ground GPR system
developed by Lambot et al. (2004b, 2006b) has shown excellent potentialities
for surface soil moisture sensing and mapping in field conditions (Weihermüller
et al., 2007; Lambot et al., 2008b; Jadoon et al., 2010a; Jonard et al., 2010;
Minet et al., 2011). The method relies on an accurate radar model that, in
particular, accounts for the antenna and antenna-soils interactions.

The validation of the GPR technology for soil moisture retrieval implies a
comprehensive assessment of the uncertainties in retrieval methods. The meth-
ods for assessing the uncertainties vary greatly in the literature, furthermore
depending on the GPR system. Most of the studies attempted to calibrate or
validate GPR measurements by comparing the GPR estimates with another
measurement technique assumed to be the ground-truth (mainly TDR or soil
sampling). Using the ground-wave technique, Huisman et al. (2001) compared
GPR and TDR estimates of soil moisture with gravimetric sampling measure-
ments and found similar root mean square error (RMSE) around 0.03 m3m−3.
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The sources of errors were also identified and the dominant error was attributed
to the petrophysical relationship. In controlled laboratory conditions, Lambot
et al. (2004b) found a very low RMSE of 0.0066 m3m−3 between water content
from sampling measurements and off-ground GPR using a linear approxima-
tion of the frequency-dependent effective electrical conductivity. However, in
field conditions and using the same off-ground GPR, Jadoon et al. (2010a)
found a RMSE of 0.025 m3m−3 between TDR and GPR estimates. The errors
were mainly attributed to the different support scales of the instruments with
respect to the small-scale within-field variability. As well as for remote sens-
ing, the different support scales and the large vertical and lateral variations
of soil moisture in real conditions may actually preclude the use of small-scale
ground-truthing to fully validate the GPR sensors for soil moisture.

In that respect, Jacob and Hermance (2004) assessed the repeatability of
GPR common mid-point (CMP) measurements using information from the
same CMP measurements and from several independent CMP measurements
performed at the same location. Using a cross-borehole GPR, Alumbaugh
et al. (2002) obtained a RMSE in volumetric soil moisture of 0.005 m3m−3

between repeated measurements. Recently, Bikowski et al. (2010) and Minet
et al. (2010b) (chapter assessed the posterior distributions of GPR-derived soil
properties by a Markov Chain Monte Carlo technique in GPR inversion frame-
works. This permitted to quantify confidence intervals around the inverted
parameters by accounting for errors associated with the GPR data processing.

4.3 Objectives

In this chapter, we propose to comprehensively evaluate the reliability of the
GPR system developed by Lambot et al. (2004b) and exposed in the previous
chapters for surface soil moisture mapping in field conditions and to quantify
the soil moisture uncertainties. A mobile proximal GPR, as used in chapter 3,
was conducted over a 2.5 ha agricultural field to map the soil moisture at high
spatial resolution. One-layered model inversions in the time domain focused
on the surface reflection only are considered in this chapter. We evaluated the
reliability of the GPR technique by three independent uncertainty assessment
methods. First, soil moisture uncertainties were derived from the inversion
of the GPR data for each point by the computation of modeling error and
soil moisture sensitivity. Second, three repetitions of the acquisition were per-
formed, in order to assess the repeatability of the technique, by comparison
with the spatial interpolation uncertainties. Third, soil moisture core sam-
pling were performed in order to compare the GPR estimates with reference
soil moisture measurements, allowing for the evaluation of the petrophysical
model. These three independent soil moisture uncertainty assessment methods
were compared and the different sources of errors were identified.
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4.4 Materials and Methods

4.4.1 Study site

            Elevation [m a.s.l.]

144 m

130 m

Soil sampling

Acquisition lines0 25 50 75 100

Meters

Figure 4.1: Study site of Burnia near Louvain-la-Neuve, Belgium. The GPR acqui-
sition was performed along 12 parallel lines. Soil core sampling was per-
formed in 20 locations.

We surveyed a 2.5-ha agricultural field situated in the loess belt area in
the center of Belgium (Long. 4◦41’8”E, Lat. 50◦35’59”N) (Fig. 4.1). The
soil type is uniformly a silt loam and elevation ranges from 130 to 144 m a.s.l.
According to the national Belgian soil database (Aardewerk, Van Orshoven and
Vandenbroucke (1993)), particles fraction are 4 % of sand, 82 % of silt and 14
% of clay for a soil sampling point situated at 500 m from the field. The GPR
acquisition took place at the end of the winter on the 18th of March 2010 in
moderately wet conditions. According to a rain gauge station situated 2 km
apart from the field, no rainfall were recorded for 11 days, but evaporation
was limited due to low temperatures (3 ◦C on average for the 11 previous
days). The field was covered by low-grown winter wheat (canopy height lesser
than 5 cm). Surface roughness was low (amplitude around 5 cm) as the field
was finely ploughed for wheat sowing four months before the campaign while
rainfalls have flattened the soil surface during the winter.
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4.4.2 Soil moisture sensing by ground penetrating radar

GPR setup

Figure 4.2: All-terrain vehicle holding the GPR system constituted of a horn antenna
linked to a vector network analyzer, the DGPS device, an EM38 sensor
and the PC. Picture taken on the 15th of March 2010 in a Burnia near
Louvain-la-Neuve, Belgium.

For field acquisition, the GPR system was mounted on an all-terrain vehicle
(ATV), as widely described in chapter 3, GPR platform. Figure 4.2 presents
a detailed picture of the ATV with the GPR system. The GPR setup was
identical as presented in chapter 3, that was, an ultra-wideband horn antenna
operating in the 200-2000 MHz was used. The ATV followed 12 parallel tracks
with a spacing of 5 m between the acquisition tracks (see Fig. 4.1) and a driving
speed of about 5 km/h. The GPR antenna footprint where soil moisture is
measured has a diameter of about 1.5 m and a sampling depth around 5 cm.
Three repetitions of the acquisition were performed within 3h, accounting in
total for 4600 measured points. The purpose of the repetitions were to evaluate
the repeatability of the overall GPR technique in field conditions, including the
interpolation effect, knowing that the measured points were not taken exactly
at the same locations for each repetition but at least were along the same
tracks.
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GPR data inversions for surface soil moisture

Surface soil moisture was retrieved using full-waveform inversion of GPR data
focused on the surface reflection. The raw measured GPR data in the frequency
domain were first filtered out from the antenna effects using the antenna trans-
fer functions in order to obtain the GPR response from the soil only, namely,
the Green’s function, as presented in Fig. 4.3 for an arbitrary GPR measure-
ment. In this chapter, the soil is considered as a homogeneous medium within
the GPR antenna footprint (i.e., a one-layered configuration as presented in
chapter 3). The frequency-dependent GPR data from field measurements were
selected from 200 to 800 MHz as the highest frequencies were affected by mea-
surements noise arising because of soil roughness scattering (Lambot et al.,
2006a) (see Fig. 4.3 (a)). In order to identify the shallow surface soil dielectric
permittivity, the GPR data were selected on a time window focused on the soil
surface reflection peak, after transformation of GPR data from the frequency
to the time domain using the inverse Fourier transform (i.e., the TIME L-M
scenario in chapter 2). The soil surface reflection peak can be easily detected
as it corresponds to the largest oscillation in the time domain GPR waveform,
as delineated in Fig. 4.3 (b). This time-windowing permitted to identify the
surface soil dielectric permittivity and correlated soil moisture from the shallow
soil layer (Lambot et al., 2006b; Minet et al., 2011).

Two parameters were optimized in the GPR inversion, namely, the surface
soil dielectric permittivity ε and the GPR antenna height h0. The inverse
problem was formulated in the least-squares sense and the objective function
was accordingly defined as:

ϕ(b) =

√
e(b)

T
e(b)

n− p
(4.1)

with n being the length of the time domain vector, p the number of parameters,
and the error function e(b) defined as the difference between the measured and
modeled Green’s functions in the time domain with:

e(b) = g↑∗
xx(t)− g↑

xx(b, t) (4.2)

where g↑∗
xx(t) and g↑

xx(b, t) being, respectively, the measured and modeled
Green’s functions in the time domain (n × 1) focused on the surface reflec-
tion, and b (p × 1) the parameter vector of the inverse problems (b = [ε, h0]).

The inverse problem thus consists of finding the minimum of this objec-
tive function by optimizing the parameter values. Optimization was performed
using a local search algorithm (i.e., the Levenberg-Marquardt algorithm (Mar-
quardt, 1963)). The initial guess for the dielectric permittivity was arbitrarily
chosen as ε = 10 as this was a mean expected value for this parameter (corre-
sponding to a volumetric soil moisture θ ≈ 0.20 m3m−3). The initial guess for
the GPR antenna height h0 was computed for each measured Green’s function
g↑∗
xx(t) in the time domain using the arrival time of the soil surface reflection

peak.
For electrical conductivity lower than 0.01 S/m, Lambot et al. (2006b)

demonstrated that the electromagnetic model was insensitive to the electrical
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Figure 4.3: Measured and modeled Green’s function depicted in the frequency domain
in amplitude and phase (a) and in time domain (b). The time-window
corresponding to the surface reflection is delineated in (b).
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conductivity in a similar frequency range. Therefore, this parameter could be
neglected in the optimization and was set to zero in the electromagnetic model.
This assumption was nevertheless verified by performing inversions accounting
for the optimization of the electrical conductivity, i.e., with b = [ε, h0, σ]

We used two petrophysical models for relating GPR-derived dielectric per-
mittivity ε to volumetric soil moisture values θ. The first model was the widely-
used relationship of Topp et al. (1980) with the classical parameterization (Eq.
(1.16)). The Topp’s relationship was used to translate the permittivity re-
trieved by the GPR data inversions into soil moisture. However, the second
model, i.e., the model of Ledieu et al. (1986), was used for fitting the GPR-
derived permittivity and volumetric soil moisture from soil sampling measure-
ments (Eq. (1.17)). This model assumes a linear relationship between

√
ε and

θ and appeared to be more robust for fitting the petrophysical relationship over
a limited range of soil moisture conditions in this study.

Soil moisture interpolation

Soil moisture maps were produced by the interpolation of point measurements
using ordinary kriging. To deal with the uneven disposition of the points in
space (i.e., globally a 2 m spacing along the acquisition line and a 5 m spacing
between lines), a rectangular neighborhood window was chosen such that the
same numbers of points were taken in the perpendicular and parallel direction
with respect to the acquisition lines direction. This permitted to prevent acqui-
sition line effects to appear in the interpolated maps. Unidirectional variograms
estimates were computed along (parallel) and perpendicular to the acquisition
lines with a class distance from 0 to 150 m and from 0 to 60 m by a step of 5
m for the parallel and perpendicular variograms, respectively, according to the
dimensions of the field. The parallel variogram was used for interpolating the
point-data after fitting an exponential model accounting for a nugget effect,
because this variogram reflects the natural spatial correlation of soil moisture
independently of the line effect. The exponential model appeared to be the
best model for fitting the parallel variograms estimates. Interpolated soil mois-
ture values were computed as linear combinations of the values of neighboring
points according to the ordinary kriging method.

4.4.3 Uncertainties assessment

Each of the previously exposed steps (i.e., GPR measurements, inversions and
interpolation) introduces uncertainties in the final soil moisture maps. In this
study, we assess the soil moisture uncertainties by three independent ways:

1. by computing GPR inversion uncertainties according to the modeling
error and the model sensitivity to soil moisture;

2. by repeating the acquisition for assessing the repeatability of the sensing
and mapping of soil moisture;

3. by comparing with ground-truth measurements of soil moisture (soil core
sampling).



4.4. Materials and Methods 93

Inversion uncertainties

The GPR data inversion consists in finding the optimal set of parameter values
that minimizes the objective function (Eq. (4.1)). The uncertainties of inverted
parameters can be quantified from the value of the objective function at its min-
imum (measurement and modeling errors) and from its curvature around the
minimum (model sensitivity), accounting for GPR measurement and modeling
errors. According to Kool and Parker (1988), inverted dielectric permittivity
uncertainty σε,GPR were determined by the square root of the diagonal element
of the parameter variance-covariance matrix C (p × p) corresponding to the
dielectric permittivity:

σε,GPR =
√
Cε (4.3)

with the matrix C being given by:

C =
e∗Te∗

n− p
(JTJ)−1 (4.4)

where J is the Jacobian (or sensitivity) matrix (n × p) and e∗ = e(b∗), the
error vector at the minimum of the objective function (see Eq. (4.2)). The
elements (i,j) of the Jacobian matrix are the partial derivatives of the error
function e(b) with respect to the optimized parameters values b∗ for each data
i and parameter j with:

Ji,j =
δei
δb∗j

(4.5)

The Jacobian matrix thus reflects the way the model is sensitive to a small pa-
rameter change. In practice, the partial derivatives δei

δb∗j
of the Jacobian matrix

were approximated by finite differences, assuming a change in the parameter
value of 1 %. The uncertainty in dielectric permittivity σε,GPR was translated
in uncertainty in soil moisture σθ,GPR using propagation of error theory:

σθ,GPR =
δθ(ε)

δε
σε,GPR (4.6)

where θ(ε) is the relationship of Topp et al. (1980) (Eq.(1.16)).
The parameter uncertainty can be seen as the combination of two con-

tributions, that are the modeling error and the parameter insensitivity. The
modeling error (or error of fit) is the value of the objective function at its min-
imum, i.e., the value of the objective function for the optimized parameters
(ϕ(b∗)). The parameter sensitivity is related to the Jacobian matrix, as it ex-
presses the curvature of the objective function in the vicinity of the minimum
for a small change in the optimized parameter value. Therefore, the parameter
uncertainty is large for a high modeling error and a low parameter sensitivity.

This method assumes that the model is linear in its parameters in the
vicinity of the minimum and that measurement errors are normally distributed
and independent of time and space. Although the electromagnetic model is
not linear over the full physically-sound parameter range, this assumption may
be reasonable when considering a small parameter range. This assumption
was successfully verified by performing Markov-Chain Monte-Carlo sampling
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of the parameter space around the minimum of the objective function using
the Metropolis-Hastings algorithm implemented in the differential evolution
adaptive metropolis (DREAM) algorithm (Vrugt et al., 2009). For nonlinear
problems, this algorithm can efficiently draw the complete posterior parameter
distributions.

Repetition uncertainties

The three repetitions were compared one by one by mapping the difference
of the interpolated soil moisture values ∆θ. The comparison had to be done
based on interpolated values because the GPR measurements could not be
taken strictly at the same locations, although the same acquisition tracks were
followed for each repetition. The global repetition error was computed as the
root mean square of the differences between the repetitions (RMSErep).

Moreover, in order to truly compare the repetitions, the effect of the in-
terpolation (kriging) was taken into account for comparing the maps of the
difference between these repetitions. If the soil moisture is assumed as time-
invariant for all repetitions, the part of the repetition uncertainty that is due
to the interpolation of two datasets with different point locations can be as-
sessed by the variance of the difference in the interpolated values σ2

∆θ, which
was estimated in each point of the interpolated space x0 as:

σ2
∆θ(x0) = σ2

θ1(x0) + σ2
θ2(x0)− 2wT

θ1Kθ1,θ2wθ2 (4.7)

where σ2
θ1
(x0) and σ

2
θ2
(x0) are the variance of the kriging predictor for the first

and second repetitions, respectively, wθ1 and wθ2 are the weights of the kriging
predictor for the first and second repetitions (i.e., the solution of the kriging
system), respectively, and Kθ1,θ2 is the covariance matrix between the points
of the first and second repetitions. This variance σ2

∆θ is the uncertainty on the
predicted value given the fact that two sets of sampling locations are used for
estimating soil moisture at the same location x0. For each interpolated point,
this variance depends only on the relative locations of the measured points of
both repetitions, meaning that a null variance would be obtained if the points
of two repetitions were exactly located at the same locations.

A standardized difference of the interpolated soil moisture ∆θ∗ can be com-
puted by:

∆θ∗ =
∆θ√
σ2
∆θ

(4.8)

where ∆θ∗ is following the standard normal distribution (∼N(0,1)). By com-
puting this standardized variable, the significance of the observed difference in
interpolated soil moisture can easily be computed and errors can be compared
over space independently of the interpolation effect.

Comparison with soil sampling measurements

In order to validate the accuracy of the GPR soil moisture measurements, sur-
face soil moisture was independently measured by volumetric soil core sampling
in the top 5 cm at 20 regularly spaced locations (see Fig. 4.1). Soil samples
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were oven-dried at 105◦C for at least 48h and the dry and wet weights were
measured, in order to determine the volumetric moisture. The volumetric soil
moisture of the soil samples was then compared with the interpolated value
of the GPR-derived dielectric permittivity using the three repetitions for the
interpolation at the locations of the soil core sampling.

4.5 Results

4.5.1 Surface soil moisture maps

0 25 50 75 100
Meters

Volumetric 
soil moisture [m³/m³]

High : 0.3

Low : 0.15

18/03/2010 1)

18/03/2010 2)

18/03/2010 3)

 

 

 

Figure 4.4: Soil moisture maps for the three acquisitions. Topographic contour lines
with an interdistance of one meter are depicted in grey lines. The black
arrows indicate the location and the direction of the slope of the main
thalweg in the field.

Figure 4.4 presents the interpolated soil moisture maps from the three GPR
acquisitions. Soil moisture pattern was driven by topography, as the soil and
vegetation conditions were rather homogeneous. High soil moisture values were
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Table 4.1: Statistics of GPR-derived volumetric soil moisture [m3m−3] (non-
interpolated values)

Repetition µθ medianθ σθ θmin θmax

1 0.234 0.227 0.063 0.053 0.445
2 0.236 0.232 0.061 0.054 0.456
3 0.233 0.230 0.063 0.051 0.436

encountered in the lowest and highest elevated parts of the field, respectively, at
the right and left of the figure, where the field is actually quite flat. The center
of the thalweg, indicated with an arrow on the maps, appeared wetter than its
surroundings. The field-average soil moisture was equal to about 0.23 m3m−3

with a standard deviation of 0.06 m3m−3, with very similar values between the
three repetitions (see Table 4.1). When optimizing the electrical conductivity
in the GPR inversions, negligible impact was observed on the optimization of
the permittivity ε (mean absolute error of 0.059 in terms of ε comparing to
GPR inversions without the optimization of the electrical conductivity).
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Figure 4.5: Variogram for soil moisture computed along the acquisition lines for the
three repetitions. An exponential model is fitted on the variogram es-
timates. The sampling variance is indicated by the horizontal dashed
line.

The observed soil moisture exhibited a very similar spatial correlation be-
tween the three repetitions, so that a unique variogram was used for interpo-
lating the soil moisture point measurements (Fig. 4.5). An exponential model
was fitted over the variogram estimates (nugget = 1.60 10−3 (m3m−3)2, partial
sill = 1.80 10−3 (m3m−3)2, range = 77 m).
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4.5.2 Inversion uncertainties
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Figure 4.6: Maps of the interpolated modeling error ϕ(b∗). Topographic contour lines
with an interdistance of one meter are depicted in grey lines.

Inverted parameter uncertainties are affected by measurement and model-
ing errors and are decreasing with model sensitivity to the parameters (see Eq.
(4.4)). Figure 4.6 shows the maps of the interpolated modeling error for the
three repetitions. The modeling errors appeared to be spatially and tempo-
rally correlated. The spatial correlation was moderate, with nugget/sill ratios
of 0.66, 0.66 and 0.49, for the three repetitions, respectively. However, the co-
efficients of correlation between the three repetitions ranged from 0.81 to 0.87,
indicating large temporal correlations, as it could be expected from a visual
comparison of the three maps. In particular, a patch of the field, situated in
the middle left along the bottom limit of the field, was affected by a very high
modeling error compared to the rest of the field. Furthermore, the location
and the shape of the patch remained identical between the three repetitions.

Figure 4.7 presents the observed model sensitivity to the permittivity, i.e.,
the sum of the elements of the Jacobian matrix for the permittivity, as a func-
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Figure 4.7: Observed sensitivity of the electromagnetic model, expressed by the sum
of the elements of the Jacobian matrix for the permittivity, as a function
of inverted soil moisture.

tion of inverted soil moisture for the first repetition. The sensitivity of the
electromagnetic model to the dielectric permittivity was decreasing with in-
creasing soil moisture. It indicated that for high soil moisture, a large variation
of soil moisture results in a small variation of the model response. It is worth
mentioning that the sensitivity is presented here as a function of soil moisture,
instead of soil dielectric permittivity. Nevertheless, the relationship between
dielectric permittivities and model sensitivity appeared similar, although more
curved.

Figure 4.8 presents the maps of the interpolated soil moisture uncertainty
σθ,GPR for the three repetitions. The soil moisture uncertainties appeared very
small, with a mean equal to 0.0039 m3m−3 for the three repetitions. As well
as for the modeling error maps (Fig. 4.6), soil moisture uncertainties appeared
temporally and spatially correlated. The σθ,GPR pattern (Fig. 4.8) resulted
from the combination of the modeling errors (Fig. 4.6) and the soil moisture
sensitivity, which is inversely related to the soil moisture pattern (Fig. 4.4).
As the relationship between soil moisture and model sensitivity to the permit-
tivity is clearly defined (see Fig. 4.7), the soil moisture uncertainty maps is
inversely related with the soil moisture pattern, with a coefficient of correla-
tion of 0.403 between θ and σθ,GPR for the non-interpolated values. When
optimizing the electrical conductivity in the GPR inversions, the uncertainties
in ε were poorly affected (mean absolute error of 0.038 in terms of ε). The un-
certainties in electrical conductivity were however abnormally high with values
outside of the realistic physical range for soils, as a result of the poor sensitivity
of this parameter to the model in that frequency range and for low conductive
conditions.
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Figure 4.8: Maps of the soil moisture uncertainty σθ,GPR [m3m−3] computed using
Eqs (4.3) to (4.6). Topographic contour lines with an interdistance of one
meter are depicted in grey lines.
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The assumption of linearity of the electromagnetic model to its parameters
was asserted by performing Markov-Chain Monte-Carlo sampling of the pa-
rameter space. The standard deviations of the complete posterior distributions
of the optimized parameter and the uncertainties computed using the method
of Kool and Parker (1988) appeared remarkably similar (results not shown).
The use of a Markov-Chain Monte-Carlo sampling is therefore unnecessary,
knowing that it requires about 1000 times more computation time.

4.5.3 Repetition uncertainties

The interpolated soil moisture maps (Fig. 4.4) showed very similar patterns
when comparing the three repetitions, with coefficients of correlation of 0.87
between the first and second repetitions, 0.88 between the second and third
repetitions and 0.81 between the first and third repetitions. Figure 4.9 shows
the repetition uncertainty maps (i.e, the difference in interpolated soil moisture
of each repetition to each other ∆θ) between the three repetitions. The global
repetition errors RMSErep were found to be equal to 0.0164, 0.0156 and 0.0186
m3m−3 for the three maps, respectively. The repetition uncertainty patterns
were poorly spatially correlated, although some parts of the field exhibited
small patches of similar repetition uncertainties. Some similitude could be
observed with the modeling error maps (Fig. 4.6). In particular, the patch
of high modeling error in the middle left along the bottom limit of the field
corresponded here to larger repetition errors than the rest of the field.

A part of the observed differences ∆θ can be attributed to the effect of
the interpolation, knowing that different sets of measurements were used for
interpolating at same locations. The field-averaged deviations of the difference
between the repetitions σ∆θ computed by Eq. (4.7) were found to be equal
to 0.0143, 0.0141 and 0.0143 m3m−3 for the three maps shown in Fig. 4.9,
respectively, denoting that the interpolation effect accounted for a large part
in the observed discrepancies between repetitions. The zones delineated in Fig.
4.9 with black lines highlight the places where the standardized difference of
the interpolated soil moisture ∆θ∗ (see Eq. (4.8)) is outside of the range [-
2, 2], i.e., the zones where the two repetitions of the acquisition resulted in
different soil moisture estimates at 95 % of confidence level, independently of
the interpolation effect. These zones were rather small and appeared randomly
located in the field. Finally, it is worth noting that the difference between the
first and third repetition was larger than between the other repetitions, i.e., the
RMSErep1,3 was the largest and the zones of different soil moisture estimates
were the most extended. This could indicate a real change in soil moisture as
the elapsed time between the first and third repetitions was the largest (two
hours instead of one hour), although this could not be demonstrated.

4.5.4 Comparison with soil sampling measurements

Figure 4.10 presents the comparison between interpolated GPR-derived soil
dielectric permittivity εGPR using the three repetitions and volumetric soil
moisture θV from the soil sampling measurements. A simple petrophysical
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Figure 4.9: Maps of the repetition uncertainties for the three acquisitions. The repe-
tition uncertainty is computed as the difference between the interpolated
values of each repetitions. The black lines delineated the zones where
the two repetitions of the acquisition resulted in different soil moisture
estimates, at 95 % of confidence.
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Figure 4.10: Comparison between interpolated GPR-derived soil dielectric permittiv-
ity εGPR and volumetric sampling soil moisture θV .

(Ledieu et al., 1986) (Eq. (1.17)) was fitted over the data and the standard
relationship of Topp et al. (1980) (Eq. (1.16)) was also drawn for comparison.
There was a good agreement between the soil permittivity and moisture, with
a RMSEfit of 0.0233 m3m−3 when fitting the Ledieu’s model, as well as when
comparing with the Topp’s relationship (RMSETopp = 0.0289 m3m−3). The
Topp’s and fitted relationships were therefore in good agreement, except for
high soil moisture. When considering the three repetitions for interpolating
the GPR-derived permittivity separately, RMSEfit were equal to 0.0222, 0.0216
and 0.0259 m3m−3 for the three repetitions, respectively (Table 4.2).

4.6 Discussions

4.6.1 Inversion uncertainties

The GPR-derived soil moisture uncertainties thus resulted from the combina-
tion of the modeling error and the soil moisture sensitivity. The decreasing
model sensitivity with increasing soil moisture is related to the non-linearity of
the Fresnel reflection coefficient function with the soil dielectric permittivity for
an air/soil interface. The non-linearity of the petrophysical model relating the
soil permittivity to the soil moisture reduces the degree of this non-linearity,
but not to a sufficient extent. However, it is worth noting that for TDR and
GPR methods that are based on the determination of the travel time of the
wave propagation rather than on the surface reflection coefficient, the relation-
ship between the soil moisture and the travel time is linear, assuming a Ledieu’s
like petrophysical relationship (Herkelrath et al., 1991; Huisman et al., 2001).

Non-null modeling errors indicated model inadequacies, i.e., the soil differed
from the homogeneous medium it was supposed to be. The large spatial and
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temporal correlation and the similar patterns observed in the modeling error
maps (Fig. 4.6) and, to a lesser extent, in the other uncertainty maps (Fig. 4.8
and 4.9), denoted that model inadequacies were probably related to local soil
conditions, especially because modeling errors appeared to be spatially corre-
lated when considering adjacent acquisition tracks. The model inadequacies
caused a large modeling error (Fig. 4.6), that, in turn may impair the capacity
of the GPR to sense the same soil moisture at each repetition (Fig. 4.9). As the
errors appeared strongly dependent on local conditions rather than being ran-
domly distributed or time-dependent, this therefore discarded the hypothesis of
errors caused by a sensor drift, vibrations of the platform, or any measurement
problems that are not linked to local soil conditions.

High electrical conductivity, surface soil roughness and within-support het-
erogeneities were identified as the hypothetic model inadequacies and were
discussed below. First, highly conductive soils conditions may have impacted
on the retrieval of the dielectric permittivity in the GPR inversion if not well
accounted for (Giroux and Chouteau, 2010). Nevertheless, in our study, op-
timizing the electrical conductivity in the GPR inversions did not impact on
the retrieval of dielectric permittivities nor on the inversion uncertainties of
dielectric permittivities. The huge uncertainties in electrical conductivity de-
noted a complete insensitivity of this parameter to the electromagnetic model,
as already observed in Lambot et al. (2006b) for conductivity values lower than
0.01 S/m, using the same GPR system and a similar frequency bandwidth (i.e.,
100-900 MHz). As a result, GPR inversions neglecting the optimization of the
electrical conductivity were used in this study.

Second, large surface soil roughness may have impacted on the reflection
of the GPR wave by causing interferences. Using the same GPR setup, the
effect of surface roughness on the retrieval of the dielectric permittivity was
analyzed in laboratory in Lambot et al. (2006a) and widely discussed in case of
field acquisition in chapter 3. Owing to the relatively low-frequency range used
in the GPR inversion, surface soil roughness may significantly impact only for
roughness larger than 5 cm. From visual field observation, we can state that
such rough conditions were not widely encountered.

Lastly, lateral and vertical soil moisture heterogeneities within the GPR
antenna footprint, which is assumed to be an homogeneous medium, could
be an important cause of model inadequacy. The effect of vertically-varying
soil moisture was investigated through numerical and laboratory experiments in
chapter 2 (Minet et al., 2010a) and in field conditions in chapter 3 (Minet et al.,
2011). In the presence of a shallow soil layer of a different moisture content
than the sublayer, a RMSE of 0.05 m3m−3 in the soil moisture estimation
was obtained (Minet et al., 2010a, laboratory experiment). For small contrast
between the layers (< 0.05), the error was nevertheless negligible. The presence
of a vertically-varying soil moisture profile can be detected in measured Green’s
functions over a large frequency bandwidth. Nevertheless, in this study, such
conditions could not be revealed through an analysis of the Green’s functions,
as it could have done in chapter 3. The absence of observed profile conditions
in the GPR data could originate from a poorly developed soil moisture profile
(i.e., small contrast between surface and subsurface) or from a profile that is



104 Chapter 4. Validation of GPR for soil moisture mapping

too deep to be sensed, with respect to the relatively small penetration depth
of the GPR. In addition, no differences in the shape of the measured Green’s
functions could be observed when comparing GPR data from the zones where
low and high uncertainties were identified with the different methods. This did
not support the use of multi-layered medium inversions, as it would furthermore
increase the inversion uncertainties for the optimized parameters.

4.6.2 Repetition uncertainties

A large part of the repetition uncertainties was explained by interpolation ef-
fects, given that different point measurements were used for each repetition.
This could be related to the small-scale spatial variability of soil moisture and
the relatively large nugget effect observed in the variogram. It is worth men-
tioning that this variance of the difference increases with the spacing between
point measurements of two repetitions.

The residual repetition uncertainties that were not explained by the inter-
polation process may indicate either a real change in soil moisture or a different
sensing of soil moisture by the GPR. The slightly larger difference between the
first and third repetitions seemed to indicate a real change that could origi-
nate from surface evaporation or a slight soil compaction caused by the ATV,
although these processes could not be explicitly proved.

Using cross-boreholes GPR measurements, Alumbaugh et al. (2002) found
a repeatability error of 0.54 ns in the ground wave velocity, corresponding
to a soil moisture error of about 0.005 m3m−3. Errors were increasing with
soil moisture and were attributed to instrument instability. When comparing
repeated CMP surface measurements, Jacob and Hermance (2004) found a
precision of 0.7 ns in the two-way travel time. Huisman and Bouten (2003)
reached a repeatability of 0.003 m3m−3 when using single trace analysis of
GPR ground wave data for soil moisture determination. In these studies, no
uncertainties due to the interpolation and small-scale variability were taking
part, which are however determinant for the repetitions uncertainties in our
study.

4.6.3 Comparison with soil sampling measurements

The high accuracy of the GPR method for soil moisture sensing was established
from the comparison with soil sampling measurements. The use of the Topp’s
relationship was also validated. However, the small range of permittivity val-
ues did not permit to verify this agreement over the full physical range of soil
moisture. The observed discrepancies can be attributed to the different support
scales and depths of characterization of the techniques, with respect to the im-
portant small-scale variability of soil moisture. Spatially-varying soil properties
makes the use of a unique petrophysical model for the whole field questionable
as well. In addition, soil moisture values from the soil sampling points were
compared with interpolated dielectric permittivity, as both measurements were
not taken exactly at the same locations, at least in the same acquisition line.
Therefore, interpolation uncertainties can explain a large part of the observed
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discrepancies. Lastly, soil moisture values from sampling measurements can be
affected by measurements errors as well.

The comparison of the GPR estimates with soil sampling measurements or
other invasive measurements in field conditions is actually problematic because
of the different support scales of the techniques. Using the same off-ground
GPR in field conditions, Jadoon et al. (2010a) found a RMSE of 0.025 m3m−3

between TDR and GPR estimates, but a soil moisture variability of 0.02 to 0.07
m3m−3 was measured by TDR within each GPR footprint. Therefore, knowing
this important submetric variability, it is problematic to compare a soil core
sample (3 cm diameter) with the GPR antenna footprint (∼1.5 m diameter).
With respect to the depths of penetration, Jadoon et al. (2010a) found that
the GPR waves may sense the soil moisture up to 4 cm depth (which was close
to the sampling depth of the core (5 cm)) but it is worth noting that this depth
actually varies depending on the soil moisture itself.

Considering the whole field, the use of a unique petrophysical relationship
may be affected by some limitations as this relationship may depend on the
specific local soil conditions (e.g., soil texture, porosity). In addition, the use of
different petrophysical models, even when calibrated with field data, can result
in differences in terms of volumetric soil moisture up to 0.10 m3m−3 (Sam-
buelli, 2009; Steelman and Endres, 2010). Despite these important limitations,
the comparison with soil sampling measurements is still the only method for
quantifying the accuracy of the GPR method, in addition to its precision.
Nevertheless, larger variations of soil moisture from dry to wet states would be
required for a stronger calibration of the petrophysical relationship.

4.6.4 Comparison of the uncertainties

Table 4.2: Summary of the soil moisture uncertainties [m3m−3] determined by the
different methods

GPR inversion Comparison with
uncertainties (σθ,GPR) soil sampling (RMSEfit)

Repetition 1 0.00392 0.0222
Repetition 2 0.00398 0.0216
Repetition 3 0.00394 0.0259
All 0.0039 0.0233

Repetition Deviation of the
uncertainties (RMSErep) difference (σ∆θ)

Repetition 1 vs 2 0.0164 0.0143
Repetition 2 vs 3 0.0156 0.0141
Repetition 1 vs 3 0.0186 0.0143
All 0.0169 0.0142

In this section, we discuss the global soil moisture uncertainties quantified
by the different methods and averaged over the whole field (Table 4.2). The
two first uncertainties assessment methods, i.e., inversion and repetition uncer-
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tainties, evaluated the precision of the GPR technique while the comparison
with ground-truth of soil moisture also evaluated its accuracy. The lowest un-
certainties were the GPR inversion uncertainties σθ,GPR, which were derived
from GPR inversions only, i.e., without influence of the interpolation effects.
It is however unknown to what extent this represented the total uncertainty
associated with a GPR measurement.

The global repetition errors RMSErep could be assumed to result from the
combination of the point measurement uncertainty and the uncertainty associ-
ated with the interpolation. It can be noticed that, globally, the values of the
square of RMSErep appeared to be close to the sum of the mean GPR inversion
uncertainties σ2

θ,GPR and of the variance of the difference in the interpolated

values σ2
∆θ, this latter accounting for the major part of the repetition error.

Nevertheless, locally, the repetition uncertainty could not be seen as simply the
sum of σ2

θ,GPR and σ2
∆θ, as it can be verified by a close examination of Figs.

4.8 and 4.9. In addition, repetition uncertainties might be also influenced by a
real change of soil moisture, which could not be quantified given its expected
minor changes.

The largest uncertainty was found when comparing the interpolated GPR-
derived permittivity to the soil moisture sampling measurements (Fig. 4.10),
as this inherently combined the uncertainty from the GPR measurement and
inversion, the interpolation of soil moisture and the reliability of the petro-
physical relationship θ-ε. Nevertheless, these uncertainties remained weak as
compared to previous studies and with respect to the range of soil moisture
measured in the field (∼0.15 m3m−3).

The nugget effect, corresponding to a deviation of 0.0400 m3m−3, was as-
sumed to reflect the combined effect of the small-scale variability of soil mois-
ture and the measurement uncertainty. However, this nugget effect appeared to
be larger than the uncertainties in soil moisture determined in this study. This
is an important finding with respect to the sampling strategies when measuring
soil moisture with the proposed GPR method. It is believed that this nugget
effect may reflect the unrevealed spatial variability of soil moisture between two
measurements (i.e., with a spacing of 2 to 5 m). It is particularly encouraging
that the uncertainty in soil moisture measured by GPR appeared lower than
the soil moisture variability at the support and resolution scales of the GPR
acquisition.

4.7 Conclusions

In this chapter, we evaluated the uncertainties in surface soil moisture sensing
and mapping of a 2,5 ha agricultural field by full-waveform inversion of GPR
data in a comprehensive manner by three independent uncertainty assessment
methods.

1. The global uncertainty from the GPR inversion, that is, the point mea-
surement uncertainty, was very low, i.e, 0.0039 m3m−3 in terms of stan-
dard deviation. Locally, this uncertainty was large for high soil moisture
values (lower sensitivity) and for high modeling errors.
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2. The global repetition error was found to be equal to 0.0169 m3m−3 and
was largely attributed to the interpolation effect.

3. The accuracy of the GPR method was evaluated by the comparison with
soil sampling measurements (ground-truth) and resulted in a RMSE of
0.0233 m3m−3, mainly due to the different support scales of the tech-
niques.

The soil moisture sensing by the GPR system thus appeared to be very
precise, repeatable and in a good agreement with ground-truthing. The three
independent uncertainty assessment methods permitted to investigate the dif-
ferent sources of errors in soil moisture mapping and the interpolation appeared
to be an important source of uncertainty. Furthermore, the uncertainties were
mapped and local spots of high uncertainty were discussed. The temporal and
spatial correlation of the uncertainties seemed to indicate that a part of the
uncertainties originated from local model inadequacies, but these latter could
not be clearly identified nor accounted for. The evaluated GPR method for soil
moisture sensing and mapping shows very promising potentialities for mea-
suring the soil moisture at an intermediate scale between the remote sensing
platforms and invasive sensors.
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Chapter 5

Temporal stability of soil
moisture patterns
measured by a proximal
ground penetrating radar
in an agricultural field∗

5.1 Outline

We analyzed the temporal stability of spatiotemporal soil moisture patterns
acquired using a proximal ground penetrating radar in a 2.5 ha agricultural
field at five different dates. Accurate surface soil moisture estimates were re-
trieved using full-waveform inversion of ultra-wideband GPR data in the time
domain focused on soil surface reflection. The GPR system was mounted on a
mobile platform, allowing for real-time acquisition with a high resolution (2-5
meters). The spatiotemporal soil moisture patterns were in accordance with
meteorological data and soil moisture measurements from soil core sampling.
Observed soil moisture patterns could be mainly related to topography, denot-
ing the redistribution of surface water in the field. Time-stable areas showing
the field-average moisture could be revealed by two methods: 1) by the spatial
intersection of the zones showing the field-average and 2) by the computation
of the mean and variance of the relative differences of soil moisture to the field-
average. Intersection of areas showing the field-average within a tolerance of
0.02 m3m−3 covered 5 % of the field area, whereas locations where the mean
relative difference was below 0.02 m3m−3 extended up to 10 % of the field area.

*This chapter is adapted from:
Minet, J.; Vanclooster, M. & Lambot, S. Temporal stability of soil moisture patterns mea-
sured by a proximal ground penetrating radar in an agricultural field, in Water Resources
Research, 2011, to be submitted.
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Compared to point soil moisture measurements techniques, the proposed GPR
method allowed to acquire soil moisture patterns and investigate their tempo-
ral stability at an unprecedented spatial resolution. Future acquisitions over
a larger time period would permit to assert the robustness of the time-stable
areas.

5.2 Introduction

Following the huge development in soil moisture sensing techniques, soil mois-
ture patterns have been widely investigated in numerous studies at various spa-
tial and temporal scales. At the field scale, soil moisture patterns are mostly
controlled by topography, soil type and land cover, whereas climate influences
soil moisture patterns at much larger scales, i.e., for extents exceeding the
precipitation correlation length. Soil moisture patterns were related to topo-
graphic attributes in many studies (e.g., Hawley et al., 1983; Güntner et al.,
2004; Sørensen et al., 2006; Western et al., 1999). In that respect, soil mois-
ture appeared to be well explained by the so-called topographic wetness index
(TWI) that was developed by Beven and Kirkby (1979), especially in wet con-
ditions and in the presence of a steep topography. Soil type and land cover
heterogeneities were explaining soil moisture patterns particularly in semi-arid
regions (Castillo et al., 2003) and, not surprisingly, in case of flat topography
(Hupet et al., 2002). While topography tends to organize soil moisture spatial
variability in structured patterns at the field and catchment scales, soil type
and land cover are often local controls, leading to random patterns (Grayson
et al., 1997; Western et al., 1999).

The relationship between spatial average and variability (i.e., the standard
deviation) of soil moisture has been particularly studied for a wide variety of
soil types, topography and extent scales. Reviews about these relationships are
given in Famiglietti et al. (2008); Vereecken et al. (2007) and Western et al.
(2003). Knowing the spatial variability of soil moisture within a certain extent
permits to determine the minimal number of sampling needed to capture the
field-average or to determine the level of accuracy of a sampling scheme (Brocca
et al., 2007; Hupet et al., 2002). It could be also used for downscaling of large
scale remotely-sensed soil moisture estimates. It is generally assumed that this
relationship has a bell-curve shape (Western et al., 2003), that is, the spatial
variability of soil moisture increases from very dry to wet conditions, reaches
a maximal value at an intermediate soil moisture and then decreases again
with further wetting until saturation. The low soil moisture variability under
extreme states of dryness and wetness was explained by the bounded behavior
of the soil moisture at the wilting point and saturation conditions, respectively.
As soil moisture is bounded by these values, very dry and very wet conditions
result in more uniform soil moisture patterns. However, some studies perceived
only a part of this behavior, reporting an increase of soil moisture variability
with increasing soil moisture (De Lannoy et al., 2006; Famiglietti et al., 1998).

Vachaud et al. (1985) first introduced the concept of temporal stability
of soil moisture, stating that spatial patterns of soil moisture might be time-
invariant. The investigation of the temporal stability of soil moisture patterns
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has then received a specific attention in numerous experimental soil moisture
field studies (Jacobs et al., 2004; Grayson andWestern, 1998; Guber et al., 2008;
Hu et al., 2010). Although temporal stability studies have mainly focused on
the retrieval of time-stable locations showing the field-average, time-stability of
the whole soil moisture pattern is also deserving for many applications. Know-
ing the temporal stability of soil moisture patterns is useful to choose locations
for the installation of grounded sensors or for soil sampling measurements,
whether the time-stable locations exhibit field-average or extremes soil mois-
ture values. More generally, knowing the temporal stability of soil moisture
patterns can help for downscaling of large scale remotely-sensed soil moisture
data, inform about the high-resolution soil properties and support hydrological
modeling at the field scale. The concept of temporal stability implies that soil
moisture might be mostly locally determined by soil or topographic attributes
that are time-invariant. In that respect, Grayson and Western (1998) showed
that time-stable locations representing the field-average were located in mid-
slopes areas, which was further confirmed in the works of Brocca et al. (2009);
Jacobs et al. (2004); Mohanty and Skaggs (2001). On the other hand, soil prop-
erties showing time-stability appeared to be site-specific and no general rule
about soil properties that showed temporal stability could be drawn. Indeed,
while Jacobs et al. (2004) observed that sampling points with moderate or
moderately high clay content tended to have more temporal stability, Mohanty
and Skaggs (2001) noticed that sandy loams showed more temporal stability
than silt loams. The importance of influencing factors such as topography, soil
properties and other factors for spatial patterns and temporal stability of soil
moisture is actually dependent on the relative dominance of these factors for a
particular landscape.

So far, the majority of the studies that have investigated the temporal sta-
bility of soil moisture patterns were built on soil moisture datasets acquired
with small-scale invasive sensors (e.g., time domain reflectometry (TDR), ca-
pacitance probes, neutron probes or gravimetric sampling). These datasets are
characterized by point measurements (small support scale) separated by large
spacings over relatively small extents (field scale). On the other hand, remote
sensing can provide soil moisture data over large extents but with a spatial
resolution that is too large for field-scale studies. Proximal soil moisture sens-
ing techniques, such as ground penetrating radar (GPR), permit to perform
high spatial resolution measurements at the field scale and to bridge the scale
gap in terms of spatial resolution and support scale between invasive and re-
mote sensors. In particular, the off-ground GPR developed by Lambot et al.
(2004b, 2006b) has shown great potential for rapid soil moisture sensing and
was applied for proximal soil moisture mapping in Weihermüller et al. (2007);
Lambot et al. (2008b); Jadoon et al. (2010a); Jonard et al. (2010) and Minet
et al. (2011, submitted).

5.3 Objectives

In this study, we propose to use a large soil moisture dataset acquired with a
proximal GPR to investigate the spatiotemporal patterns of surface soil mois-
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ture and their temporal stability. Soil moisture was acquired in a 2.5 ha bare
field at five dates in spring 2010 in Belgium. Soil moisture patterns and their
evolution over time were investigated through a geostatistical analysis. The
temporal stability of the field-average moisture values was then analyzed by two
methods: 1) by the spatial intersection of the zones showing the field-average
and 2) by the computation of indicators based on the relative differences of soil
moisture to the spatial-average (Vachaud et al., 1985).

5.4 Materials and Methods

5.4.1 Study site

Slope [%]

High : 12

Low : 0
0 25 50 75 100

Meters

Figure 5.1: Study site of Burnia near Louvain-la-Neuve, Belgium. The slope is ex-
pressed in percents.

We surveyed a 2.5-ha agricultural field situated in the loess belt area in the
center of Belgium (Long. 4◦41’8”E, Lat. 50◦35’59”N) (see chapter 4, Fig. 4.1).
Figure 5.1 presents a map of the slope for that field. The GPR acquisitions
were performed at the end of the winter at five different dates from 15 March
to 06 April 2010. The field was covered by low-grown winter wheat (canopy
height less than 5 cm) and surface roughness was low (amplitude around 5 cm).
Meteorological data such as air temperature and precipitation were recorded



5.4. Materials and Methods 113

with an hourly time step in a meteorological station situated at 2 km from
the field (Fig. 5.2). Dry conditions characterized the first three dates of the
acquisition while the two last surveys endured large antecedent rainfalls (Table
5.1).
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Figure 5.2: Air temperature and precipitation depicted from the 04 March to 10 April
2010.

5.4.2 Soil moisture mapping by ground penetrating radar

Surface soil moisture patterns were retrieved by full-waveform inversion of GPR
data, as presented in chapter 4. For field acquisition, we rely on a ultra-
wideband radar antenna operating between 200 and 2000 MHz and the lowest
frequencies (under 800 MHz) only were used as noise arose at higher frequencies
due to soil roughness. We focused on surface soil moisture retrieval by select-
ing the surface reflection peak of the GPR wave in the time-domain (Lambot
et al., 2006b) (see Fig. 4.3). This resulted in a shallow depth of character-
ization around 4 cm (Jadoon et al., 2010a). GPR-derived surface dielectric
permittivities ε were translated into volumetric soil moisture values θ using
the relationship of Topp et al. (1980) (Eq. (1.16)). Very high soil permittivity
values resulting in very large soil moisture values were found in particularly wet
conditions in the last two surveys. These values were truncated at a maximum
soil moisture of 0.5 m3m−3 which is believed to be the soil moisture at satura-
tion. These high values could originate from model inadequacy with respect to
the one-layered configuration, i.e., if the soil is vertically-layered, constructive
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Table 5.1: Presentation of the five GPR acquisitions

Date 10-days antecedent rainfalls [mm] N◦ of points Duration
15/03/2010 6.3 1496 1h09’
18/03/2010 0.1 1252 56’
24/03/2010 5.1 1429 1h01’
30/03/2010 29.8 1227 1h32’
06/04/2010 38.4 1759 51’

interferences may occur and affect the measured GPR data. They could also
coming from measurements over areas partly covered by ponding water.

Field acquisitions were performed by mounting the GPR system on an all-
terrain vehicle (ATV) as presented in chapter 3. For each date, the ATV
followed 12 parallel tracks with a spacing of 5 m between the acquisition tracks
(see Fig. 4.1), whereas measurements were taken with a spacing of 2 m along
the acquisition lines. Table 5.1 indicates the number of points and the du-
ration of the acquisition for each survey. Along an acquisition line, nearly
continuous soil moisture measurements were acquired owing to the proximity
of the support and resolution scale. Therefore, this proximal GPR method
has an intermediate coverage between points measurements and continuous re-
mote sensing acquisition. Soil moisture maps were produced by interpolation
of point measurements using ordinary kriging with a rectangular neighboring
window in order to deal with the uneven disposition of the points in space.
The reader is referred to the previous chapter (chapter 4) for a comprehensive
explanation of the field acquisition, GPR data inversions and interpolation of
point-measurements. The reliability of the GPR system was also evaluated in
the previous chapter.

In order to further validate the accuracy of the GPR soil moisture measure-
ments, surface soil moisture was independently measured by volumetric soil
core sampling in the top 5 cm at 20 regularly spaced locations (see Fig. 4.1).
Soil samples were oven-dried at 105◦C for at least 48h and the dry and wet
weights were measured, in order to determine the volumetric moisture.

5.4.3 Temporal stability of soil moisture pattern identifi-
cation

In this chapter, the temporal stability of the spatial average of soil moisture
patterns was analyzed by two methods. First, time-stable locations showing the
field-average were revealed by the intersection of the zones where soil moisture
is equal to the field-average within a tolerance of ±0.02 m3m−3 for the five
dates. This threshold was chosen as it approximately corresponds to the soil
moisture uncertainty with interpolated data (see chapter 4). This method was
the most intuitive, but it be might affected by a single date showing a different
pattern. Even though, given the relatively-small time range on which soil
moisture patterns were compared, it was expected that intersection of zones
showing field-average between the five dates would exist.
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Secondly, temporal stability were revealed by the computation of the mean
and standard deviation over time of the relative differences in soil moisture, δi
and σ(δ)i, respectively, which were firstly introduced by Vachaud et al. (1985)
and widely used afterward (e.g., Brocca et al., 2009; Jacobs et al., 2004; Hu
et al., 2010; Mohanty and Skaggs, 2001). These indicators permit, for each
location i, to identify the relative difference in soil moisture with the spatial
average over time (t) and are given by:

δi =
1

nt

nt∑
t=1

θi,t − θt

θt
(5.1)

σ(δ)i =

√√√√ 1

nt − 1

nt∑
t=1

(
θi,t − θt

θt
− δi

)2

(5.2)

where θt being the spatial average of soil moisture θi,t computed as:

θt =
1

ni

ni∑
i=1

θi,t (5.3)

The time-averaged mean of the relative difference δi indicates, for each
location, the bias in soil moisture with respect to the spatial average, i.e.,
whether the location is drier (δi < 0) or wetter (δi > 0) on average over time.
Locations that show on average the spatial average of the field have δi equal to
zero. The standard deviation of the relative difference σ(δ)i gives the degree
of variation of the relative difference, that is, time-stable locations have low
σ(δ)i. For identifying the most time-stable locations for the spatial average,
we may combine these indicators in the root mean square error of the relative
differences RMSEδi (Jacobs et al., 2004) which is given by:

RMSEδi =

√
δ
2

i + σ(δ)2i (5.4)

The locations showing a high temporal stability for the field-average are
thus given by the lowest RMSEδi values. This second method for evaluating the
temporal stability of the spatial average integrated the contribution of the five
dates in time-averaged indicators. It is worth noting that these indicators were
computed based on interpolated values, as the locations of point measurements
slightly differed between the five dates.

5.5 Soil moisture patterns

5.5.1 Geostatistical analysis

Figure 5.3 shows the maps of the GPR-derived soil moisture point-measurements
for the five surveys. Soil moisture values are depicted by colored circles with a
diameter corresponding to the estimated GPR antenna footprint. The coverage
rate of the GPR acquisition was estimated at around 9 % of the field area for
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Figure 5.3: GPR-derived soil moisture point-measurements depicted with the same
color scale for the five GPR surveys.
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Table 5.2: Statistics of GPR-derived volumetric soil moisture expressed in [m3m−3]
and variograms parameters (Nugget [m3m−3]2, Sill [m3m−3]2 and Range
[m])

Date µθGPR medianθGPR σθGPR

15/03/2010 0.228 0.222 0.067
18/03/2010 0.234 0.227 0.063
24/03/2010 0.240 0.236 0.064
30/03/2010 0.295 0.284 0.114
06/04/2010 0.298 0.296 0.115

Date Nugget Sill Nugget/Sill [%] Range
15/03/2010 0.0016 0.0039 40 62
18/03/2010 0.0016 0.0034 47 77
24/03/2010 0.0014 0.0036 39 70
30/03/2010 0.0031 0.0115 26 107
06/04/2010 0.0026 0.0113 23 109

this configuration of acquisition, assuming a circular antenna footprint of 1.5
m in diameter. Soil moisture data acquired for the first three dates showed
similar patterns and drier conditions than the last two ones (see Table 5.2),
which was related to antecedent rainfalls (see Fig. 5.2).

The parallel variograms (Fig. 5.4) were also similar for the first three dates,
with respect to nugget and sill variances and ranges (Table 5.2). The soil mois-
ture patterns from the first three dates showed stationarity within the field
extent, with a range around 70 m. The last two dates, characterized by wetter
conditions, showed different soil moisture patterns with a sharp amplification
in nugget and sill variances, as observed in Western et al. (1998) in wet con-
ditions. There was also a moderate increase in the variogram range (> 100
m) for the last two dates. However, in the Tarrawarra catchment, Western
et al. (1998) observed a decrease in the range with wet conditions, which was
attributed to the reorganization of soil moisture patterns according to the to-
pography. In our case, a visual inspection of the maps shows that both dry
and wet conditions were still characterized by soil moisture patterns that could
be partly related to the topography. Actually, the observed increase in the
ranges with wet conditions may be not significant when closely inspecting the
last two variograms, as similar ranges as in the dry conditions could be fitted
on the variogram estimates. Lastly, we observed a decrease in the Nugget/Sill
ratio with wet conditions (Table 5.2), denoting the larger soil moisture pattern
organization in wet conditions (Grayson et al., 1997).

All the fitted variograms showed large nugget variances, especially in wet
conditions. It is usually assumed that nugget effect may be caused by un-
revealed small-scale variability due to insufficient sampling resolution or by
point-measurement uncertainties. The uncertainties in the GPR sensing of soil
moisture were notably evaluated in the same field in chapter 4 (Minet et al.,
submitted) using three repetitions of the acquisition within three hours. The
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Figure 5.4: Variograms for soil moisture computed for the five field acquisitions along
(‘o’) and perpendicular (‘+’) to the acquisition lines. Exponential models
are fitted for the parallel variograms. The total variance is indicated by
the horizontal dashed line.
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GPR repetition uncertainties were evaluated as 0.0169 m3m−3 and a large
part was attributed to interpolation uncertainties. Therefore, the GPR mea-
surement errors appeared to be too low to explain the relatively large nugget
effects observed here. On the other hand, previous studies have shown that
unrevealed small-scale variability was the most prominent cause of high nugget
effect (Western et al., 1998). Although the spacing (2 m along the acquisition
lines) nearly matched the support scale (1.5 m in diameter), unrevealed spatial
variability between GPR measurements could explain such large nugget effect.
This could also explain why nugget variances are larger for the perpendicular
variograms, independently of the line effect.

Soil moisture spatial variability appeared to be maximal in wetter condi-
tions (Table 5.2), albeit soil moisture variability is generally expected to de-
crease with wet conditions because of the increasing size of areas showing soil
saturation (Famiglietti et al., 2008). Actually, it is believed that no satura-
tion conditions were measured by the GPR as the mean soil moisture of the
last two dates were still below the expected soil moisture at saturation. This
was attributed to the shallow penetration depth of the GPR method and to
the rapid drainage of the shallow soil layer. In that respect, De Lannoy et al.
(2006) already remarked that the decreasing trend in soil moisture variability
with high soil moisture was not observed for shallow (0-10 cm) soil layer but
only for deeper layers, because of the fast soil moisture dynamics of the shallow
layer.

5.5.2 Line effect

The uneven acquisition sampling resulted in striped soil moisture patterns (see
Fig. 5.3), i.e, denoting a line effect, which could be observed by a larger spatial
coherency of the soil moisture values when looking along the acquisition lines
while a smaller spatial coherency was observed when looking in the perpendic-
ular direction to the acquisition lines. We could interestingly notice that this
line effect was observed at same locations for repeated dates (Fig. 5.3), i.e., it
was related to local soil conditions and not to a sensor drift.

Figure 5.4 presents the variograms computed along and perpendicular to
the acquisition lines for the five surveys. The perpendicular variogram esti-
mates were offset by an additional variance corresponding to the line effect.
They showed a poorer spatial coherency, especially for the last two dates, with
a strong nugget effect nearly equal to the total variance. In addition, the per-
pendicular variograms were computed over a distance (60 m) that appeared to
be too small for reaching the ranges observed in the parallel variograms. The
line effect was clearly higher for the last two dates, as it can be observed in the
soil moisture maps and in the larger offset between parallel and perpendicular
variograms.

This line effect was already observed in chapter 3 (Minet et al., 2011) in
a field acquisition in Walhain using the same mobile platform. It was mainly
attributed to the soil compaction induced by the ploughing or fertilizer spread-
ing machine, as we followed the same direction with the platform. The largest
line effect that was observed here with wet conditions may be related to: 1)
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the overall largest soil moisture variance in wet conditions or to 2) a real in-
crease in the striped soil moisture patterns due to the repeated passes of the
ATV holding the GPR system. It was observed in situ that the passes of the
ATV have compacted the soil slightly but sufficiently to affect volumetric soil
moisture. In addition, flow paths may have been deviated by these acquisition
lines, particularly in flat areas.

5.5.3 Comparison with soil core sampling measurements
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Figure 5.5: Comparison between interpolated GPR-derived soil dielectric permittivity
εGPR and volumetric sampling soil moisture θV for all dates.

Figure 5.5 presents the comparison between interpolated GPR-derived soil
dielectric permittivity εGPR and volumetric soil moisture θV from the soil sam-
pling measurements. A simple petrophysical model (Ledieu et al., 1986) (Eq.
(1.17)) was fitted over the data and the standard relationship of Topp et al.
(1980) (Eq. (1.16)) was also drawn for comparison. There was an overall mod-
erate agreement between the soil permittivity and volumetric moisture with a
RMSEfit of 0.0475 m3m−3 when fitting the Ledieu’s model and a RMSETopp

of 0.0519 m3m−3 when comparing with the Topp’s relationship. The Topp’s
and Ledieu’s relationships fitted for all dates together were in good agree-
ment between them. In addition, the Ledieu’s model was fitted individually
for each date and corresponding RMSEfit are displayed in Table 5.3, as well
as RMSETopp computed for each date. There were poorer agreements with
Topp’s relationship for the last two dates, which showed a small variation of
volumetric soil moisture compared to the large range of GPR-derived dielectric
permittivity. The observed discrepancies could be attributed to the different
support scales and penetration depths of the techniques, with respect to the
small-scale variability of soil moisture. More particularly, the relatively low di-
electric permittivity values observed compared to soil core sampling moisture
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values could be caused by scattering of the GPR waves due to surface roughness
or by destructive interferences due to model inadequacy such as soil layering.
Nevertheless, as point soil moisture were compared with interpolated dielectric
permittivity values, it is worth noting that these discrepancies were within the
range of the interpolation uncertainties (chapter 4) (Minet et al., submitted).

Table 5.3: Soil moisture [m3m−3] statistics from soil core sampling and RMSE of the
petrophysical relationships

Date µθV σθV RMSETopp RMSEfit

15/03/2010 0.244 0.0343 0.0363 0.0227
18/03/2010 0.213 0.0331 0.0299 0.0227
24/03/2010 0.217 0.0264 0.0390 0.0253
30/03/2010 0.343 0.0133 0.0759 0.0095
06/04/2010 0.333 0.0206 0.0628 0.0197

A decrease in the standard deviation σθV of volumetric soil moisture from
core sampling was observed with increasing mean soil moisture (Table 5.3),
whereas the standard deviation of GPR measurements σθGPR

increased with
wet conditions. This opposite trend may be due to the different support depths
between the two soil moisture measurement methods. GPR measurements have
a shallower characterization depth in wet conditions, because of the increasing
soil dielectric permittivity. As a result, GPR measurement depth might be
smaller than the depth of the ground-truth (i.e., 5 cm) in wet conditions. This
latter phenomenon could also explain the poorer agreement with the Topp’s
petrophysical relationship observed in wet conditions for the last two dates.

5.6 Temporal stability of soil moisture patterns

5.6.1 Intersection of field-average soil moisture areas

Figure 5.6 shows the areas giving the field-average soil moisture for the five
dates with a tolerance of ± 0.02 m3m−3 and their intersection between the five
dates (first method). There was a remarkable temporal stability of soil mois-
ture patterns for the sets of the first three and the last two dates, respectively,
i.e., the zones outlined by black lines are similar for these two sets of dates.
However, due to moderate rainfalls (24.8 mm between 24 and 30 March 2010),
the soil moisture pattern greatly changed between the third and fourth dates.
The zones indicating the field-average soil moisture shrank from dry to wet con-
ditions as a result of the increase in soil moisture variance with wet conditions.
There existed locations that indicated the field-average for all the five dates
(red lines), but these locations were split and dispersed within the field. The
locations showing the lowest soil moisture values were rather time-invariant as
well, whereas highest soil moisture zones moved over the time.

The main thalweg of the field (see Fig. 4.4) is characterized by a temporal
stability of the field average for the first three dates. Nevertheless, follow-
ing rainfall events, the thalweg appeared slightly drier than the rest of the
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Figure 5.6: Soil moisture maps for the five dates. The locations where soil moisture is
equal to the field-average within a tolerance of ± 0.02 m3m−3 are outlined
by black lines. The intersection of these zones between the five dates are
outlined by red lines.
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field, maybe because of its larger slope. Driest patterns appeared the most
connected, while Western et al. (1998) observed a larger spatial organization
of soil moisture patterns in wet conditions. In our case, it is worth noting
that the driest conditions were still rather humid. In the last two dates that
were characterized by large antecedent rainfalls, the wettest areas may denote
the locations where water accumulated and infiltrated due to topography, i.e.,
these locations are characterized by a small slope and are receiving water from
neighboring locations.

5.6.2 Relative difference to field-average
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Figure 5.7: Temporal stability of the field-average soil moisture computed by indica-
tors based on the relative difference of soil moisture to the field-average.
From top to bottom, the mean of the relative difference δi, the standard
deviation of the relative difference σ(δ)i and the RMSE of these differ-
ences RMSEδi are presented. The time-stable zones determined by the
first method are outlined by black lines.

Figure 5.7 presents the maps of the time-averaged indicators based on the
relative difference of soil moisture to the field-average (second method). The
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first map (Fig. 5.7 (a)) shows the mean of the relative difference δi, that is,
the bias in soil moisture compared to the field-average. The locations where
δi = 0 gave on average over time the field-average. Persistently drier (δi < 0)
and wetter (δi > 0) areas are depicted in orange and blue, respectively, and
divide the field in almost equal parts. A relatively large part of the locations
could serve as time-stable locations of the field-average, i.e., 10% of the field
area estimated the field-average soil moisture with a 0.02 m3m−3 accuracy.
The zones of the intersection of the field-average between the five dates (first
method) were located in zones where δi was close to zero. The time-averaged
soil moisture difference pattern could be related to topographic features in some
parts of the field. For instance, persistently wetter areas were located in flat
areas in the most and less elevated areas of the field. Persistently driest areas
were however located where slopes are the largest. This may originate from the
poor occurrence of run-on and to the faster drainage of water in slopy areas.
In contrast, flat areas are more subject to larger infiltration and run-on and
tend to store more water in soil. As a result, time-stable locations showing the
field average are located in intermediate slopes.

The second map (Fig. 5.7 (b)) indicates the standard deviation over time
of the difference of soil moisture to the field-average σ(δ)i. The locations where
σ(δ)i was low indicated a high time-stability of soil moisture with respect to
the field-average. The σ(δ)i pattern appeared less spatially correlated than
the δi pattern. Again, there was a rather good match between the locations
with lowest σ(δ)i values and the zones of the intersection of the field-average
between the five dates. The third map (RMSEδi) (Fig. 5.7 (c)) combines the
information of the first two maps and gives an assessment of the temporal sta-
bility of the field-average soil moisture. As a result, there was a perfect match
between the lowest RMSEδi zones and the time-stable zones outlined by the
first method. These zones were not located in flat areas, but rather in transition
zones between the lowest and highest elevated parts of the field. In particular,
the largest time-stable zone appeared to be located in an intermediate slope
area (see Fig. 5.1).

The distributions of the mean and the standard deviation of the relative
difference (δi and σ(δ)i) computed for each interpolated points are presented
in Fig. 5.8. The mean of the relative difference was ranging from -0.40 to
0.33 m3m−3 while the standard deviation was ranging from 0 to 0.27 m3m−3.
Although no clear trend could be drawn from the relationship between these two
variables, it could be noticed that the largest σ(δ)i were encountered for slightly
positive δi, meaning that moderately wet locations were the less time-stable.
It is worth noting that extreme values of δi, that were the persistently driest
and wettest locations, showed low σ(δ)i, denoting a high temporal stability. It
means that the extremes of soil moisture spatial distribution could be known
with a larger confidence than the field-average of soil moisture if grounded
sensors are installed. Nevertheless, there was a wide variability in σ(δ)i for
each part of the ranked mean of the difference, i.e., the temporal stability was
not clearly linked to the bias in soil moisture to the field-average.
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Figure 5.8: Rank ordered mean relative difference of GPR-derived soil moisture to
the field-average δi (dashed line) depicted with standard deviation σ(δ)i
(in gray). The RMSE of the relative differences RMSEδi is presented in
a plain line. Results from GPR measurements.

5.6.3 Comparison of the two methods

Locations showing a temporal stability of field-average soil moisture were re-
vealed in accordance by the two methods used for the investigation of the
temporal stability of the soil moisture patterns. Nevertheless, the intersection
of the area showing the field-average within a tolerance of 0.02 m3m−3 (first
method) concerned only 5 % of the field area whereas 10 % of locations where
|δi| < 0.02 m3m−3 could be identified with the second method. However, a
negligible fraction (<0.1 %) of the field area (5 locations on 6284) was char-
acterized by RMSEδi < 0.02 m3m−3 when accounting for both δi and σ(δ)i.
Using the same soil moisture threshold, the first method was thus more re-
strictive than δi, but less than RMSEδi . It is quite evident that intersected
time-stable areas were smaller compared to areas where |δi| < 0.02 m3m−3

because the former indicated time-stable areas that were always close to the
field-average while the latter indicated areas that were on average over time
close to the field-average. As we surveyed the field in a rather short time range
(i.e., 22 days), the first method still resulted in intersected locations indicat-
ing the field-average between all dates, but over longer period, these locations
might not appear by intersection of time-stable zones.

5.6.4 Temporal stability of soil moisture from soil core
sampling measurements

The same analysis on the temporal stability using the relative difference method
was performed with soil core sampling measurements and results are depicted
in Fig. 5.9. The mean of the relative difference was ranging from -0.12 to 0.19
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Figure 5.9: Rank ordered mean relative difference of volumetric soil moisture to the
field-average δi (dashed line) depicted with standard deviation σ(δ)i (in
gray) for the 20 soil core sampling locations. The RMSE of the relative
differences RMSEδi is presented in a plain line. Results from soil core
sampling measurements. The four sampling points that are within the
time-stable area are depicted with a thick green errorbar.

m3m−3 while the standard deviation was ranging from 0.11 to 0.29 m3m−3.
There was no clear trend between the δi and σ(δ)i. Four sampling points
appeared to fall into the area showing the intersection of time-stable locations
(first method) and they were outlined with thick green errorbars for σ(δ)i in Fig.
5.9. Three of these points showed a large temporal stability for the volumetric
soil moisture data from soil core sampling as well, as they actually correspond
to the three smallest RMSEδi . Locations showing temporal stability of field-
average soil moisture could thus be also detected using the soil core sampling
measurements.

5.6.5 Comparison with previous studies

The relative difference indicators δi and σ(δ)i showed a great temporal sta-
bility of field-average soil moisture compared to previous studies. The most
comprehensive review about temporal stability of soil moisture was given by
Brocca et al. (2009, Table 1). Few studies resulted in smaller ranges in terms
of δi and σ(δ)i than the ones observed in this study (i.e., δi = -0.40 to 0.33
and σ(δ)i = 0 to 0.08 m3m−3). In Jacobs et al. (2004), rather large criteria
for highlighting time-stable locations of the field-average were used, that were,
time-stable locations were defined by |δi| < 0.05 or 0.10 m3m−3 and covered
13-18 % and 27-37% of fields areas, respectively. Applying the same thresholds,
time-stable locations could be identified in, respectively, 24% and 46% of the
field area in our study. This rather good temporal stability could be mainly
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attributed to the short time range and the small number of acquisition of the
GPR field acquisitions, although, for instance, a shorter time range (14 days)
was used in Jacobs et al. (2004).

Finally, the time-stable zones indicating the field-average appeared to be
located in-between low and high elevated areas, as already noticed in many
previous studies (Brocca et al., 2009; Jacobs et al., 2004; Mohanty and Sk-
aggs, 2001). However, the relatively flat topography of the study site impeded
to clearly relate the time-stable pattern to topography. Moreover, no high-
resolution soil information was available to relate the spatiotemporal pattern
to local conditions, but it was expected that soil conditions were rather uniform
in the study site, due to its limited extent and as the Belgian soil map did not
distinguish different soil types.

5.7 Conclusions

Spatiotemporal patterns of soil moisture were measured by a proximal GPR
mobile platform in a 2.5 ha agricultural field at five dates in spring 2010. Time-
lapse measurements at high spatial resolution permitted to extensively study
the spatiotemporal soil moisture variability and to investigate the temporal
stability of soil moisture. The evolution of soil moisture patterns was mainly
governed by rainfalls, i.e., similar patterns and variograms were obtained for the
different dates unless large rainfalls occurred. Passing from dry to wet condi-
tions, the soil moisture variance increased, in relation with the shallow charac-
terization of the GPR technique. Moderate nugget effects were observed in the
soil moisture variograms and they were attributed to unrevealed spatial vari-
ability between the resolution and support scales. Soil moisture from soil core
sampling were in a good agreement with GPR-derived estimates (RMSEfit=
0.0475 m3m−3) given the interpolation uncertainties, although larger discrep-
ancies were found in wet conditions. Soil moisture patterns seemed mainly
governed by topography, with wetter areas in flat areas.

Temporal stability of the field-average soil moisture was revealed by two
methods, that were: 1) the intersection of zones showing the field-average and
by 2) the computation of the mean and standard deviation over time of the
relative difference of soil moisture to the field-average, as defined by Vachaud
et al. (1985). These methods were in accordance, although they showed dif-
ferent degrees of temporal stability extents. Intersection of areas showing the
field-average within a tolerance of 0.02 m3m−3 covered 5 % of the field area,
whereas locations where the mean relative difference |δi| was below 0.02 m3m−3

extended up to 10 % of the field area. Soil moisture data from the soil core
sampling also exhibited temporal stability of the field-average and some sam-
pling locations were found to be in accordance with the time-stable locations
determined using GPR-derived soil moisture data. Compared to previous stud-
ies, the temporal stability of the field-average soil moisture was high, with 24 %
of locations showing |δi| <0.05 m3m−3, although it was owing to the relatively
small time frame over which the field campaigns were performed.

To the best of our knowledge, among the large body of literature about the
temporal stability of soil moisture, there were no studies using soil moisture
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estimates from proximal sensing platform such as GPR. The use of the GPR
platform permitted to investigate the temporal stability pattern using a large
number of measurements at an unprecedented spatial resolution at the field
scale in a limited time frame, such as soil moisture does not change with time
between the start and the end of the acquisition. Owing to the proximity of
its support scale to its spacing, the technique was able to nearly acquire the
continuous soil moisture pattern in the direction of the acquisition. This study
showed the potential of the proposed GPR method for the mapping of soil
moisture patterns in order to determine time-stable locations where grounded
sensors could be installed. These promising results should be nevertheless cor-
roborated by conducting field acquisitions over a larger time frame, e.g., over a
year. In addition, the relation of the time-stable locations with local attributes
such as topography, soil type and vegetation cover should be investigated.



Chapter 6

Effect of high-resolution
spatial soil moisture
variability on simulated
runoff response using a
distributed hydrologic
model∗

6.1 Outline

The importance of spatial variability of antecedent soil moisture conditions
on runoff response is widely acknowledged in hillslope hydrology. Using a
distributed hydrologic model, this chapter aims at investigating the effects of
soil moisture spatial variability on runoff in various field conditions and at
finding the structure of the soil moisture pattern that approaches the measured
soil moisture pattern in terms of field scale runoff. High spatial resolution soil
moisture was surveyed in ten different field campaigns using a proximal ground
penetrating radar (GPR) mounted on a mobile platform. Based on these soil
moisture measurements, seven scenarios of spatial structures of antecedent soil
moisture were used and linked with a field scale distributed hydrological model
to simulate field scale runoff. Accounting for spatial variability of soil moisture
resulted in general in higher predicted field scale runoff as compared to the case
where soil moisture was kept constant. The ranges of possible hydrographs
were delineated by extreme scenarios where soil moisture was directly and

*This chapter is adapted from:
Minet, J.; Laloy, E.; Lambot, S. & Vanclooster, M. Effect of high-resolution spatial soil
moisture variability on simulated runoff response using a distributed hydrologic model, in
Hydrology and Earth System Sciences, 2011, 15, 1323-1338.
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inversely modeled according to the topographic wetness index (TWI). These
behaviors could be explained by the sizes and locations of runoff contributing
areas, knowing that runoff was generated by infiltration excess over a certain
soil moisture threshold. The most efficient scenario for modeling the within
field spatial structure of soil moisture appeared to be when soil moisture is
directly arranged according to the TWI, especially when measured soil moisture
and TWI were correlated. The novelty of this work is to benefit from a large
set of high-resolution soil moisture measurements allowing to model effectively
the within field distribution of soil moisture and its impact on the field scale
hydrograph. These observations contributed to the current knowledge of the
impact of antecedent soil moisture spatial variability on field scale runoff.

6.2 Introduction

The antecedent soil moisture condition prior to rainfall is a key factor in deter-
mining the hydrological response as it mainly governs the generation of runoff
due to its effect on infiltration capacities. In hydrologic modeling, the predic-
tion of runoff is therefore highly sensitive to the description of antecedent soil
moisture conditions. The response of the hydrologic models to antecedent soil
moisture is moreover often highly non-linear and shows a threshold behavior
(Zehe and Blöschl, 2004).

The effect of antecedent soil moisture spatial variability on hydrologic re-
sponse at the field scale has been widely addressed in numerous studies through
hydrologic modeling. The large effect of soil moisture variability on runoff re-
sponse is to be attributed to the prominent role of soil moisture in runoff gen-
eration by either infiltration excess or saturation excess overland flows (Zehe
and Blöschl, 2004). The location of runoff contributing areas, which are di-
rectly related to the soil moisture state, modulates the hydrologic response as
generated runoff can re-infiltrate on its way downhill to the catchment outlet.
In particular, Merz and Plate (1997); Merz and Bardossy (1998) and Bronstert
and Bardossy (1999) showed that accounting for the spatial variability of an-
tecedent soil moisture yields a greater runoff compared to assuming uniform soil
moisture conditions, denoting the non-linear response of the hydrologic model
to antecedent moisture conditions. Regarding the type of variability, Merz and
Plate (1997); Merz and Bardossy (1998) and Zehe et al. (2005) observed that a
structured soil moisture pattern results in a greater runoff than a stochastic ran-
dom variability, especially when large contributing areas were connected by a
flow channel to the outlet. In contrast to this, Bronstert and Bardossy (1999)
observed the smallest runoff response with structured soil moisture patterns
compared to random patterns. This was attributed to the actual poor organi-
zation of the structured pattern that was observed in dry conditions. Bronstert
and Bardossy (1999) also showed that the introduction of topographic data in
modeling of soil moisture was the best strategy to obtain a runoff response
close to the measured outlet response. The importance of spatial variability of
soil moisture for hydrologic modeling has also received a specific attention in
data assimilation studies (Houser et al., 1998; Pauwels et al., 2001; Crow and
Ryu, 2009; Brocca et al., 2010).
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The way spatial variability of soil moisture impacts runoff is depending on
model parameterization, average soil moisture state itself (Zehe et al., 2005,
2010) and type of rainfall which is considered (Bronstert and Bardossy, 1999;
Noto et al., 2008). In particular, Noto et al. (2008) pointed out that the well-
known high sensitivity of the hydrologic model to antecedent soil moisture con-
ditions may be observed only under specific rainfall forcing. In that respect, in
a semi-arid catchment, Castillo et al. (2003) noticed that runoff response is in-
sensitive to antecedent soil moisture conditions for high intensity rainfalls or for
poorly permeable soils. Hence, in some conditions, assuming a constant mean
soil moisture may be sufficient to correctly model the rainfall-runoff response,
particularly if extreme events are considered (e.g., in flood risks applications).
The effect of spatial variability of soil moisture were particularly observed in
steep topography (Kuo et al., 1999; Castillo et al., 2003) that allows lateral re-
distribution of water over the catchment. It is also expected to be substantial
in dry conditions as shown in Merz and Plate (1997) where two antecedent soil
moisture conditions were compared. It is worth noting that highly wet condi-
tions inherently exhibit low spatial variability because of the bounded behavior
of soil moisture by saturation (Famiglietti et al., 2008).

The scale aggregation of soil moisture data as well as other inputs (e.g.,
digital elevation model) can also highly alter the accuracy of the response of
the hydrologic model. Using information theory, Kuo et al. (1999) noticed
that the deviations in simulated runoff increase proportionally with the grid
size of a distributed hydrologic model, especially for steep topography and in
wet conditions. Finally, the high sensitivity of runoff response to antecedent
soil moisture implies that uncertainty in soil moisture characterization exerts
a large effect on the predictability of hydrologic models, similarly to the effect
of soil moisture variability (Zehe and Blöschl, 2004). Still, the effect of the
variability of soil moisture on runoff response has to be investigated for various
conditions of catchment attributes, soil moisture patterns and rainfall forcing.

In the near future, the availability of in-situ measurements of soil moisture
for hydrologic applications is expected to greatly increase through the devel-
opment of soil moisture dedicated remote sensing platforms (Wagner et al.,
2007), soil moisture electrical sensors and their implementation in sensor net-
works (Vereecken et al., 2008; Robinson et al., 2008b) and non-invasive sensors
such as ground penetrating radar (GPR) (Huisman et al., 2003; Lambot et al.,
2008a). In that respect, GPR has shown great potential to accurately char-
acterize soil moisture at the field scale with high resolution (Serbin and Or,
2005; Weihermüller et al., 2007; Lambot et al., 2008b; Minet et al., 2011). As
pointed out by Western et al. (1999), high-resolution soil moisture datasets
are required to readily assess the effect of antecedent soil moisture conditions,
rather than relying on few point values that may not capture the real soil
moisture patterns. Nevertheless, hydrologic modeling of processes occurring
at an intermediate scale between coarse-scale (∼km) remote sensing and fine-
scale (∼m) soil moisture measurement techniques is limited by a scale-gap in
soil moisture information. The combination of these two types of information
by disaggregating (or downscaling) coarse-scale to fine-scale soil moisture data
is thus of particular interest (Crow et al., 2000). In that respect, Loew and
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Mauser (2008) investigated the use of prior information on spatially persistent
soil moisture patterns to disaggregate coarse-scale remotely-sensed soil mois-
ture data. Disaggregated soil moisture values may be also particularly valuable
for soil moisture data assimilation in hydrologic models (Merlin et al., 2006).

6.3 Objectives

To increase our knowledge about the strong nonlinear effect of antecedent soil
moisture on field scale hydrological response in temperate climate conditions,
this chapter aims to: 1) investigate the effect of different scenarios of the spatial
structure of antecedent soil moisture on simulated runoff at the field scale
and; 2) find the spatial structure of the within field soil moisture that most
closely approaches the measured soil moisture pattern in terms of hydrologic
response. Seven scenarios of antecedent soil moisture patterns, together with
GPR measured soil moisture patterns, were defined in order to determine which
degree of description of soil moisture spatial variability is necessary to get an
adequate estimation of the runoff. As no runoff measurements were available,
the effect of antecedent soil moisture scenarios could not be compared with real
discharge, but they are to be compared to each other by hydrologic simulations.
The main novelties of this work compared to the previous studies are: 1) to
benefit from a fast soil moisture mapping technique at high resolution (∼m)
at the field scale (several ha) and; 2) to rely on ten field acquisitions of soil
moisture in different field and moisture conditions. This work may also help
when coarse-scale remotely-sensed soil moisture data are to be disaggregated
into fine-scale patterns in hydrologic or climatic models (downscaling).

6.4 Materials and Methods

6.4.1 Agricultural fields

In this chapter, we used soil moisture data collected during ten GPR acqui-
sitions performed in five different agricultural fields situated in the center of
Belgium and Luxembourg (see Table 6.1). The fields are characterized by rel-
atively similar topography, soil type and land cover but the acquisitions were
performed in different moisture conditions. The first three fields, that are
called, Burnia, Marbaix and Walhain, pertain to the loess belt area in Belgium
and are characterized by a flat topography and a silt loam soil. According to
the national Belgian soil database (Van Orshoven and Vandenbroucke, 1993)
and following a profile matching technique, the texture of this soil consists of
4 % of sand, 82 % of silt and 14 % of clay for the Burnia and Marbaix soil and
4 % of sand, 79 % of silt and 17 % of clay for the Walhain soil. The last two
fields, that are located in Luxembourg and called Keispelt and Walsdorf, are
characterized by a gentle topography. They are classified as sandy loam and
shaly silt loam soils, respectively.

The GPR acquisitions were performed in spring when fields were covered by
barley or wheat, except for the Walsdorf site where acquisition was performed
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in summer after barley cropping. All the acquisitions were performed on bare
or nearly-bare soils with vegetation height less than 10 cm and a soil roughness
less than 5 cm, thus avoiding scattering issues in the measured GPR data. In
each field surveyed by the GPR, the largest catchment was delineated, as some
fields are actually constituted of several catchments. Moreover, the fields were
considered as hydrologically isolated from the neighboring plots (i.e., by ditches
or rural roads along the field limits). For some fields, that were, Keispelt, Mar-
baix and Burnia, the delineated catchments encompasses the whole surveyed
field. Catchment areas are given in Table 6.1.

Table 6.1: Description of the agricultural fields and resolutions used in hydrologic
simulations

Field Location Area Elevation Soil Land

[ha] range [m] type cover

Burnia 4◦38’33”E 50◦40’10”N 2.29 14 silt loam wheat

Marbaix 4◦38’40”E 50◦40’07”N 5.73 14 silt loam wheat

Walhain 4◦41’32”E 50◦36’11”N 5.14 16 silt loam barley

Keispelt 6◦04’57”E 49◦41’33”N 3.29 18 sandy loam wheat

Walsdorf 6◦09’19”E 49◦55’45”N 2.39 12 shaly silt loam bare

6.4.2 Sensing of soil moisture by ground penetrating radar

Soil moisture was measured by the proximal off-ground GPR method exposed
in chapter 4. Soil surface dielectric permittivity was retrieved using an inversion
of time-domain GPR data focused on the surface reflection peak in the 200-800
MHz frequency range. GPR-derived dielectric permittivity was translated into
soil moisture using the Topp’s petrophysical relationship (Topp et al., 1980)
(Eq. (1.16)). Field acquisitions were performed using the GPR mobile platform
exposed in chapter 3. Table 6.2 summarizes the 10 GPR acquisitions and shows
the number of measurement points and the duration of the acquisition for each
field campaign. Time-lapse measurements were performed in two fields only,
i.e., in Marbaix and Burnia, in spring 2009 and 2010, respectively. Soil moisture
patterns of the five field campaigns in Burnia were widely analyzed in chapter
5.

The GPR-derived soil moisture reflects the surface soil moisture with a
depth of investigation of about 5 cm. This relatively shallow characterization of
soil moisture may be a limitation for using the soil moisture data in a hydrologic
model, as the hydrological active soil layer extends up to 20 cm in the hydrologic
model and because of the possible decoupling of surface and subsurface soil
moisture (Capehart and Carlson, 1997; Vereecken et al., 2008). Nevertheless,
the use of a proximal GPR operating in a large frequency bandwidth and at
relatively low frequencies inherently provides a deeper characterization of soil
moisture than remote sensing instruments. Moreover, a deeper characterization
could be obtained using a multi-layered soil model, as shown in chapter 3 and
Minet et al. (2011). In this study, it is assumed that the surface soil moisture
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reflects the soil moisture of the hydrological active soil layer or, at least, its
spatial variability.

6.4.3 Antecedent soil moisture scenarios

Soil moisture spatial variability can be analyzed in terms of stochastic or de-
terministic variability (Blöschl and Sivapalan, 1995). Stochastic variability (or
random, non-structured variability) of soil moisture entails that soil moisture
can not be a completely deterministic variable based on local attributes but
rather a variable with global statistical properties that can be determined. On
the other hand, soil moisture can be viewed as a spatially deterministic (or
structured) variable that is uniquely determined by spatial conditions, mainly
topography, soil properties, and vegetation cover. The introduction of auxil-
iary spatial data (e.g., topography) to simulate soil moisture thus results in
deterministic soil moisture patterns. Between these two extremes, hydrological
systems exhibit soil moisture conditions that can be modeled from pure ran-
dom variability to highly structured soil moisture patterns, with intermediate
degree of organization (Western et al., 1999). It is worth mentioning that a
stochastic soil moisture description implies several random realizations while a
deterministic soil moisture pattern is usually a unique realization. Except the
pure random case, soil moisture patterns can be captured using variograms or
connectivity functions.

In this study, soil moisture scenarios are based on point measured data,
that are displayed as an example for Marbaix, 15 April 2009 in Fig. 6.1. In
order to assess the effect of different antecedent soil moisture conditions in
hydrologic modeling, seven different types of antecedent soil moisture maps
were constructed (see further explanations in this section below):

1. Reference: GPR-derived measured values, θ = θGPR;

2. Constant: θ = θmean = constant;

3. Structured: Measured values sorted according to the TWI;

4. Structuredinv: Measured values inversely sorted according to the TWI;

5. Random: Randomly permutated values;

6. V ariogram: Spatially coherent values using a variogram;

7. Connected: Spatially coherent and connected values.

Scenarios 2 to 4 are deterministic scenarios, i.e., they consist of a unique
realization, while scenarios 5 to 7 are stochastic scenarios, for which 1000 re-
alizations were produced. These soil moisture scenarios are all based on GPR-
derived soil moisture that was measured during field acquisitions. Figure 6.2
presents all soil moisture scenarios (except the constant) for the field of Mar-
baix, 15 April 2009.

The soil moisture values measured by the GPR were not regularly spaced
in the field, but rather followed the acquisition tracks (see Fig. 6.1). The
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hydrologic model however requires as an input perfectly grid-shaped antecedent
soil moisture maps. Therefore, the measured values must be rasterised. The
first scenario (reference, Fig. 6.2 (a)), that is based on the real locations of
GPR measured values, was thus made by filling a regular grid with the average
of the measured values that fell into each pixel of the grid. The resolutions
of the grids (see Table 6.1) were set as the maximum resolution that avoids
having an empty pixel in the grid.
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Figure 6.1: Maps of soil moisture point-values retrieved by GPR inversions from the
field acquisition in Marbaix, 15 April 2009. Contour lines with an inter-
distance of one meter are depicted in black lines. The outlet of the field
is indicated by the black arrow. Projected coordinate system: Belgian
Lambert 1972.

For the second scenario (constant), soil moisture values were set as constant
over space and equal to the mean of the measured values from the first map.
This map is not presented in Fig. 6.2.

In the third scenario (structured, Fig. 6.2 (b)), measured values were sorted
according to the topographic wetness index (TWI), as defined by Beven and
Kirkby (1979):

TWI = ln

(
a

tan(β)

)
(6.1)

where a is the raster of the flow accumulation and β is the raster of the slope
expressed in %. We used a single direction algorithm to compute the flow ac-
cumulation raster, as was used in previous studies (e.g., Merz and Plate, 1997).
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The TWI was preliminary computed over the fields using a digital elevation
model of same resolution that was set in the first scenario. Then, moisture
and TWI values were ranked and moisture values were attributed to the pixels
where the TWI was in the same rank. The fourth scenario (structuredinv, Fig.
6.2 (c)) is the counterpart of the third one, that is, soil moisture and TWI
values were inversely ranked, so that the pixels with the highest TWI values
received the lowest soil moisture values.

0 50 100 150 200
meters

Reference Structured StructuredINV

VariogramRandom Connected

0.2250.025

Soil moisture [m
3
m

-3
]

(a) (b)

(d) (e) (f)

(c)

Figure 6.2: Antecedent soil moisture maps for Marbaix, 15 April 2009, used as an
input in the hydrologic model with measured grided values (a), measured
values rearranged according the TWI (b), measured values inversely rear-
ranged according the TWI (c), randomly permuted values (d), simulated
values using a variogram (e) and connected simulated values (f). The
outlet location and direction are indicated with an arrow.

The TWI was chosen for modeling structured soil moisture patterns be-
cause of the lack of other detailed sources of information for these fields (e.g.,
soil properties, vegetation) and for its high predictive power in wet conditions
(Western et al., 1999). The limited elevation range of the fields may how-
ever limit the redistribution of water according to the topography and restrain
the explanatory power of the TWI for soil moisture in these fields. Although
high-resolution soil information at the field scale could have provided more in-
sights for explaining moisture patterns, no high-resolution soil parameters can
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be usually found at the catchment scale (> 10 km). We thus investigated the
use of topographically-derived indices (i.e., TWI) for soil moisture modeling
in a data-scarcity context. As soils were bare or nearly-bare, the influence of
vegetation heterogeneities on spatial soil moisture variability might be further-
more limited in our study. In addition, land cover heterogeneities are limited
in our study as the fields are managed as single plots. For larger catchment
scale (> 10 km), land cover differences among the fields may better explain soil
moisture patterns (Western et al., 1999). For drier climatic conditions, when
potential evapotranspiration exceeds precipitation, local controls as potential
radiative indices have shown better correlations with observed soil moisture
(Grayson et al., 1997). Some reviews about the predictive power of the TWI
for soil moisture can be found in Western et al. (1999) and Sørensen et al.
(2006).

The fifth scenario (random, Fig. 6.2 (d)) maps were made by randomly
permuting the measured values over space. As the random process can lead to
different maps, 1000 realizations of this scenario were repeated, as well as for
the two following scenarios (stochastic variability scenarios).

The sixth scenario (variogram, Fig. 6.2 (e)) maps were made by simu-
lating gaussian soil moisture patterns using variograms describing the spatial
dependence of soil moisture. Variograms were computed considering the spa-
tial dependence of the data along the acquisition lines only, neglecting the
spatial dependence of the data of adjacent lines (Minet et al., 2011). An expo-
nential model accounting for a nugget effect was fitted for all the variograms.
Zero-mean gaussian distributed values were then simulated in each grid pixel
using an implementation of the sequential non conditional method. Finally,
measured values were ranked and attributed to the pixels where the simulated
values were in the same rank. This ranking procedure permitted therefore to
preserve exactly the same distribution of values as in the reference, random,
structured and structuredinv scenarios.

The seventh scenario (connected, Fig. 6.2 (f)) is characterized by connected
patterns of high soil moisture values. It was made following the method of
Zinn and Harvey (2003) that was used here to produce a highly connected
pattern of a given variable. First, spatially coherent values of a zero-mean
gaussian distribution were simulated over the field extent as for the variogram
scenario. Second, the absolute value of the simulated values were taken, so that
the locations where the values were close to zero (i.e., now the lowest values)
became connected between them. In order to conserve the spatial properties
of the simulated values after taking the absolute value, the parameters of the
variogram must be initially modified. Hence, the range was multiplied by the
scale factor of 1.86 and the nugget effect was divided by 2. Finally, inversely
ranked measured values were attributed to the pixels where simulated values
were in the same rank, so that the connected paths (i.e., the lowest simulated
values) received the highest soil moisture values.

It is worth noting that all scenarios have the same mean as the reference
scenario, and that all scenarios, except the constant one, show exactly the
same soil moisture distribution as the reference scenario, owing to the rank-
ing procedure. Moreover, the reference, variogram and connected maps were
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characterized by the same variogram. This allowed to truly compare the mod-
eling discharge between the scenarios. Actually, the random scenario can yield
exactly the same antecedent soil moisture maps that were realized with the
reference, structured, structuredinv, variogram and connected scenarios, as
the same values were merely rearranged according to different schemes. But
the probability that the random scenario yield a particular realization is dras-
tically low, i.e., equals to 1

n! , where n is the number of grid cells per field, and
may not be encountered in our study. The number of 1000 realizations for the
stochastic scenarios is thus a tradeoff between the computation time and the
desirable variability among realizations.

Other types of auxiliary information could be used to model antecedent
soil moisture patterns, such as soil type information. As soil properties may
significantly vary within a field, this may largely determine soil moisture pat-
terns, through varying soil hydraulic properties. Nevertheless, detailed soil
information was not available at high resolution and it is worth noting that
this information is rarely available.

The hydrograph modeled with the reference soil moisture map was as-
sumed to be the reference hydrograph, as no measured discharges were avail-
able. Comparison of soil moisture scenarios were performed based on Nash-
Sutcliffe efficiency (NSE) coefficients between the hydrographs simulated with
the measured soil moisture pattern (reference scenario) and the other scenar-
ios.

The effect of soil moisture spatial variability may also depend on the reso-
lution (grid size) of the distributed hydrologic model. For investigating scale
aggregation of antecedent soil moisture maps, hydrologic simulations were also
performed with increasing grid sizes for the field campaign of Marbaix, 19 April
2009 for the seven scenarios. Nine grid sizes, uniformly ranging from 10 to 30
m, were selected. The field campaign of Marbaix, 19 April 2009 was chosen
as it was performed in the largest field at high resolution, maximizing the grid
size range.

6.4.4 Hydrologic model

In this work, we used the hydrological component of the continuous runoff and
erosion CREHDYS model (see Laloy and Bielders (2008, 2009) for a compre-
hensive model description). It can be used at rainfall event scale to simulate
high-frequency variability in rainfall-runoff processes. Short time steps are then
required to properly capture soil physical dynamics. Consequently, the model
requires one minute time step rainfall data as input. The model is spatially
distributed and the flow path must be derived from topography through a flow
accumulation grid. As we used the model for event-scale simulations only, the
relevant modeled processes for runoff prediction are infiltration, soil depres-
sional storage filling and runoff flow. For simplicity, no surface storage was
however considered in this study. Infiltration is computed using the Green-
Ampt model (Green and Ampt, 1911) which assumes a uniform wetting front
infiltrating vertically. A single soil layer is assumed, which results in a single
effective hydraulic conductivity along the entire topsoil depth. In its current
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form, the CREDHYS model therefore simulates infiltration-excess overland flow
only and does not simulate saturation-excess runoff caused by shallow imper-
vious layer or perched aquifers. Runoff flow is routed along flow paths using
a one-dimensional kinematic wave equation. Although not strictly required by
the model to simulate the runoff dynamics at the event scale, note that per-
colation is computed within and between precipitations using the method of
Savabi and Williams (1995). In addition, no evapotranspiration is taken into
account within a single rainfall event.

The same rainfall forcing was used for every simulation. It was recorded in
central Belgium and corresponds to a short and intensive storm with a return
period of 6 years (17.4 mm in 16 minutes). Because no discharge measure-
ments are available, the hydrologic model could not be specifically calibrated
for each of the fields. We therefore selected a typical model parameterization
for a mildly crusted bare loamy soil. In the absence of surface storage, the
soil properties to be considered by the model are the effective saturated soil
hydraulic conductivity, KS [mm/h], the absolute value of the Green-Ampt soil
matrix potential at the wetting front, ψ [mm], the antecedent soil moisture, θ
[m3m−3], the volumetric soil moisture content at saturation, θSAT [m3m−3],
the control depth for computing water balance, DF [m], the Manning’s n fric-
tion coefficient [m−1/3s] and the percolation submodel parameters (see Laloy
and Bielders (2008) for details). Based on the values found in Laloy and Bield-
ers (2008); Laloy et al. (2010), we fixed KS at 25 mm/h (Burnia site) and 20
mm/h (other fields), ψ to 100 mm, θSAT to 0.50 m3m−3, DF to 0.2 m, and
n to 0.03 m−1/3s. Those values were used for all field simulations. The KS
parameter was set at a slightly higher value for the Burnia site in order to
generate runoff responses suitable for a meaningful comparison among fields
and antecedent soil moisture scenarios. The KS equal to 20 mm/h was too
small for Burnia site for generating differences between scenarios. The KS
parameters were thus set accordingly the range of values found in Laloy and
Bielders (2008) and Laloy et al. (2010) for a similar soil in order to observe dif-
ferent runoff responses according to soil moisture scenarios. Lastly, it is worth
mentioning that antecedent soil moisture θ was found to be one of the most
sensitive parameters of CREHDYS with respect to runoff production (Laloy
and Bielders, 2008). Hence, as the model is spatially-distributed, it is expected
that spatial organization of soil moisture strongly affects the runoff prediction
at the outlet.

6.5 Results

6.5.1 Soil moisture data measured by ground penetrating
radar

Table 6.2 presents the within-field mean and standard deviation of GPR mea-
sured soil moisture and the parameters of the fitted variograms for the ten field
campaigns. As an example, Fig. 6.1 shows the map of surface soil moisture
measured by GPR in Marbaix on the 15 April 2009. It is worth noting that
the point-symbols appear around two times larger on the map compared to the
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real GPR antenna footprint size. Soil moisture conditions were clearly dry for
this GPR acquisition, with a corresponding smaller variability compared to the
other acquisitions (see Table 6.2).

Soil moisture values appeared globally spatially coherent, although some
nugget effect can be observed between neighboring points. In particular, we
can notice a line effect with a high spatial coherence for points along the same
acquisition line (i.e., the acquisition tracks), whereas there are some abrupt
changes when moving to adjacent lines, as already observed and discussed in
chapter 3. For other fields, line effects were also observed, but with different
degrees of importance. At a larger scale however, soil moisture patterns were
mainly related to the topography, that is, hilltops were drier than thalwegs.
The wettest areas appeared in the bottom of the thalwegs and near the outlet.

0 50 100 150

0.5

1

1.5

2

2.5

Distance [m]

γ(
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 [1
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3 )2 ]

Figure 6.3: Variogram of soil moisture computed for the field campaign in Marbaix,
15 April 2009 with a class distance from 0 to 150 m by a step of 5 m.
A variogram using an exponential model is fitted on the data. The total
variance of soil moisture is depicted with the dashed line.
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Figure 6.3 shows the variogram of soil moisture values computed along the
acquisition lines for the field campaign in Marbaix, 15 April 2009. Spatial
coherence was observed, with a regular increase of soil moisture variance with
increasing distance classes up to the range, which reached 260 meters, while
other field campaigns showed smaller ranges. The nugget effect accounted for
23% of the total sill (Table 6.2). Pearson’s coefficients of correlation between
the TWI and measured soil moisture from the reference maps were computed
(rTWI,θ, Table 6.2) and was equal to 0.385 for Marbaix, 15 April 2009. For the
other field campaigns, the correlation between the TWI and soil moisture was
always lower and even negative, as for, e.g., Walsdorf.

6.5.2 Effect of antecedent soil moisture on hydrographs

Hydrographs simulated with the deterministic soil moisture maps
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Figure 6.4: Hydrographs from hydrologic simulations using the antecedent soil mois-
ture maps from all scenarios for 4 field campaigns: Walhain - 07/04/2008
(a), Marbaix - 15/04/2009 (b), Walsdorf - 21/07/2009 (c) and Burnia
- 06/04/2010 (d). For stochastic soil moisture scenarios, i.e., random,
variogram, connected, the average hydrographs on the 1000 realizations
are depicted. The rainfall is depicted by the bars of the second Y-axis.
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Table 6.3 presents the runoff peaks and total runoff volumes resulting from
the hydrologic simulations for the ten field campaigns and the seven scenarios.
Figure 6.4 shows the hydrographs for four field campaigns only. For stochas-
tic soil moisture scenarios, i.e., random, variogram, connected, the average
hydrographs of the 1000 realizations are depicted.

The constant scenario, where soil moisture uniformly equals the mean value,
showed a lower runoff peak and volume compared to all other scenarios, except
the structuredinv. For Burnia, 30/03/2010 and 06/04/2010, the smallest runoff
peaks were found with the constant scenario. The hydrographs simulated with
the structured and structuredinv scenarios completely delineated the range of
variation of the other hydrographs for Marbaix - 15/04/2009 (Fig. 6.4 (b)) as
well as for Marbaix - 19/03/2009 and for the first three dates in Burnia. For the
other field campaigns, although some scenarios (e.g., the reference) can exceed
this range, the hydrographs from the two soil moisture maps based on the TWI
(i.e., structured and structuredinv) generally gave the range of variation for
the other hydrographs. In terms of runoff volume, the structured scenario
always resulted in the largest discharge. The structuredinv scenario resulted
in the lowest runoff volume in 9 out of 10 field campaigns. It is worth noting
that large differences in runoff peak and volumes existed between the different
dates of the time-lapse acquisitions in Burnia and Marbaix. The amount of
runoff appeared to be largely sensitive to the wetness state of the antecedent
conditions.
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As mean soil moisture increases, the range of variation of the hydrographs
between the two extreme scenarios (structured and structuredinv) tends how-
ever to diminish. Figure 6.5 shows the relative difference between structured
and structuredinv runoff volume as a function of the mean soil moisture in the
field. There was a good agreement between these two variables considering the
Belgian fields (Burnia, Marbaix, Walhain) only, with a coefficient of correlation
of -0.920, compared to a coefficient of correlation of -0.729 for all fields. The
range of variation of the hydrographs, i.e., the sensitivity of the runoff response
to the soil moisture spatial variability, appeared thus to be minimized in wet
conditions. It is worth mentioning that repeated measurements in Marbaix and
Burnia exhibited a temporal stability of measured soil moisture patterns (see
chapter 5 that may explain the good correlation when considering the fields
separately.
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Figure 6.5: Relative difference between structured and structuredinv runoff volume
as a function of the mean soil moisture in the field.

The particular behavior of the reference scenario for Walsdorf, which gave
a small runoff peak and volume compared to the other fields, originates from
the specific organization of the measured soil moisture. The wettest part of the
field in Walsdorf was observed in the plateau of the field whereas the driest part
was located near the outlet, which is highlighted by the negative correlation
between the TWI and soil moisture (Table 6.2, last column). A part of the
runoff which was generated in the wettest part may then have re-infiltrated
before reaching the outlet.

Hydrographs simulated with the stochastic soil moisture maps

Figure 6.6 shows the 1000 hydrographs from the random scenario for the field
campaign in Marbaix, 15 April 2009. The hydrographs from the four first soil
moisture scenarios are also plotted, as well as the average random hydrograph.
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Figure 6.6: Hydrographs from hydrologic simulation using the antecedent soil mois-
ture maps from scenarios 1 to 5 for the field campaign in Marbaix, 15
April 2009. The average random hydrograph is depicted as a dotted line
on top of the 1000 hydrographs from the random antecedent soil moisture
maps.

The 1000 random hydrographs cover a wide range of values but the peak
discharge is always lower than the reference and structured hydrographs, de-
noting the particular arrangements of soil moisture patterns in these scenarios
that produced a high discharge, although random simulation could theoreti-
cally provide the same soil moisture map as the ones from the reference or
structured scenarios.

It is worth noticing that a particular realization of the random scenario
can result in a hydrograph drastically different from another realization. Other
fields than Marbaix, 15 April 2009 showed average random hydrographs that
were better approaching the reference one, but there were still a large vari-
ability between the realizations.

The hydrographs from the variogram scenario (Fig. 6.7) cover a wider
range of values, largely overlapping the range delineated by the hydrographs
from the structured and the structuredinv scenarios. The antecedent soil mois-
ture map of the variogram scenario giving the largest discharge was actually
characterized by a well-connected soil moisture pattern with the highest soil
moisture values near the outlet (map not shown). It was observed that, for all
fields, the highest variogram scenario hydrograph showed the largest runoff
peak and volume compared to the highest random hydrograph. The hydro-
graphs from the connected scenarios (Fig. 6.8) cover also a wide range of values,
similarly to the variogram coverage. The average hydrographs of the stochas-
tic soil moisture scenarios gave on average higher runoff than the constant
scenario.
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Figure 6.7: Hydrographs from hydrologic simulation using the antecedent soil mois-
ture maps from scenarios 1 to 4 and 6 for the field campaign in Marbaix,
15 April 2009. The average variogram hydrograph is depicted in a dashed
line on top of the 1000 hydrographs from the simulated antecedent soil
moisture maps.
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Figure 6.8: Hydrographs from hydrologic simulation using the antecedent soil mois-
ture maps from scenarios 1 to 4 and 7 for the field campaign in Marbaix,
15 April 2009. The average connected hydrograph is depicted in a dashed-
dotted line on top of the 1000 hydrographs from the simulated antecedent
soil moisture maps.
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6.5.3 Evaluation of soil moisture modeling scenarios

Table 6.4 shows Nash-Sutcliffe efficiency coefficients (NSE) of the compari-
son between the different scenarios of antecedent soil moisture maps and the
reference scenario, for the ten field campaigns. The comparison of the soil
moisture scenarios was performed based on the normalized NSE, that are, the
NSE divided by the maximal NSE observed for each field campaign. This
normalization was set such that the mean, the standard deviation and the
corresponding statistical tests for each soil moisture scenario can be computed.

The stochastic scenarios of soil moisture, i.e., the random, variogram and
connected scenarios performed equally (based on a 95% confidence interval) and
gave on average higher NSE than the deterministic scenarios, especially for the
variogram scenario. The structured scenario performed the best among the
deterministic scenarios. Neglecting the field campaign of Walsdorf, the averages
of the normalized NSE of the structured and the constant scenarios appeared
significantly different, with a p-value of 0.0117. Although the constant scenario
performed better than the structured one in two field campaigns, i.e., Waldorf
and Burnia - 24/03/2010, the structured scenario was found to be a better
approach for modeling the soil moisture spatial variability within a catchment
than the constant scenario.
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Figure 6.9: Nash-Sutcliffe efficiency coefficients of the structured scenario with re-
spect to the reference scenario (NSEstructured) as a function of the cor-
relation between measured soil moisture and the TWI (rTWI,θ).

Figure 6.9 presents the NSE of the structured scenario with respect to the
reference, as a function of the correlation between measured soil moisture
and the TWI. The performance of the structured scenario in approaching the
reference hydrograph (i.e., NSEstructured) appeared to be related to the ex-
planatory power of the TWI for soil moisture (i.e., rTWI,θ), with a coefficient of
correlation of 0.581 between these two variables. This correlation increased if
we consider only field campaigns performed on the same field, e.g., the correla-
tion rose to 0.898 when field acquisitions in Burnia only were considered. The
bad performance of the structured scenario in approaching the reference sce-
nario for Walsdorf pointed out above can be related to its negative correlation
between the TWI and measured soil moisture. Similarly, the proximity of the
reference and structured hydrographs for Marbaix - 15/04/2009 (Fig. 6.4(b))
can be related to the largest correlation between the TWI and soil moisture
that was observed for this campaign.

Varying grid sizes did not drastically change the hydrographs that were
obtained with the 10 m resolution simulations (see Fig. 6.4(b)). While the
correlation between TWI and measured soil moisture slightly increased with
grid size, there was not a clear increase of the NSE for the structured scenario
(Table 6.5).
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6.6 Discussions

6.6.1 Effect of spatial variability of soil moisture on sim-
ulated runoff

Hydrologic simulations using different organizations of soil moisture patterns
showed a large variability of runoff responses. This behavior can be explained
by the location of the runoff contributing and non-contributing (or even re-
infiltrating) areas that are determined by antecedent soil moisture conditions
(Noto et al., 2008). Runoff is generated at a certain soil moisture threshold
because rainfall intensity exceeds the effective infiltration capacity (Hortonian
overland flow). Based on single-cell hydrologic simulation, the antecedent soil
moisture thresholds that triggered runoff generation were estimated to be ap-
proximately 0.25 and 0.20 m3m−3 for the 25 and 20 mm/h initial hydraulic
conductivity, respectively. The threshold behavior of the hydrologic model re-
sponse to antecedent soil moisture results in a non-linear response of the model
with soil moisture. Introducing spatial variability of soil moisture creates zones
where the initial soil moisture is close or above this threshold, which rapidly
become runoff contributing areas. The runoff response of the different soil mois-
ture scenarios can be explained by the locations of runoff contributing areas
that modulated the simulated runoff response at the catchment outlet:

� The constant scenario resulted in smaller runoff than other spatially vari-
able soil moisture scenarios (except the structuredinv), denoting the non-
linear response of the hydrologic model to soil moisture. Merz and Plate
(1997); Merz and Bardossy (1998) and Bronstert and Bardossy (1999)
also observed that constant soil moisture conditions resulted in the lowest
discharge compared to spatially-variable soil moisture, either organized
in a structured (Merz and Plate, 1997; Merz and Bardossy, 1998; Bron-
stert and Bardossy, 1999) or random (Merz and Bardossy, 1998; Bron-
stert and Bardossy, 1999) way. However, compared to spatially-constant
soil moisture organization, Merz and Plate (1997) observed similar (dry
conditions) and smaller (wet conditions) discharge with randomly per-
muted values. This was explained by the possibility of re-infiltrating
pixels placed along the flow channel, but this explanation was incoher-
ent when comparing the results in dry and wet conditions. In our case,
although some random realizations resulted in smaller discharge than
the constant scenarios, the average random hydrographs appeared larger
than the constant ones, maybe due to the larger number of realizations in
our study (1000 instead of 3) or to the different model parameterizations.

� The structured scenario gave the largest discharge due to the locations
of the contributing areas (i.e., the wettest areas) that were situated near
the outlet and in the flow channels. However, for the structuredinv sce-
nario, the contributing areas were far from the outlet and from the runoff
network, so the generated runoff re-infiltrated when propagated to the
field outlet.
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� The decrease in the range of hydrographs, expressed as the difference be-
tween the structured and structuredinv scenarios, with increasing mean
soil moisture (Fig. 6.5) can be explained by the increasing size of the
contributing areas in wet conditions. In dry conditions, small contribut-
ing areas are located near to and far from the outlet for the structured
and the structuredinv scenarios, respectively. As a result, the difference
between these scenarios is maximized in dry conditions. Therefore, field
acquisitions (i.e., Marbaix, Walsdorf and the first three dates of Burnia)
that showed antecedent soil moisture below the soil moisture thresholds
are expected to be more sensitive to spatial variability of soil moisture
as thresholds are overtaken during the simulations. In wet conditions,
the contributing areas expand and tend to cover the whole field, and as
a result, the difference between the two scenarios tends to vanish. At an
extreme state of wetness, i.e., for a completely saturated soil, there would
be no differences in terms of runoff between the two extreme scenarios.
In that respect, Merz and Plate (1997) also pointed out that the effect
of simulated spatially structured variability was more important in dry
conditions because of the smaller size of the contributing areas.

� The average random, variogram or connected hydrographs (i.e., the
model outputs) appeared larger from the constant hydrograph, although
the average random, variogram or connected antecedent soil moisture
maps (i.e., the model inputs) are theoretically equals to the constant one,
denoting the non-linearity of the hydrologic model.

� The variogram and connected soil moisture scenarios gave a wider range
of hydrographs and on average higher runoff peak and volume compared
to the random soil moisture scenario because of the spatial coherence of
contributing areas, as it was also stated in Merz and Bardossy (1998).
This wide range is to be attributed to the spatial clustering of non-
contributing re-infiltrating pixels that can be placed on or completely
outside the flow channel, resulting in a small or great discharge, respec-
tively. The probability that numerous re-infiltrating pixels are present on
the flow channel is smaller in the random scenario than in the variogram
and connected scenarios because of the grouping of similar pixels.

� It was shown that a unique realization of the random scenario can not be
used to properly model soil moisture patterns because of the large vari-
ability in modeled discharges. From a practical point of view, the random
scenario may suffer from the large requirement in computing resources,
due to the need of several repetitions. This large variability between the
realizations with the random scenario compared to a structured soil mois-
ture organization was not observed in Merz and Plate (1997) and Merz
and Bardossy (1998). It seems that the threshold effect of soil moisture
on runoff was stronger in our study than in these two previous ones, al-
lowing for more re-infiltration and a larger impact of the locations of the
contributing areas.



154 Chapter 6. Effect of soil moisture variability on runoff response

The second objective of this paper was to evaluate which description of soil
moisture organization is the most appropriate for hydrologic modeling at the
field scale. The comparability of the fields may be limited by soil, topographic,
resolution and moisture conditions differences. Nevertheless, the good perfor-
mance of the structured soil moisture scenario was observed for different field
and moisture conditions, even in cases when measured soil moisture was poorly
correlated with the TWI. It was shown that there was a larger comparability
between the different soil moisture conditions for field campaigns performed on
same fields (Burnia and Marbaix), even though there was a large variability
of the runoff peak and volume amounts depending on the wetness conditions.
Varying grid sizes did not alter the order of performance of the antecedent soil
moisture scenarios (Table 6.5). It was thus shown that, to some extent, the ef-
fect of spatial variability of antecedent soil moisture can be observed in various
field conditions at the field scale, under a specific rainfall.

6.6.2 Soil moisture patterns and its relation with topo-
graphic wetness index

In this study, the TWI appeared to be a poor predictor of the measured soil
moisture spatial distribution (see Table 6.2). Although some studies have
shown that the explanatory power of the TWI for soil moisture may increase
with scale aggregation (Sørensen et al., 2006) or by comparing grid cells ac-
counting for an uncertainty in the location of the cells (Güntner et al., 2004),
this was only slightly observed when increasing the resolution scale (i.e., for
Marbaix, 15 April 2009 only). Meanwhile, the use of multidirectional flow ac-
cumulation algorithms could also improve the computation of the TWI and its
correlation with measured soil moisture (Quinn et al., 1995; Tarboton, 1997;
Seibert and McGlynn, 2007). The explanatory power of the TWI for soil mois-
ture may be limited in dry conditions, as observed for Walsdorf. Indeed, for this
case, the soil moisture pattern may be better explained by soil type or radiative
indices, as it was the only field campaign that was conducted in summer.

The predictive power of the structured scenario appeared to be related to
the correlation between the measured soil moisture and the TWI (Fig. 6.9).
Nevertheless, for some field campaigns, this weak negative correlation con-
trasted with the rather good NSE of the reference scenario compared to the
structured scenario, as for, e.g., Walhain, 07 April 2008, which has rTWI,θ =
-0.064 and NSEstructured = 0.869. This can be explained by the non-unicity of
the hydrologic model with respect to the antecedent soil moisture maps for a
particular hydrograph, that is, a large number of antecedent soil moisture maps
can result in the same hydrograph. In that respect, a measured soil moisture
pattern which is poorly correlated with the TWI could still result in a runoff
response close to the one of the structured scenario.

In the hydrologic simulations using CREHDYS, flow paths are governed by
topography, but it is worth noticing that in reality, deviating structure within
(e.g., wheel tracks) and between (e.g., ditches, roads) fields may limit the use
of solely topographically-driven hydrologic modeling. If not accounted for in
real case experiment, it would reduce the relationship between the explana-
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tory power of the TWI for soil moisture and the runoff response using the
structured scenario. In these simulations, the same topography information
(e.g., same grid resolution) is used for both hydrological modeling and reorder-
ing soil moisture in the structured scenario. This might have increased the
correlation between the NSEstructured and the explanatory power of the TWI
for measured soil moisture.

Grayson et al. (1997) showed that soil moisture patterns tend to be char-
acterized by a larger stochastic variability in dry conditions while they ap-
pear more structured in wet conditions. Nevertheless, for the 10 soil moisture
datasets presented here, there was no clear trend between the mean soil mois-
ture and the importance of the nugget effect (Table 6.2), except for Burnia
where a decrease in the Nugget/Sill ratio is observed with increasing soil mois-
ture. The overall poor relation may originate from the different field conditions
in terms of soil type and topography and from the limited soil moisture range
of the field campaigns.

6.6.3 Disaggregation of soil moisture

Disaggregating coarse-scale soil moisture data into fine-scale patterns needs
to account for the importance of spatial variability on runoff responses. For
large catchments (> 10 km), spatial distribution of soil moisture can not be
measured at high resolution (e.g., ∼m) at the field scale. Nevertheless, coarse-
scale remotely-sensed soil moisture data could be disaggregated by combining a
geostatistical description of fine-scale soil moisture patterns with other sources
of fine-scale information (e.g., topography as in Pellenq et al. (2003)), if soil
moisture patterns could be explained by this information. In that respect,
several authors have proposed empirical relationships between the mean soil
moisture and its corresponding standard deviation for different extent scales
using soil moisture data from remote sensing estimates and invasive sensors at
various extent scales (Western et al., 2003; Vereecken et al., 2007; Famiglietti
et al., 2008). Therefore, fine-scale antecedent soil moisture maps are to be
modeled from coarse-scale remotely-sensed soil moisture data according to the
effects of soil moisture spatial variability on runoff response.

6.7 Conclusions

We investigated the effect of antecedent soil moisture spatial variability on
runoff response using a distributed hydrologic model at the field scale. Ten
field acquisitions of soil moisture at high resolution were obtained using a mo-
bile proximal GPR platform. Based on these soil moisture data, seven scenarios
of antecedent soil moisture maps were constructed with different spatial organi-
zations. Hydrologic simulations were then performed for each field acquisition
with seven antecedent soil moisture scenarios.

The first objective of this study was to investigate the effect of different
antecedent soil moisture scenarios on field scale runoff response. The high sen-
sitivity of antecedent soil moisture spatial variability on the runoff response
was clearly shown for all the field acquisitions in various field and moisture
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conditions, but in a larger extent in dry conditions. Spatially constant an-
tecedent soil moisture conditions (constant scenario) resulted in a smaller dis-
charge than scenarios exhibiting soil moisture spatial variability, except for the
structuredinv scenario. When soil moisture was arranged according to the TWI
(structured scenario), the runoff volume was the largest for all field campaigns.
At the opposite, when soil moisture was inversely arranged according to the
TWI (structuredinv scenario), the runoff volume was in general the lowest.
Stochastic scenarios of antecedent soil moisture (i.e., random, variogram and
connected) gave on average similar and intermediate hydrographs, but there
was a wide variability between the stochastic realizations. The observed effects
of soil moisture spatial variability on the runoff could be explained in terms
of contributing areas, with respect to their sizes and their locations within the
field, as runoff is triggered above a soil moisture threshold. The spatial variabil-
ity of antecedent soil moisture conditions therefore resulted in different runoff
responses compared to field-averaged values because of the non-linearity of the
runoff production to antecedent soil moisture.

The second objective of this study was to find the soil moisture scenarios
that most closely approach the measured soil moisture pattern in terms of
runoff response. The average hydrograph from the variogram scenario was the
best soil moisture modeling scenario. Yet, it is worth noting that a particular
realization can perform very badly. Among the deterministic soil moisture
scenarios, structured performed the best, which was moderately related to the
correlation of measured soil moisture and the TWI itself.

Except few particular cases, the effects of spatial variability of soil moisture
on runoff response which were already analyzed in previous studies (Merz and
Plate, 1997; Merz and Bardossy, 1998; Bronstert and Bardossy, 1999) could be
generalized for various field and moisture conditions. In the absence of other
detailed source of information, organizing the soil moisture pattern accordingly
to the TWI appeared to be the best soil moisture modeling method, even when
TWI was poorly correlated to measured soil moisture. Given the high avail-
ability of topographic data at high resolution, disaggregating remotely-sensed
soil moisture data using TWI information might be valuable. Nevertheless,
these findings may be better validated against real discharge measurements.



Conclusions and
Perspectives

Soil moisture plays an important role in many hydrologic, climatic and en-
vironmental processes. Management of terrestrial systems needs an accurate
characterization of the determinant state variables at the appropriate scale of
time and space. Knowing the spatiotemporal distribution of soil moisture at
various scales is therefore essential for the modeling and understanding of the-
ses processes. Soil moisture measurements techniques range from small-scale
invasive sensors to large-scale remote sensing instruments. Hence, there is
still a scale gap in the soil moisture measurement techniques. In that respect,
ground penetrating radar (GPR) has shown interesting capacities for proximal
soil sensing at the field scale.

This thesis aimed at applying and validating the advanced GPR method
developed by Lambot et al. (2004b) for soil moisture sensing and mapping in
field conditions, in support of hydrological modeling at the field scale. The
first main objective was to evaluate the reliability of the GPR method for soil
moisture determination through numerical, laboratory and field experiments.
The second main objective was to investigate the spatiotemporal patterns of
soil moisture at the field scale and the importance of taking them into account
in hydrologic modeling.

Summary

In the first chapter, a frequency domain reflectometry (FDR) system was de-
veloped and modeled using the modeling approach initially developed for GPR
by Lambot et al. (2004b). The medium sensed by the FDR probe was assumed
as a multi-element transmission line, with each element being characterized by
its own electromagnetic parameters, and probe head effects were accounted for
by three frequency-dependent transfer functions (global reflection and trans-
mission coefficients functions). Only three measurements in known media are
sufficient to determine the probe transfer functions and the FDR waveforms
could be well modeled after probe calibration. The technique permitted to re-
trieve the relative dielectric permittivity of humid sand media with a good ac-
curacy (RMSE=0.514 in terms of permittivity), as well as frequency-dependent
electrical conductivity.
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In chapters 2 and 3, we investigated the use of one-layered, two-layered
or continuous profile model inversions for soil moisture retrieval by numerical,
laboratory and field experiments. In the presence of shallow soil layering or
vertically-varying soil moisture conditions, interferences may occur and affect
the backscattered GPR wave. The purpose of these experiments was both to
determine in which conditions a one-layered model permits to retrieve surface
soil moisture information and to investigate the retrieval of profile soil moisture
by two-layered or profile models. In chapter 2, numerical experiments showed
that surface soil moisture of a two-layered medium could be retrieved using a
one-layered model with a good accuracy while the contrast between the layers
remained sufficiently low (< 0.10 m3m−3). These results were corroborated by
the laboratory experiments, with an increasing error in shallow soil moisture re-
trieval with increasing contrast between the layers. Two-layered inversions were
able to retrieve soil moisture of the two layers, as well as the first layer thick-
ness with an accuracy of 2 cm. The importance of full-waveform inversions on a
large frequency bandwidth were pointed out, as errors increased when inverting
the data over limited frequency bandwidths. In chapter 3, we demonstrated
by numerical experiments that two-layered GPR data inversion permitted to
address continuous profile conditions, that was, two-layered inversions could
retrieve soil moisture values at the top and bottom of the profile. Using GPR
data acquired in field conditions, two-layered and profile characterization of soil
moisture were also in good agreement between them and in accordance with
field observations, that were, soil moisture increased with depth.

The GPR system was comprehensively validated for field acquisition of sur-
face soil moisture in chapter 4. For field acquisition, the GPR system was
mounted on a mobile platform that allowed for a high acquisition rate (5-10
km/h) at high resolution over several ha. In that chapter and the followings,
only one-layered model inversion for the characterization of surface soil mois-
ture was considered. The uncertainties in GPR-derived soil moisture mapping
were evaluated by three different methods. First, GPR inversion uncertain-
ties were computed and appeared to be very low, i.e., a field-average standard
deviation of 0.0039 m3m−3. Second, the repeatability of soil moisture map-
ping was assessed and the field-average root mean square repetition error was
found to be equal to 0.0169 m3m−3, with a large part of this error attributed
to the interpolation of soil moisture points. Lastly, comparison with soil core
sampling resulted in a RMSE of 0.0233 m3m−3. In conclusion, soil moisture
mapping by GPR appeared very precise, repeatable and in a good agreement
with independent soil moisture data.

In chapter 4, a linear approximation of the inverse problem was sufficient
to assess the inverted parameter uncertainties (i.e., the soil moisture standard
deviation), owing to the low dimensionality of the inverse problem (two param-
eters). Nevertheless, in case of a larger number of parameters to invert for, the
inverse problems could not be reasonably linearly approximated and a Markov
Chain Monte Carlo sampling of the parameter space was necessary, as used in
chapter 2. This sampling permitted to assess the complete posterior distribu-
tions of inverted parameters and to evaluate the cross-correlation between the
parameters, therefore allowing for a sensitivity analysis of the parameters to
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the electromagnetic model. However, it is worth mentioning that this Markov
Chain Monte Carlo sampling remains considerably computationally intensive
compared to linear methods.

In chapter 5, using the GPR mobile platform, soil moisture was surveyed at
five different dates in the same field. These campaigns permitted to reveal spa-
tiotemporal patterns of surface soil moisture with an unprecedented resolution
at the field scale. The temporal stability of these patterns were investigated
and some locations of the field showed temporal stability of soil moisture, ei-
ther for the field-average or for the extremes of soil moisture distributions. The
intersection of the areas showing the field-average ± 0.02 m3m−3 for each date
covered 5 % of the field area whereas the less restrictive criterion based on
the average over time of the relative difference of soil moisture to the field-
average showed 10 % of the field locations where this difference was below 0.02
m3m−3. The time-stable soil moisture patterns could be related to topography
and might inform about surface hydrologic processes occurring in the field.

Ten soil moisture maps obtained by GPR field campaigns were used in chap-
ter 6 to investigate the effect of the spatial variability of antecedent soil mois-
ture on the runoff response using a distributed hydrologic model. This chapter
aimed at knowing which description of soil moisture variability was the more
suited for an accurate hydrologic modeling at the field scale. The high sensitiv-
ity of antecedent soil moisture spatial variability on runoff response was clearly
shown for all field acquisitions. In general, spatially constant antecedent soil
moisture conditions resulted in smaller discharges than scenarios exhibiting soil
moisture spatial variability. When sorting the soil moisture directly or inversely
according to the topographic wetness index (TWI), this delineated the range
of possible hydrographs. Stochastic simulations of soil moisture variability, ei-
ther randomly arranged or spatially-structured, resulted in a wide variability
of runoff responses among the stochastic realizations. In the absence of other
detailed source of information, organizing the soil moisture pattern accordingly
to the TWI appeared to be the best soil moisture modeling method, and this
was moderately related to the correlation of measured soil moisture and the
TWI itself. This last chapter was particularly appealing for disaggregating
(or downscaling) remotely-sensed coarse-scale soil moisture data into fine-scale
patterns in a data assimilation framework.

In conclusion, an efficient proximal GPR was applied to field conditions
for soil moisture sensing and mapping. The method was found to be accurate
and precise, in addition to its high practicability. This tool has an intermediate
support scale between invasive sensors and active radar remote sensing, i.e., the
antenna footprint is 1.5 meter in diameter. Field measurements were performed
with spacings ranging from 2 to 15 meters, but other spacings could be used.
More than one thousand of points could be acquired per hour, which resulted
in extents covering up to several ha within few hours. Hence, the developed
GPR is characterized by an unprecedented scale triplet, showing a high spatial
resolution at the field scale. Regarding the processing time, a full-waveform
inversion using a one-layered model for surface soil moisture determination
takes around 0.5 s on a PC with a single processor, allowing for real-time soil
moisture mapping during the acquisition if needed.
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Compared to traditional GPR methods (e.g., the ground-wave method),
the proposed GPR approach shows larger capacities in information retrieval in
terms of accuracy and vertically-varying soil moisture. These larger capacities
originate from the full-waveform inversion of ultra-wideband radar data, which
inherently increases the information content in the GPR data compared to
GPR systems operating in small frequency bandwidths, and from the accurate
modeling of the GPR system, which avoids shortcomings in the modeling of
the propagation of electromagnetic waves. For field acquisition, the off-ground
configuration also permits to use the GPR system in digital soil mapping ap-
plications, helping for the mapping of larger areas compared to traditional
on-ground GPR systems.

The proposed GPR method has provided new soil moisture measurements
in terms of support, resolution and extent scales. It has shown that the spatial
variability of surface soil moisture remains important, even if a 1 m2-support
scale is used. Although measurement and modeling errors appeared relatively
low (e.g., 0.017 m3m−3 of repetition error in chapter 4), large nugget effects
(e.g., 0.04 m3m−3) were observed and they were explained by unrevealed small-
scale (∼ m) spatial variability. Knowing the spatial variability of soil moisture
at the intermediate scales between the support and resolution scales may help
for elucidating this issue. More generally, when soil moisture measurements are
to be compared, for instance between remote sensing and ground-truth mea-
surements, scale gap between support and resolution scales of each instrument
should be avoided.

Ground penetrating radar limitations and per-
spectives

The application of the electromagnetic model to a TDR probe resulted in good
retrievals of soil electromagnetic properties. However, it is worth noting that
the media that were analyzed by the FDR analysis were simple and that the
FDR approach did not outperform the classical TDR approach for determining
the dielectric permittivity. The developed FDR modeling approach is theoret-
ically exact in terms of the propagation of the electromagnetic fields and could
be used to retrieve the complete profile of soil electromagnetic parameters along
the FDR probe. Nevertheless, in practice, this asset may be limited by the nar-
row frequency bandwidth in which the probe is efficient, thereby limiting the
information content in the FDR waveform. In that respect, the design and
construction of an optimal probe is particularly important.

In this thesis, the GPR inversion appeared poorly sensitive to the soil elec-
trical conductivity, because of the low sensitivity of the electromagnetic model
to the relatively-low conductivity encountered in the study areas. However, in
case of more conductive soils, insensitivity of the model to the electrical con-
ductivity may affect the retrieval of soil dielectric permittivity and correlated
soil moisture (Giroux and Chouteau, 2010). Electromagnetic induction (EMI)
instruments, operating at lower frequency (∼ kHz) are known to be better ef-
fective tools for electrical conductivity sensing. One may notice that there is
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actually a frequency gap in the EMI-GPR sensors in the kHz-MHz frequency
range. Knowing that increasing the bandwidth increases the information con-
tent, it would be particularly relevant to benefit from a single sensor capable of
sensing the dielectric permittivity and electrical conductivity simultaneously.

GPR antenna and soil-antenna interactions effects are accounted for in the
electromagnetic modeling of the GPR system for a far-field configuration. This
means that the GPR antenna should be placed far enough from the main
reflector (e.g., the soil surface) in order to assume a planar propagation of the
electromagnetic waves at the antenna reception. For the 200-2000 MHz radar
antenna used for field measurements (chapters 3 to 6), the far-field configuration
starts at around 1.10 meter above the soil surface, in relation with the antenna
dimension. However, at this height, a part of the energy that is reflected
from the soil surface is not received by the antenna because of the geometrical
spreading of the waves. The modeling of the GPR system in the near-field
configuration as initiated in Lambot et al. (2010) would permit to lower the
antenna and increase the part of the reflected energy sent back to the antenna,
thereby increasing the signal-noise ratio. This would permit to increase the
depth of penetration of the electromagnetic waves by increasing the information
content from the reflection of deeper soil layers.

Concerning the GPR setup, it is worth noting that its components, i.e., the
VNA, the GPR antenna and the cable, were not designed for field utilization.
Therefore, the development of rugged instruments would facilitate the prac-
ticability of the method and may reduce measurements errors. In particular,
the calibration of the VNA is known to be sensitive to temperature changes,
although this was not observed during fields campaigns. The normal incidence
of the GPR waves is also required, while the orientation of the antenna may
change during field acquisition.

As discussed in chapter 4, lateral and vertical heterogeneities within the
GPR antenna footprint may affect the GPR reflected signal. The absence
of lateral heterogeneity at the footprint scale is a strong hypothesis in field
conditions and it is still not known how this affect the retrieval of footprint soil
moisture. As a result, the unique soil moisture value that is retrieved at the
support scale might be different from the arithmetic average of footprint soil
moisture. Laboratory and field experiments have to be performed in order to
investigate how soil moisture is integrated within the GPR footprint. Forward
and inverse modeling of the GPR wave in a discretized 3-D medium could
permit to get a complete characterization of heterogeneous media, but it is
worth noting that the information content in a single GPR wave may not
be sufficient to fully characterize within footprint heterogeneities. Lastly, a
smaller support scale may be valuable given the high soil moisture variability
at the meter scale. In that respect, modeling the GPR system in a near-
field configuration would permit to decrease the height of the GPR antenna,
resulting in a decrease of the antenna footprint.

A great issue in the sensing of soil moisture by electromagnetic waves is the
depth of characterization (or sampling depth). In case of multi-layered medium
configurations in the electromagnetic model, depth-dependent information can
be retrieved, as shown in chapters 2 and 3, and the depth of penetration for
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a particular frequency only depends on the power of the electromagnetic wave
in relation with the antenna characteristics. However, for GPR data inversion
focused on the surface reflection peak (one-layered model) as used in chap-
ters 4 to 6, the backscattered GPR data that are considered pertain to the
air-soil interface only. For the surface reflection method, the depth of char-
acterization d of an electromagnetic wave is proportional to its wavelength λ,
that is, the Rayleigh criterion assumes d = λ/8. The depth of characteriza-
tion is thus inversely linearly related to the electromagnetic wave frequency
and to the square root of the permittivity. Therefore, the depth of charac-
terization increases with decreasing soil moisture and, as a result, is actually
varying within a field as a function of soil moisture. This drawback could be
surmounted owing to the ultra-wideband GPR data by inverting the GPR data
within different frequency ranges according to the soil moisture. According to
Jadoon et al. (2010a), by comparing the GPR-derived soil moisture with near-
surface horizontal TDR measurements, the depth of characterization using the
same GPR antenna with the surface reflection data inversion was found to be
about 4 cm. Further investigations, combining theoretical and experimental
studies, are needed to more precisely determine this depth.

The impact of surface soil roughness on the GPR data was widely discussed
in chapter 3. In this thesis, surface roughness interferences and scattering
were avoided by operating at sufficiently low frequencies. However, for larger
surface roughness, these phenomenons should be taken into account by an
appropriate modeling. Proximal radar sensing could be also used for surface
roughness characterization, in support to radar remote sensing operating at
larger frequencies. Similarly, the effect of vegetation was not addressed in this
thesis and field campaigns were performed in fields with few vegetation cover.
In order to monitor the soil moisture over the full vegetation period, it would be
interesting to deal with GPR measurements over a significant vegetation cover.
In that respect, treating the canopy as an additional layer or using Rayleigh
scattering approaches as in remote sensing applications should be investigated.
Both for surface roughness and vegetation cover issues, proximal GPR research
could benefit from the great developments that were achieved in the field of
spaceborne radar remote sensing.

According to Huisman et al. (2003), one of the main limitations of GPR
techniques for soil moisture sensing is the petrophysical relationship used to
convert GPR-derived dielectric permittivity into soil moisture values. Never-
theless, during this thesis, the petrophysical relationships that were determined
in laboratory and field conditions showed in general good agreements between
GPR-derived permittivities and soil moisture determined by volumetric sam-
pling. More appropriate petrophysical models could be used by adding aux-
iliary information (porosity, texture, etc.). It is worth noting that the petro-
physical model parameters could be also optimized in the GPR inversion in
order to directly retrieve the soil moisture (Tran et al., submitted).
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Perspectives in soil moisture sensing

Mounted on a mobile platform, this proximal GPR was proven to be an efficient
tool for digital soil mapping at high resolution. It is worth noting that time-
lapse soil moisture measurements can provide insights about soil properties,
such as soil structure and hydraulic properties, these latter being dependent
upon time-invariant properties such as soil texture. Therefore, high-resolution
soil properties could be indirectly mapped using GPR measurements.

It is of particular interest to rely on high-resolution soil properties data for
precision agriculture applications (Adamchuk et al., 2004). Information about
the spatial variability of soil properties could help for a reasonable application
of nutrients to crops in environments facing contamination of soil and wa-
ter and increasing scarcity of non-renewable resources such as phosphore and
potassium. Precision agriculture could also help to reduce input costs or to
avoid overdosing of nutrients. High-resolution soil information could be known
before agricultural intervention or in real-time during the application of inputs.
In order to facilitate the data acquisition, the GPR system could be mounted
on agricultural machines on the occasion of usual farming operations. This tool
could be also directly used for the optimisation of irrigation systems, allowing
for the distribution of the right amount of water to crops in real-time according
to the soil wetness.

Despite the huge development in instruments and retrieval algorithms, quan-
titative remote sensing of soil moisture remains a complicated task. Validation
campaigns of remote sensing instruments often require a large number of point-
measurements over large areas in a limited time frame, as surface soil moisture
evolves rapidly. In that respect, the proposed GPR method could improve
high-resolution remote sensing data products, by providing efficient soil mois-
ture mapping, as initiated in Lievens et al. (submitted) for RADARSAT-2
and ENVISAT ASAR sensors. In particular, two-layered and profile inversions
(chapters 2 and 3) could be of particular interest to differentiate between surface
and subsurface soil moisture and to infer the relationships between shallowly-
retrieved soil moisture from remote sensing and the root-zone soil moisture (Li
and Islam, 2002). Moreover, remote sensing backscattered coefficients could be
compared directly with the GPR-derived dielectric permittivity, without the
use of petrophysical relationships.

A large number of studies have investigated downscaling or disaggregating of
large-scale remotely-sensed soil moisture data for soil moisture characterization
at a finer scale (e.g., Merlin et al., 2006). Knowing small-scale spatiotempo-
ral patterns of soil moisture and their relation with terrain attributes or soil
information could be used to properly disaggregate soil moisture. Owing to
its intermediate scale of characterization, this GPR method could be used for
a more accurate downscaling of soil moisture data through the knowledge of
temporally-persistent soil moisture patterns (Loew and Mauser, 2008).

So far, a large majority of soil moisture studies at the field scale relied
on point-measurements using invasive methods. On the other hand, the huge
development in remote sensing of soil moisture techniques resulted in a great
number of studies about soil moisture characterization, but at larger scales.
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More recently, wireless sensor networks have shown promising perspectives for
soil moisture characterization at the field scale, as installed sensors permit to
acquire soil moisture data with a considerable temporal resolution. An exciting
perspective would be to combine the large temporal resolution of grounded sen-
sors network with the large spatial resolution of the proximal GPR developed
in this thesis. As demonstrated in chapter 5, time-lapse measurements using
GPR can be used to determine the best locations for grounded sensors in terms
of temporal stability. The combination of well-located grounded sensors with
occasional GPR field measurements would therefore result in an unprecedented
characterization of soil moisture patterns.
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Soil moisture maps

The surface soil moisture maps presented here are a selection of the soil mois-
ture maps that were produced for the HYDRASENS research project and along
this thesis. Surface soil moisture values were retrieved using time-domain in-
versions focused on surface reflection, as presented in chapter 4. Soil moisture
values were interpolated using ordinary kriging, with a rectangular neighboring
window for the maps in Burnia (see chapter 4). These maps and others are pre-
sented in a dynamic webmap on http://sites.uclouvain.be/MappingResearch.

The following table summarizes the soil moisture data used to produce these
maps. The mean µθGPR

and standard deviation σθGPR
of soil moisture [m3m−3]

data are presented in the last two columns.

Field Watershed Date N◦ of points µθGPR
σθGPR

Walhain Dyle 31/03/2008 1041 0.314 0.0807
Walhain Dyle 04/07/2008 2947 0.307 0.0713
Cruchten Alzette 13/03/2009 3572 0.309 0.1178
Keispelt Alzette 13/03/2009 1311 0.261 0.1017
Marbaix Dyle 19/03/2009 3999 0.108 0.0514
Walhain Dyle 23/03/2009 4157 0.110 0.0412
Marbaix Dyle 15/04/2009 3250 0.116 0.0488
Walsdorf Alzette 21/07/2009 3629 0.172 0.0687
Burnia Dyle 15/03/2010 1699 0.228 0.0670
Burnia Dyle 18/03/2010 1586 0.234 0.0629
Burnia Dyle 24/03/2010 1593 0.240 0.0644
Burnia Dyle 30/03/2010 1385 0.295 0.1143
Burnia Dyle 06/04/2010 1980 0.298 0.1153
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ing Radar, 34èmes Journées Scientifiques du GFHN, Aix-en-Provence,
France, November 2009.

� Minet, J., S. Lambot, M. Vanclooster, Mapping of soil moisture at the
field scale using full-waveform inversion of proximal Ground Penetrating
Radar data, European Geophysical Union, Vienna, Austria, May 2010.

� Minet, J., C. Patriarca, E. C. Slob, M. Vanclooster, S. Lambot, Char-
acterization of layered media using full-waveform inversion of proximal
GPR data, URSI International Symposium on Electromagnetic Theory -
EMTS2010, Berlin, Germany, August 2010, invited presentation.

� Minet, J., S. Lambot, M. Vanclooster, Evaluation of a proximal ground
penetrating radar technique for soil moisture mapping at the field scale,
European Geophysical Union Leonardo Topical Conference, Luxembourg,
Luxembourg, November 2010.

� Minet, J., A. Wahyudi, P. Bogaert, S. Lambot, M. Vanclooster, Amélioration
de la cartographie de la teneur en eau du sol mesurée par télédétection
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Summary

Soil moisture is an important state variable acting in many environmental, hy-
drologic and climatic processes. There is thus a pressing scientific demand for
revealing the soil moisture dynamics in the biosphere at various temporal and
spatial scales. Despite the huge development of remote sensing of soil moisture
techniques, there is still a lack of soil moisture measurement techniques avail-
able at high spatial resolution (∼ m). This thesis aimed to validate and apply
advanced proximal ground penetrating radar (GPR) for soil moisture sensing
at the field scale.

For field acquisition, the GPR system was mounted on a mobile platform
that allowed for a fast acquisition rate at high resolution. The impact of shallow
soil layering on the GPR backscattered signal was investigated in numerical and
laboratory experiments and the best GPR data inversions strategies for deal-
ing with shallow soil layering were determined. Then, coherent two-layered
and continuous soil moisture profiles could be characterized in field conditions,
owing to the large frequency bandwidth in which the GPR operates. The uncer-
tainties in soil moisture sensing and mapping were comprehensively evaluated
in field conditions, and the proposed GPR method appeared to be highly precise
and accurate. In that respect, the GPR method showed a high repeatability
for soil moisture sensing.

This advanced GPR method permitted to characterize spatiotemporal pat-
terns of soil moisture in an agricultural field and to investigate their temporal
stability. Locations showing temporal stability of field-average soil moisture
could be revealed. Lastly, the effect of the spatial variability of antecedent soil
moisture on runoff response using a distributed hydrologic model was studied
in various field and moisture conditions. Benefiting from an unprecedented
spatial resolution, the proposed GPR method bridges the scale gap between
large-scale remote sensing instruments and small-scale invasive sensors for an
accurate soil moisture determination.
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