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ABSTRACT 
The objective of this paper is to demonstrate the performance of the restoring force surface method in the identification of 
nonlinear systems. The experimental application of the method has been studied and numerical results on a single degree-of-
freedom system are described 
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The identification of the dynamic characteristics of linear 
systems is now widely used but interest in nonlinear systems 
is increasing. Identification of nonlinear systems ranges 
from methods which simply detect the presence or type of a 
nonlinearity to those which seek to quantify the dynamic 
behavior through a mathematical model. In this latter 
category is the nonparametric identification scheme called 
the restoring force surface method. 
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The restoring force surface method is based on Newton’s 
second law : 
 

 )())(),(()( WSW[W[IW[P =+ ���  (1) 
 

where )(WS  is the external load and ),( [[I �  is the 
restoring force, i.e. a nonlinear function of the displacement 
and velocity. The time histories of the displacement and its 
derivatives, and of the applied force are assumed to be 
measured. In practice, the data must be sampled 
simultaneously at regular intervals. From equation (1), it is 
possible to find the restoring force defined as 

��� [PSI ��−=  where subscript i refers to the ith-sampled 

value. Thus, for each sampling instant a triplet ),,( ��� I[[ �  
is found, i.e. the value of the restoring force is known for 
each point in the phase plane ),( �� [[ � .  
 
It is important to describe the system by a mathematical 
model. The usual way is to fit to the data a model of the 
form : 
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Least-squares parameter estimation can be used to obtain the 
values of the coefficients � �α . To have a measure of the 

error between of the measured 	[  and predicted 	[̂  values, 
the Mean-Square Error (MSE) is defined as : 
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where N is the total number of samples and 2�σ  is the 
variance of the measured input. Experience shows that an 
MSE of less than 5% indicates good agreement while a value 
of less than 1% reflects an excellent fit. To have some means 
of determining which terms are significant and which terms 
can be safely discarded, the significance factor [1] is used. 
Roughly speaking, it represents the percentage contributed to 
the model variance by the term. 
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The method requires to measure displacement, velocity, 
acceleration and force time histories at each degree of 
freedom. With the aim of reducing the number of 
acquisition channels, numerical integration and/or 
differentiation procedures may be adopted. Since numerical 
differentiation is a notoriously difficult procedure [2], the 
practical solution is to measure )(W[��  and numerically 

integrate to find )(W[�  and )(W[ .  
 
For example the nonlinear system  
 

)(10.51000020 38 WS[[[[ =+++ ���                (4)  
 

was simulated where )(WS  was a white noise sequence 
band-limited into the 10-20Hz range. White Gaussian noise 
was added to )(WS  and )(W[��  in such a way that the noise 
contributed to 5% of the signal RMS value. The sampling 
interval was set to 0.001 sec. The acceleration data were 
then integrated twice using the trapezium rule. To fix the 
arbitrary constants introduced by the integration, the mean 
of the velocity was removed and a linear drift component 
was removed from the displacement signal. The resulting 
velocity and displacement are shown in Figure 1. For the 
sake of clarity, only the beginning of the signals is plotted. 
 
The velocity is excellent and in fact is always estimated 
well. However, a large low frequency component has been 
introduced into the displacement signal due to the fact that 



the integration process basically acts as an amplifier of the 
low frequency and means components. 
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Figure 1 : Comparison of the exact/integrated velocity (a) 
and displacement (b) 

 
To improve the displacement one can high-pass filter the 
data using a Butterworth filter. Figure 2 shows the 
displacement signal filtered by a high pass filter with cut off 
at 2 Hz. This time, the low frequency problems are absent. 
 

 
 

Figure 2 : Comparison of the exact/integrated and filtered 
displacement 
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At this point, the mass of the system was assumed to be 
known, the input force )(WS  and the acceleration )(W[��  
were measured, and the acceleration was integrated twice to 
obtain )(W[  and )(W[� . Thus, the value of the restoring 
force can be computed at each sampling instant and the 
restoring force surface is plotted (Figure 3) using the 
procedure of Crawley and O’Donnell [3]. The surface is 
nonlinear and it can be seen that the cubic term is 
significant. 
 

 
 

Figure 3 : Restoring force surface 
 

As the type of the nonlinearity is not known a priori, it is 
better to assume a nonlinear force of the form given by 

equation (2). The cross terms of the model are usually small 
and are very often neglected. One problem that arises is that 
it may be difficult to choose the right model order. Looking 
at the evolution of the MSE as a function of indices m and n 
(Figure 4) demonstrates that the choice of a model order 
higher than 3 has no more influence on the MSE. 
 

 
 

Figure 4 : MSE vs. model order 
 

The identified coefficients for order 3 (MSE=0.27) are 
shown in Table 1 and confirm that the identification 
procedure gives excellent results. 
 
 α10 α01 α20 α02 α30 α03 

Exact 10000 20 0 0 5 108 0 
Ident. 10076 16.42 -48732 1.17 5 108 10.42 
Sign. 
Factor ������ ����� 4 10-4 2 10-4 ������ 2 10-5 

 

Table 1 : Identification results 
 
Three significant terms are identified : a linear stiffness 
(α10), a linear damping (α01) and a cubic stiffness (α30) 
whose values are very close to the exact values. The three 
other terms can be discarded since their significance factors 
are of slight importance.  
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It has been shown that the restoring force surface method 
allows to perform a reliable identification of nonlinear 
systems. Moreover, an important advantage of the method is 
that it does not require an a priori estimate of the system. 
Further work on more complex systems is foreseen. 
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