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ABSTRACT As knowledge of airways disease has grown, it has become apparent that neither chronic
obstructive pulmonary disease (COPD) nor asthma is a simple, easily defined disease. In the past,
treatment options for both diseases were limited; thus, there was less need to define subgroups. As
treatment options have grown, so has our need to predict who will respond to new drugs. To date,
identifying subgroups has been largely reported by detailed clinical characterisation or differences in
pathobiology. These subgroups are commonly called “phenotypes”; however, the problem of defining what
constitutes a phenotype, whether this should include comorbid diseases and how to handle changes over
time has led to the term being used loosely.

In this review, we describe subgroups of COPD and asthma patients whose clinical characteristics we
believe have therapeutic or major prognostic implications specific to the lung, and whether these
subgroups are constant over time. Finally, we will discuss whether the subgroups we describe are common
to both asthma and COPD, and give some examples of how treatment might be tailored in patients where
the subgroup is clear, but the label of asthma or COPD is not.
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Introduction
As knowledge of airways disease has grown, it has become apparent that neither chronic obstructive
pulmonary disease (COPD) nor asthma is an easily defined disease. Various new definitions have been
proposed [1–3], largely focusing on identifying subgroups by detailed clinical characterisation or
differences in pathobiology. These subgroups are commonly called “phenotypes” and in some cases
correspond with the Oxford English Dictionary definition of a phenotype: “The sum total of the
observable characteristics of an individual, regarded as the consequence of the interaction of the
individual’s genotype with the environment”. This definition does not include treatment or prognosis, but
has strengths in that it helps us to observe clusters of characteristics and delineate new phenotypes where,
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many years later, further research can lead to treatment. However, the utility of some phenotypes in
clinical practice remains uncertain due to inconsistency of definition, accumulation of comorbid diseases,
the propensity of both asthma and COPD to change over time, and the lack of a clear relationship with
defined treatment strategies.

In this review we describe a series of clinically relevant subgroups in COPD and asthma, i.e. patients with
clearly defined clinical characteristics (phenotype) and whom we believe have prognostic or therapeutic
implications specific to the lung. Using this definition, commonly associated comorbidities would not be
part of the way the subgroup was defined unless the cluster of comorbidities were specific to COPD or
asthma, or altered pulmonary management. Behavioural characteristics, such as poor compliance with
treatment, would also fall outside our subgroups as they affect many diseases equally. We will also review
the evidence for the stability of these subgroups over time, the degree to which they overlap between
COPD and asthma, and what this implies for therapy.

Clinically relevant subgroups in COPD
COPD is an umbrella term covering many underlying processes that may lead to fixed airflow obstruction.
Several large clinical trials and cohort studies have begun to delineate COPD subgroups where there is a
clear treatment implication (table 1). A number of other subgroups, where the picture regarding treatment
is not as clear or which are more clinically relevant because of their implication for prognosis than
treatment, are shown in figure 1.

Comorbidity in COPD influences prognosis [29] and health-related quality of life (HRQoL) [30] and
shares aspects of pathogenesis [31]. However, there remains considerable debate as to whether comorbid
disease represents a specific subgroup. Common comorbidities in COPD include osteoporosis, ischaemic
heart disease, anxiety and depression. Most common comorbidities impair outcome in COPD patients,
have clear treatment implications if present, and are treated similarly whether the patient has COPD or
not (table 2). These treatments are not specific to the underlying airway disease and, thus, do not form
part of our definition of a clinically relevant subgroup.

TABLE 1 Subgroups of chronic obstructive pulmonary disease (COPD) that currently have
specific treatments

Subgroup Treatment Effect of treatment [Ref.]

Frequent exacerbator LABA, LAMA, LABA/ICS,
roflumilast, macrolides

Reduced exacerbations,
better HRQoL,

improved lung function,
possible effect on FEV1
decline¶ and mortality¶

[4–11]

Chronic bronchitis Roflumilast, mucolytics Reduced exacerbations,
improved HRQoL

[12–14]

α1-antitrypsin deficiency α1-antitrypsin augmentation Reduced progression
of emphysema

[15]

Upper zone dominant
emphysema and
bullous emphysema

LVRS Improved lung function,
reduced exacerbations

[16, 17]

Type 1 respiratory failure LTOT Improved survival
and HRQoL

[18, 19]

Type 2 respiratory failure Domiciliary NIV Improved survival,
possible effect on
hospital admissions

and HRQoL

[20–24]

Eosinophilic COPD# Steroids Reduced exacerbations,
improved lung function

[25–27]

Biomass COPD Removal of biomass exposure Reduced FEV1 decline [28]

Frequent exacerbator, chronic bronchitis and α1-antitrypsin deficiency are stable over time; the other
subgroups may vary according to disease severity or evidence is not yet clear. LABA: long-acting
β-agonists; LAMA long-acting muscarinic antagonists; ICS: inhaled corticosteroids; HRQoL; health-related
quality of life; FEV1: forced expiratory volume in 1 s; LVRS: lung volume reduction surgery; LTOT:
long-term oxygen therapy; NIV: noninvasive ventilation. #: see “Subgroups shared between COPD and
asthma” section; ¶: effect only reported for LABA/ICS.

284 DOI: 10.1183/16000617.00009014

COPD AND ASTHMA | A.M. TURNER ET AL.



The only possible exception to this is osteoporosis, which is almost twice as common in subjects with
airflow obstruction compared to those without [48], is particularly associated with emphysema [40] and
has been shown to change with pulmonary treatment (e.g. lung volume reduction surgery (LVRS)). A
prospective cohort study [49] looking at the effect of LVRS on bone mineral density (BMD) in patients
with severe COPD concluded that surgery significantly improved BMD compared to pulmonary
rehabilitation. The increase correlated with residual volume, diffusing capacity of the lung for carbon
monoxide and fat-free mass, suggesting that restoration of respiratory dynamics, gas exchange and
nutritional status induced an improvement in bone metabolism and mineral content independent of
exercise. However, changes in BMD could occur with increased activity resulting in the beneficial effect of
LVRS and may have confounded results. Furthermore, most interventional studies of osteoporosis outside
COPD show more modest BMD improvement, generally in the range of 3–8% [41], whereas LVRS
patients in this study improved by up 24%, suggesting that the result should be interpreted with caution.
The degree to which the relationship between osteoporosis and emphysema is confounded by prior steroid
treatment is not clear, but there are male patients with little or no steroid exposure who develop
osteoporosis, suggesting that it may not be entirely iatrogenic [50]. However, further studies are indicated
to understand mechanisms and determine optimal treatment.

Pulmonary 

hypertension

Systemic

inflammation

Bronchiectasis

Bacterial 
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exacerbation

frequency

FIGURE 1 Chronic obstructive pulmonary disease subgroups without clear treatment implications. The figure shows the
subgroups with clear prognostic implications for patients that are clinically relevant, but where therapeutic strategies are
as yet unclear. The directions of the arrows indicate the probable direction of the association, e.g. patients with more
frequent exacerbations are less likely to survive. The direction of association of bacterial colonisation and bronchiectasis
is not clear; thus, a bidirectional arrow is shown.

TABLE 2 Common comorbidities in chronic obstructive pulmonary disease (COPD)

Comorbidity Effect/associations of
comorbidity in COPD

Treatment [Ref.]

Ischaemic heart
disease

Increased mortality β-blocker, ACE-I, aspirin,
statin, nitrates

[32, 33]

Congestive cardiac
failure

Increased symptom burden,
increased mortality

As above, plus diuretics
Digoxin and implantable

devices may be used in some
patients

[32, 34]

Anxiety Poor HRQoL, increased
mortality, increased hospital

admissions

CBT, benzodiazepines,
exercise

[35–37]

Depression Poor HRQoL, increased
mortality, increased hospital

admissions

CBT, anti-depressants,
exercise

[37–39]

Osteoporosis Reduced physical
performance, poor lung

function

Calcium supplements,
bisphosphonates

[40–44]

GORD More frequent exacerbations PPI, H2 receptor antagonist [45–47]

This is not an exhaustive list of all conditions or treatments; where possible, references specific to COPD,
major review articles or international guidelines on management have been cited rather than single
studies. GORD: gastro-oesophageal reflux disease; ACE-I: angiotensin-converting enzyme inhibitor; HRQoL:
health-related quality of life; CBT: cognitive behavioural therapy, PPI: proton-pump inhibitor.
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Subgroups with implications for treatment
Frequent exacerbators, defined as those with more than two exacerbations a year, were definitively described
in the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points) study [51].
Treatment options in this group include bronchodilators, long-acting β-agonists (LABA)/inhaled
corticosteroids (ICS), roflumilast and azithromycin. In a number of trials, bronchodilation has been shown
to reduce exacerbation frequency. Long-acting muscarinic antagonists (LAMA) appear to exhibit this as a
class effect, e.g. tiotropium and glycopyrronium both reduced exacerbation frequency by >20% in the
GLOW2 trial and were not statistically different in this regard [5]. A meta-analysis of LABAs showed a
reduction in exacerbations that was close to 20%, although differences between them were reported;
formoterol only reduced exacerbations when used alongside ICS, whereas salmeterol had an effect when used
alone [6]. LAMA may be superior to LABA at reducing exacerbations, as shown in the POET (Prevention of
Exacerbations of COPD) study (tiotropium versus salmeterol) [11]. LAMA/LABA also reduce exacerbation
frequency, although the effect does not appear additive. For example, in the SPARK study (indacaterol and
glycopyrronium), the combination only reduced exacerbations by a further 12% over monotherapy [52].
LABA/ICS have been demonstrated to improve lung function and HRQoL and to reduce exacerbations by
∼25% in COPD patients [7]. Whilst most COPD trials have not focused on frequent exacerbators,
international guidelines recognise the impact of certain drug classes on exacerbation frequency, emphasising
the role of LABA/ICS [53]. Macrolides have become a hot topic throughout respiratory medicine, primarily
because of their potential anti-inflammatory effects. In COPD, the largest study to date used azithromycin
and prolonged time to first exacerbation from 174 to 266 days, implying it might be useful in frequent
exacerbators [10]. Long-term safety issues include resistance and have been discussed elsewhere [54].

Chronic bronchitis occurs in 45% of COPD patients [55] and is linked to higher exacerbation frequency
and, hence, risk of decline [56]. Specific therapies for patients with chronic bronchitis have been reviewed
elsewhere [57]. Roflumilast appears to prevent exacerbations best in COPD patients who have chronic
bronchitis [14], although utility may not be restricted to this group. Its use provided modest but
significantly improved forced expiratory volume in 1 s (FEV1) compared with placebo and a reduction in
exacerbations. Mucolytics have also been used to reduce sputum viscosity and aid expectoration; those
most widely used are carbocysteine and N-acetylcysteine. Whilst trials have not been specific to chronic
bronchitis, their mechanism of action suggests they will work best in chronic sputum producers. The most
recent systematic review of clinical effectiveness of mucolytics included 30 studies and demonstrated a
small, but statistically significant, reduction in exacerbations in treated COPD patients [12].

α1-antitrypsin deficiency (AATD) is the textbook case of a subgroup in COPD. It is associated with lower
zone dominant emphysema [58], although significant heterogeneity exists, possibly due to genetic
modifiers, as in usual COPD [59]. Augmentation therapy for AATD has been routinely used in some
countries since the first trials were completed; a meta-analysis has demonstrated that it may reduce
emphysema progression [15]. Further trials, including inhaled α1-antitrypsin, are due to be published soon
and other specific therapies may become available in due course [60].

Upper zone dominant emphysema, as defined by visual appearance on chest computed tomography scans, was
specifically reported in the NETT (National Emphysema Treatment Trial) study, which demonstrated that
LVRS works best in this group of patients [16]. Further research using endobronchial valves as a less invasive
means of LVRS initially targeted this group [17]. Post hoc analyses suggest that whether fissures are intact may
be more important than disease location or heterogeneity [61]. Patients with upper zone dominant emphysema
also exhibit different genetic risk factors, implying variation in pathogenesis [62]. Bullous emphysema is also
treated surgically, although patient selection and operative technique is much more individualised [63].

Overt or relative hypoxia occurs in COPD, especially in later stages. The basis for long-term oxygen
therapy (LTOT; oxygen for >15 h per day) is derived from two landmark placebo-controlled randomised
controlled trials, the NOTT (Nocturnal Oxygen Therapy Trial) study [18] and the MRC (Medical
Research Council) study [19], which demonstrated improved survival. The NOTT study also demonstrated
a decrease in mean pulmonary artery pressure. LTOT is indicated for stable patients who have an arterial
oxygen tension <7.3 kPa on two separate occasions or 7.3–8.0 kPa in the presence of pulmonary
hypertension, nocturnal hypoxia or secondary polycythaemia. LTOT is not restricted to type 1 respiratory
failure; however, if used in type 2 patients, adverse effects on hypercapnia are generally excluded prior to
prescription. Aside from LTOT, two other modes of oxygen therapy exist, ambulatory and short burst;
both have been reviewed elsewhere [64]. Ambulatory oxygen is indicated in mobile patients who meet
LTOT criteria and is commonly considered in others who exhibit exertional desaturation to <90%.
Short-burst oxygen therapy criteria are poorly defined and no benefits have been reported [65].

Noninvasive ventilation (NIV) is used to treat type 2 respiratory failure and has a strong acute evidence
base in hospital [66] for COPD patients. The evidence concerning use of home NIV in COPD is
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contradictory and concerns have been raised about whether potential benefits on incidence of severe
exacerbations and hospital admissions are appropriately balanced with poor HRQoL [20–23]. More
recently, it has been shown to improve survival by 21% [24]; a systematic review is ongoing [67].

Eosinophilic COPD is a controversial area, mainly because of the issue of whether it is truly distinct from
asthma (overlap pathologies will be discussed later). Recent evidence suggests it may be identified by sputum
cytokine profile [68]. Nevertheless, trials focussing on such patients have been published and suggest that
steroids are more beneficial in this group than in other COPD patients [25]. Several studies have reported
that use of sputum eosinophilia as a guide to the use of steroids was effective [26, 27, 69], and systemic
eosinophil counts may also be a useful guide to treating exacerbations with oral corticosteroids [70]. Recent
evidence suggests that blood eosinophil counts >2% predicted a response to ICS in several major COPD
trials [71], although these were post hoc analyses and further definitive work in this area is awaited.

Biomass fuel COPD is common in females, particularly in the developing world [72]. Airway predominant
phenotypes appear to be more common, with bronchial hyperresponsiveness (BHR) being a particular
feature in wood smoke exposure [73]. Consistent with this is the reported increased prevalence of an
overlap between asthma and COPD [74]. Systemic and pulmonary inflammation is similar to cigarette
smoke-induced disease [75, 76], with less emphysema [77] and less rapid FEV1 decline [78]. Patients
decline more slowly if the biomass exposure is reduced [28], but is not clear whether inhaled therapies
used for “usual COPD” are of similar efficacy. The presence of BHR and overlap with asthma suggests that
ICS might be an effective strategy, though no clinical trials have been reported yet.

Subgroups with less clear implications for therapy
Pulmonary hypertension in COPD adversely affects survival and exercise capacity. Although oxygen
therapy protects against progression of pulmonary hypertension in patients with advanced COPD, its use
is limited to those meeting LTOT criteria. Vasoactive compounds used in primary pulmonary
hypertension (sildenafil, bosentan and nitric oxide) have been investigated in COPD [79–83]. Some trials
showed worsening HRQoL in treated patients, hence they are not used routinely, although individual
patient trials are employed in selected patients by specialist centres [84].

Systemic inflammation appeared to mark a subgroup of patients in the ECLIPSE study. This subgroup
comprised 16% of the whole group and had increased mortality and exacerbation rates compared to
patients without inflammation [85]. It remains unclear whether this group should be treated differently;
future trials of therapies aimed at reducing exacerbations might target this group, or include them as a
pre-specified subgroup analysis.

Stable state airway bacterial colonisation occurs in 30–70% of COPD patients, and may relate to sputum
colour [86–88]. It is defined as a significant pathogenic bacterial load (usually >1 × 106 cfu·mL−1) present
in sputum when the patient is well. Airway bacterial colonisation is associated with increased pulmonary
inflammation [89] and increased frequency of exacerbations [90]; hence, it seems a logical subtype to
target. Differences between laboratories, local bacterial patterns and lack of consistency of culture results
over time may impact significantly on our ability to use this as a phenotype that directs therapy.
Moxifloxacin has been tested to limited clinical benefit (exacerbation rates did not fall, although changes
in bacteriology were seen) [91], and a macrolide trial is ongoing [92].

There is growing recognition that bronchiectasis may occur in patients who have had COPD for some time,
but its prevalence varies widely (30–70% of subjects), depending on the presence of AATD and the method
used to define bronchiectasis on computed tomography [93, 94]. Again it is unclear whether treatment
should differ, even though there are implications for survival (COPD with bronchiectasis versus COPD
without bronchiectasis, hazard ratio 2.54) [95] and recovery time from exacerbations [96]. Exacerbation
frequency has not been found to differ [95, 96], although colonisation is more common [96].

Airflow obstruction, aetiology of which is thought to be due to tuberculosis [97], is a poorly defined
phenotype as it is not clear whether the underlying prognosis is the same as classical smoking-related
COPD or whether treatment should differ. It is likely that pathogenesis differs, but this has not been
investigated fully. Many clinicians will adopt treatment approaches outside the guidelines for “usual
COPD”, but it remains important to emphasise to non-specialists that not all fixed airflow obstruction is
“usual COPD”. Early life events that impact on lung function [98] seem unlikely to be amenable to
therapy later in life, but this too remains uncertain.

Constancy of COPD subgroups
In general, COPD is regarded as a disease that is slowly progressive; thus, it should be relatively easy to
select a treatment at a given time-point that will remain useful for some time. However, there has been
little research into the progression of the subgroups we have proposed. It may be much harder to propose
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a specific therapy for those that vary unless very detailed monitoring is undertaken or the duration of
therapy is fixed.

There are a number of COPD subgroups that remain constant once present. The frequent exacerbator
subgroup was relatively stable in the ECLIPSE study [51], as was systemic inflammation [85]. Whilst
therapies that target exacerbations may reduce their frequency [4], this positive treatment effect does not
detract from the fact that patients on a range of treatments in the ECLIPSE study still exhibited stable
exacerbation frequency, enabling it to be considered a sufficiently stable feature to guide treatment.
Chronic bronchitis is defined as sputum production on most days for at least 3 months within at least
2 consecutive years [99], and consequently is probably constant enough to guide therapy. By definition,
AATD is a constant phenotype as it is determined by genotype.

Other subgroups appear to develop over time but are sufficiently constant to guide therapy decisions over
a few years. Upper zone dominant emphysema has not been studied longitudinally in usual COPD;
however, in AATD, it is an early event prior to the development of lower zone dominant emphysema
followed by homogenous disease [100]. This occurs over many years; thus, it is probably constant enough
to guide decision making on treatment such as chronic bronchitis. Longitudinal blood gas studies have not
been commonly carried out in COPD, although type 2 failure does develop over time, occurring in 24% of
patients who have had an acidotic hypercapnic exacerbation 5 years after the first event [101]. Predictors
of hypoxia and hypercapnia include lung function and body composition [102]. What data are available
suggest that progression of blood gas changes occurs in COPD, but that changes are slow enough (outside
exacerbations) to enable gases to be used to guide therapy.

Phenotypes where variation occurs over time are also seen in COPD. Pulmonary hypertension usually occurs
late in disease [103], although it can occur alongside mild COPD [104]. Probably the only relevant clinical
feature to define constancy is whether it is ever reported to disappear once it has developed; intuitively one
would imagine that it is as constant as the degree of respiratory failure though this is not supported by
published evidence. One small study has shown that pulmonary artery pressure varies with exacerbations and
exercise [105]; animal studies also imply phases of remission [106]. There have been few published studies
detailing longitudinal changes in sputum bacterial content in stable COPD. Data in AATD suggests that it does
not always stay the same [107], Moraxella catarrhalis and Pseuodomonas aeruginosa are capable of spontaneous
remission in COPD [108, 109], and serial cultures during clinical trials also demonstrate variability [10]. It
seems unlikely that colonisation can be defined on the basis of a single sputum culture when stable, but it
might become a sufficiently constant phenotype to guide therapy if the definition can be better clarified.

Clinically relevant subgroups in asthma
Bronchial asthma is a complex disease with many underlying mechanisms and, therefore, can be
considered a syndrome containing subgroups with important similarities but also differences caused by
variable underlying aetiologies [1]. Some subgroups described in the literature are based on clinical
features found in asthma databases and cluster analyses; molecular and genetic approaches have also been
widely used [110]. This merging of clinical and pathological features has been reviewed extensively
elsewhere [111], using the term endotype to delineate this way of defining disease. Within this review, we
have chosen to focus on clinically relevant subgroups rather than endotypes, as this may be more useful in
clinical practice, although discussion of some molecular elements is unavoidable.

Subgroups with treatment implications
A number of distinct asthma phenotypes have treatment implications and are summarised in table 3.
There is a degree of overlap in that aspirin-sensitive asthma (ASA), which is caused by increased cysteinyl
leukotriene production exacerbated by nonsteroidal anti-inflammatory drugs, is often accompanied by
severe eosinophilic rhinosinusitis and nasal polyps. Therefore, it has many features of atopic/allergic
asthma, which is often eosinophilic, and is associated with elevated IgE, exhaled nitric oxide fraction
(FeNO) and periostin levels [125]. Nonatopic, noneosinophilic asthma typically demonstrates lower airway
hyperresponsiveness [126, 127] and lower corticosteroid responsiveness [127].

Based on cluster analysis [128], age at disease onset is a key differentiating factor linked to underlying
genetic/molecular features, although it does not influence treatment directly. Nevertheless, it is clear that
certain asthma subgroups, which vary with age, will require different treatment. Early-onset asthma is
often more atopic/allergic, and ORMDL3 polymorphisms exhibit a stronger association with childhood
and severe asthma [129, 130]. These observations suggest that there are different disease mechanisms in
younger patients, which have been partly proven by studies of airway cells. Four inflammatory subgroups
are distinguishable in induced sputum: eosinophilic, neutrophilic, paucigranulocytic and mixed
granulocytic [131]. For the purposes of treatment, this tends to be divided into eosinophilic and
noneosinophilic disease. Supporting this simplified sub-division, molecular phenotyping showed a
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T-helper (Th)2-high gene signature in airway epithelial tissue in 50% of mild asthmatics, and was
associated with more atopy and response to ICS therapy [132]. The remaining patients showed a Th2-low
gene signature similar to healthy controls, with less airway obstruction, lower hyperreactivity and lower
response to ICS. This implies that selection could be applied to the use of ICS and, in particular,
high-dose ICS, based on airway eosinophilia. Trials using this strategy have had some success [115], and it
is supported by the latest severe asthma guidelines [114]. Newer drugs targeting severe eosinophilic asthma
are also emerging; most are monoclonal antibodies that are likely to be used in highly selected populations.
Examples include mepolizumab (anti-interleukin (IL)-5) [115], and lebrikizumab (anti-IL-13), the latter
being useful in patients with elevated periostin [113]. However, the relationship between eosinophilia and
other features of asthma, such as airway hyperresponsiveness, is by no means clear cut; indeed, they may
be inherited separately [133], hence this cannot be the only way in which we define our phenotypes and
design new treatments. Noneosinophilic disease has shown some response to macrolide therapy [116, 117],
although this is not a widely recommended treatment strategy [114].

Other clinical features can be used to identify patients who fall into subgroups that may influence
management. For instance, early-onset allergic, exercise-induced asthma (EIA) and ASA phenotypes
belong to the Th2-high form of disease while neutrophilic asthma and smooth-muscle mediated
paucigranulocytic asthma belong to the non-Th2 group [110]. Sputum cell counts may be impractical for
routine phenotyping, particularly in primary care; hence, a detailed history (age of onset, atopy, aspirin
sensitivity, smoking, etc.) is key to identifying subgroups and tailoring treatment in clinical practice. In
allergic asthma, avoidance of triggers may be a strategy, although the utility of avoidance for house dust
mite allergy is debatable [134]. Omalizumab is a well-validated strategy for allergic asthma with high IgE,
which reduces corticosteroid use and exacerbation rates [135] and improves long-term control [136].
Patients with ASA should avoid aspirin and nonsteroidal anti-inflammatory drugs. Although there is some
evidence that leukotriene inhibition is particularly effective in ASA, it is not consistent [123, 137] and
standard asthma management should be followed.

History also identifies occupational asthma, which is best diagnosed by the occupational asthma system
score on serial peak expiratory flow rate testing or specific provocation challenge [138]. It is subdivided
into asthma precipitated by the exposure or pre-existing asthma that is worsened by exposure. Sputum
eosinophil counts and FeNO relate reasonably well to specific provocation challenge [139], although
distinct groups without FeNO elevation are identifiable [140]. Cessation or reduction of exposure is key, as
delineated in a systematic review by a European Respiratory Society Task Force [124]. Patients with
continued exposure tend to progress faster in terms of lung function decline and symptoms [141].

Fungal sensitisation in asthma is common with an estimated prevalence of up to 30% [142], covering a
spectrum from allergic bronchopulmonary aspergillosis (ABPA) through severe asthma with fungal
sensitisation (SAFS) and asymptomatic sensitisation. Diagnosis is made by examining serum IgE, and by
performing specific radioallergosorbent tests to Aspergillus and Aspergillus precipitins. Both ABPA and
SAFS respond to antifungals [118, 119], although their efficacy is debatable [114]. Susceptibility to fungal
infection and sensitisation may be genetically determined (e.g. human leukocyte antigen type [143] and
Toll-like receptors [144]).

TABLE 3 Asthma subgroups and their stability over time

Subgroup Treatment [Ref.]

Atopic/allergic Avoidance of triggers, ICS, CS, anti-IgE, anti-IL-5, anti-IL-13 [112–114]
Eosinophilic Avoidance of triggers, ICS, CS, anti-IgE, anti-IL-5, anti-IL-13 [115]
Non-eosinophilic Macrolides, less likely to respond well to ICS [116, 117]
ABPA and SAFS Antifungals [118, 119]
Churg–Strauss syndrome Steroids, cyclophosphamide, rituximab [120, 121]
Exercise-induced asthma ICS [122]
Aspirin sensitive Avoidance of aspirin, leukotriene inhibition [123]
Occupational Avoidance of occupational agent [124]

Aspirin sensitive and occupational subgroups appear to stay the same over time; other subgroups may vary
according to treatment or the clinical picture is unclear. In each subgroup, some of the treatment options
and relevant references are shown (see text for further details). All have shown either symptomatic
improvement, reduction in exacerbations or both. Bronchodilator agents are not listed and should be used
in all subgroups when required or other therapies with equal efficacy should be used. ABPA: allergic
bronchopulmonary aspergillosis; SAFS: severe asthma with fungal sensitisation; ICS: inhaled
corticosteroids; CS: corticosteroid; IL: interleukin.
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Churg–Strauss syndrome is a rare, progressive, systemic disorder characterised by eosinophilia,
extravascular necrotising granulomas, worsening asthma, lung infiltrates and eventually antineutrophil
cytoplasmic antibody-positive systemic vasculitis [145]. Significant heterogeneity is seen at presentation
and longer term. Lower baseline eosinophil counts predict mortality [146]. Precise management differs
according to disease severity (e.g presence of glomerulonephritis), but in general involves aggressive
immunosuppression, often with cylophosphamide alongside corticosteroids [120]. Rituximab has also been
used with some success [121].

EIA is an acute transient airway narrowing that occurs during and, most often, after exercise. EIA is
defined as a decrease in FEV1 >10% from baseline measured up 30 min after exercise. A higher prevalence
of EIA has been reported among elite athletes, especially in endurance sports, such as rowing and
cross-country skiing, compared to the general population [147]. However, some elite athletes with EIA
have neither a history of childhood asthma nor a family history of asthma, suggesting that environmental
factors are more important than genetic inheritance [148]. The most effective therapy for EIA is regular
use of ICS [122]. Early use of leukotriene inhibition may be equally effective [149, 150].

Subgroups with less clear implications for therapy
Severe refractory asthma is an area of intense research, which many newer therapies are being targeted
towards. However, this is also heterogeneous with eosinophilic and noneosinophilic phenotypes [151],
implying that severity may not be the feature that drives specific treatment. Nevertheless, at least part of
severe asthma has a different pathobiology compared to nonsevere disease. For example, innate immunity
in the airway is influenced by glucocorticoids [152] and there have been recent insights into the role that
innate immunity plays in steroid refractory severe disease [153].

Neutrophilic asthma also exhibits some innate immune features [154], although whether this is a true
phenotype remains debatable. Neutrophilic asthma is associated with low FEV1, air trapping [155] and
smoking [156], and thus may represent overlap with COPD, or indeed with other pro-inflammatory
trigger factors. For instance, two studies have reported clusters of older, obese, female, nonatopic
asthmatics [128, 157]. “Extensive remodelling asthma” is characterised by pronounced airway remodelling
and minimal inflammation [158], increased airway smooth muscle mass may also occur. One cause may
be an intrinsic airway smooth muscle abnormality. Whether extensive remodelling has therapeutic
implications remains uncertain.

Reconciling variability and triggers with subgroup identification
Unlike COPD, asthma is classically thought to be variable. This brings problems when defining subgroups,
as patients may change over time or in response to treatment. We suggest that identifying the current
subgroup is the most important factor when modulating therapy. Knowing the subgroup at initial
diagnosis may also help but past features should not preclude altering treatment based on current
presentation.

Triggers
Specific trigger or detrimental factors are interesting elements of phenotyping. Classical triggers (allergens
and occupation) that change treatment are part of our subgroup definitions. Recognised triggers that do
not alter specific asthma management include obesity, smoking, gastro-oesophageal reflux disease
(GORD), menstrual cycle and air pollution. Obesity is a risk factor for asthma, and asthma often causes
weight gain; there is no consensus about the exact relationship between the two. One cluster analysis
identified a noneosinophilic obese group of patients [128], another has reported a nonatopic obese group
who required multiple courses of corticosteroids [157]. However, a recent meta-analysis reported that body
mass index (BMI) was a key feature of asthma subgroups but, of the clusters that were predominantly
obese, clinical and inflammatory differences occurred between them suggesting heterogeneity independent
of obesity [159]. Weight loss appears to help asthma control [160]; however, since weight loss has
pluripotent health benefits, we felt it did not represent specific asthma management. Smoking also
influences the course of asthma. Asthmatics who smoke show poor response to corticosteroid therapy,
more frequent exacerbations and worse lung function progressing to fixed obstruction, but smoking might
make airways disease worse.

An association between asthma and GORD has been the subject of considerable investigation. There is no
doubt that GORD is more common in asthma [161] and this has led to the suggestion that reflux
treatment may improve asthma control. Several large clinical trials [162, 163] and a Cochrane review [164]
have been published, demonstrating that treatment with high-dose proton-pump inhibitor improves cough
but has no effect on asthma symptoms, lung function or exacerbation rates.
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17% of asthmatic females report worsening of symptoms near menses, and this perimenstrual asthma
phenotype is associated with higher BMI, lower forced vital capacity, GORD, aspirin sensitivity and poor
asthma control [165]. However, healthy females exhibit similar changes in pulmonary physiology across
their menstrual cycle to those with asthma [166], and multivariate analysis has shown that baseline asthma
characteristics can differ in those who report symptom changes across their cycle [167]. As such, it is likely
that sex hormones represent a trigger, and that perimenstrual asthma is not a truly different subtype.

Constancy of asthma subgroups
The constancy of asthma phenotypes over time, or after therapy implementation, is not as clear in COPD.
Asthma is variable, thus phenotypes ought to change over time, but few published data exist. Those that
appear to remain constant are occupational asthma and ASA. Occupational asthma progresses faster if
exposure continues [124], implying that the underlying disease process is unchanged. The risk of
precipitating severe exacerbations means that testing whether patients remain aspirin sensitive long-term
has rarely been performed. Case reports demonstrate that aspirin sensitivity can develop in patients who
have previously taken it without respiratory problems [168], but studies which have challenged known ASA
patients have shown that most remain sensitive [169, 170]. Asthma subgroups that clearly change with
treatment include ABPA, SAFS and Churg–Strauss syndrome. Atopy and allergy may also remit, usually
over time but occasionally with treatment, such as desensitisation [171]. For example, 21% of children aged
<2 years with severe peanut allergy will be tolerant by 5 years of age [172]. Remission of asthma was equally
common in allergic/atopic and nonatopic patients in a large prospective cohort study of childhood-onset
asthma, averaging 65% of patients [173]. Even in adults, allergic responses vary over time, as demonstrated
by the fact that 39% of patients have different results on serial skin-prick testing (mostly gaining new
allergies), but in 13% of cases allergies were lost and in 4% allergies were gained and lost [174].

Published evidence is inconsistent regarding the constancy of asthmatic airway inflammation. In adults,
50% of mild-to-moderate asthmatics have persistently noneosinophilic (often neutrophilic) disease and the
remainder have persistent or intermittent eosinophilia [175]. Intermittent and persistent groups exhibited
similar clinical characteristics, and hence may represent a milder form of the same population.
Therapeutically, the neutrophilic patients respond poorly to usual asthma therapy. Conversely, the sputum
inflammatory phenotype proved inconsistent in asthmatic children [176]. This may also change with
treatment; for example, corticosteroids inhibit neutrophil apoptosis [177] such that neutrophilic asthma
could actually represent over-treated eosinophilic asthma. This hypothesis is supported by the observation
that corticosteroid withdrawal abolished neutrophilic subjects among moderate asthmatics [156].

Subgroups shared between COPD and asthma
When a patient presents with symptoms of increased variability of airflow alongside partially reversible
airflow obstruction, it is known as the asthma–COPD overlap syndrome (ACOS) [178]. A consensus
conference has proposed that an ACOS patient must fulfil two major criteria or one major and two minor
criteria from the following. 1) Major criteria: positive bronchodilator response (>400 mL and >15% FEV1),
sputum eosinophilia or previous diagnosis of asthma. 2) Minor criteria: increased total serum IgE, history
of atopy or positive bronchodilator test (>200 mL and >12% FEV1) on at least two occasions [179]. ACOS
typically includes patients with early-onset asthma and a long disease duration who then fulfil criteria for
COPD with age, COPD patients with increased reversibility and smoking asthmatics who have fixed
airflow obstruction. Overall, 13–19% of patients with obstructive lung diseases have some overlap and this
increases with age [180, 181]. In the UPLIFT (Understanding Potential Long-term Impacts of Tiotropium)
trial, two-thirds of moderate-to-severe COPD patients exhibited bronchodilator responsiveness [182];
however, most clinical trials for either asthma or COPD exclude patients with features of the other disease,
implying that their results will be poorly generalisable in real-life. ACOS has been extensively reviewed
elsewhere [178, 179]. Our reasoning for including it here is to revisit the concept in light of the more
complex subgroups of both asthma and COPD that we have described. Its importance is that patients
exhibiting features consistent with ACOS are more likely to be frequent exacerbators [183], have more
respiratory symptoms, higher mortality [183], higher comorbidity rates [184], greater healthcare utilisation
[184] and worse HRQoL [181].

Overlap patients are generally thought to exhibit phenotypes part way between COPD and asthma. For example,
GIBSON and SIMPSON [178] reported prevalence of atopy that was highest in asthma (100%) intermediate in
ACOS (64%) and lowest in COPD (25%). There are some differences that may depend on the predominant
pathology. Positive bronchodilator response observed in COPD is associated with increased eosinophilic
inflammation [185] whilst irreversible COPD more frequently exhibits neutrophilia. Smoking asthmatics
typically have inflammatory features that resemble COPD with increased neutrophilia and sometimes
airway remodelling [186]. Classical asthma drivers, such as occupation, are associated with fixed airflow
obstruction after chronic exposure [187] and ABPA has also been reported in patients with COPD [188].
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During exacerbations of ACOS, airway mucosal eosinophils increase more than neutrophils [189] explaining the
improvement with systemic corticosteroids or ICS. Conversely, analysis of volatile organic compounds in severe
persistent asthma compared to severe COPD showed that volatile organic compound patterns remained
different, suggesting singular pathophysiological mechanisms [190]. Taken together, the evidence suggests that
there may be aspects of shared pathogenesis that move treatment decisions to that of the subgroup irrespective
of the primary diagnosis. Shared subgroups are shown in figure 2.

Examples of subgroups common to asthma and COPD
The evidence for treating overlap is far less extensive than for single pathology. In addition, it would be
beyond the scope of this article to review all shared subgroups comprehensively; thus, we have chosen a
few pertinent examples. One significant shared phenotype where evidence exists for management is
eosinophilic airways disease. The evidence that asthmatics with eosinophilia respond to steroids is
incontrovertible, and a study from Leicester, UK, has demonstrated that patients with COPD and relatively
high blood eosinophils (>2%) respond better to oral steroids in the context of an exacerbation than those
with lower levels [70]. Similar results have been reported for use of ICS [25–27, 69].

Frequent exacerbations in asthma can be associated with risk factors such as severe nasal sinus disease,
GORD, recurrent respiratory infections and obstructive sleep apnoea [191]. Many, such as GORD, are
similar to the risk factors for frequent exacerbation in COPD patients in the ECLIPSE study [51]. Similar
strategies to manage risk factors are advocated in both diseases, alongside potential additional therapies
such as macrolides [10, 116, 192].

Messages for clinical practice
Characterising patients with chronic respiratory symptoms may be more important than giving a label of
asthma or COPD in predicting prognosis and response to treatment. A lot of phenotypes have been
defined in the literature but some of them do not yet have treatment or prognostic implications. Asthma
subgroups, unlike COPD, are likely to change over time and the current phenotype should be regarded as
the most important factor to guide treatment.
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