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Algebra Clp,q

The algebra Clp,q (p+ q = n ≥ 0) is the unital associative algebra over the

real numbers R generated by n elements v1, . . . , vn subject to the relations

(vi)
2 =

 +1 if 1 ≤ i ≤ p
−1 if p+ 1 ≤ i ≤ n

vi · vj = −vj · vi i 6= j

The basis elements of Clp,q are given by vi1 · · · vik
where 1 ≤ i1 < · · · < ik ≤ n and can be coded by an n-uplet of 0 or 1.

Examples 1 ←→ (0, . . . , 0)

vi ←→ (0, . . . , 0, 1, 0, . . . , 0) =: ei

v1 · · · vn ←→ (1, . . . , 1)
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Algebra Op,q

The algebra Op,q (n = p+ q ≥ 3) is the 2n-dimensional vector space on the

real numbers R with the basis {ux, x ∈ Zn2}, equipped with the product

ux · uy = (−1)fOp,q (x,y)ux+y

for all x = (x1, . . . , xn) and y = (y1, . . . , yn) in Zn2 , where

fOp,q
(x, y) =

∑
1≤i<j<k≤n

(xixjyk+xiyjxk+yixjxk)+
∑

1≤i≤j≤n

xiyj+
∑

1≤i≤p

xiyi.

[Ovsienko, Morier-Genoud, 2011]



Algebra Op,q

(1, 1, 0) (1, 0, 0)(0, 1, 0)

(1, 1, 1)

(1, 0, 1)(0, 1, 1)

(0, 0, 1)

O0,3 ' O

Example

[Albuquerque, Majid, 1999]
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Algebra Op,q

Remarks

I Twisted group algebra (R[Zn2 ], f)

I Unit 1 := u(0,...,0)

I Generators uei where ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn2
I For any homogeneous element ux, x is the degree of ux

|x| is the Hamming weight of x ∈ Zn2
I Maximal associative subalgebra Clp,q−1 ⊂ Op,q (where q > 0)

(select ux where x ∈ Zn2 such that |x| ≡ 0 mod 2)

Applications

I Hurwitz square identities & combinatorics and number theory
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Question 1 Can we classify these algebras ?

Op,q ' Op′,q′ where p+ q = n = p′ + q′

Isomorphisms that preserve the structure of Zn2 -graded algebra send

homogeneous elements into homogeneous.

Theorem 1 [K., Morier-Genoud]

i) Op,q ' Oq,p
bouh

}
Clp,q−1 ' Clp′,q′−1

ii) Op+4,q ' Op,q+4

iii) For n ≥ 5, the algebras O0,n and On,0 are different
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Question 2 Is there any periodicity between these algebras ?

Theorem 2 [K.]

i) O0,n+4 ' P(O0,n ⊗ O5,0)
Cl0,q+2 ' Clq,0 ⊗ Cl0,2

' P(On,0 ⊗ O0,5)

ii) On+4,0 ' P(On,0 ⊗ O5,0)
Clp+2,0 ' Cl0,p ⊗ Cl2,0

' P(O0,n ⊗ O0,5)

iii) Op+2,q+2 ' P(Op,q ⊗ O2,3) Clp+1,q+1 ' Clp,q ⊗ Cl1,1

where, for example, P(Op,q ⊗O2,3) denotes the subalgebra of dimension

2n+4 made of linear combination of elements of the form

u(x1,x2,...,xn) ⊗ u(x1,y2,...,y5)

where (x1, x2, . . . , xn) ∈ Zn2 and (x1, y2, . . . , y5) ∈ Z5
2.
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Cubic form

Let (R[Zn2 ], f) be a twisted group algebra, then we have

I Square of elements (ux)
2 = (−1)f(x,x)1

I Commutativity ux · uy = (−1)β(x,y)uy · ux
I Associativity ux · (uy · uz) = (−1)φ(x,y,z)(ux · uy) · uz

Given a twisted group algebra (R[Zn2 ], f), a function α : Zn2 −→ Z2

is called a generating function if for all x, y, z ∈ Zn2 , we have

(i) f(x, x) = α(x)

(ii) β(x, y) = α(x+ y) + α(x) + α(y) β = dα

(iii) φ(x, y, z) = α(x+ y + z) + α(x+ y) + α(x+ z) + α(y + z)

+α(x) + α(y) + α(z)



Cubic form

Theorem [Ovsienko, Morier-Genoud, 2011]

(i) A twisted group algebra (R [Zn2 ] , f) has a generating function

if and only if the function φ is symmetric.

(ii) The generating function α is a polynomial on Zn2 of degree ≤ 3.

(iii) Given any polynomial α on Zn2 of degree ≤ 3, there exists a unique

twisted group algebra (R [Zn2 ] , f) having α as a generating function.

Two functions α, α′ : Zn2 −→ Z2 are equivalent if

∃G ∈ GLn(Z2) : α(x) = α′(Gx), ∀x ∈ Zn2 .
Corollary

Two twisted group algebras, (R [Zn2 ] , f) and (R [Zn2 ] , f ′) with equivalent

generating functions α and α′ are isomorphic.
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Cubic (resp. quadratic) form of Op,q (resp. Clp,q)

αp,q(x) = fOp,q
(x, x) =

∑
1≤i<j<k≤n

xixjxk +
∑

1≤i≤j≤n

xixj +
∑

1≤i≤p

xi
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Question 2 bis Is there any cubic form α̃p,q equivalent to αp,q

with the required periodicity ?

Given a cubic form

α(x) =
∑

1≤i<j<k≤n

Aijkxixjxk +
∑

1≤i≤j≤n

Bijxixj +
∑

1≤i≤p

Cixi

the corresponding triangulated graph is as follows.

1. If xi appears in α (Ci = 1) ←→ •
If xi does not appear in α (Ci = 0) ←→ ◦

2. If xixj appears in α (Bij = 1) ←→

3. If xixjxk appears in α (Aijk = 1) ←→
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Question 2 bis Is there any cubic form α̃p,q equivalent to αp,q

with the required periodicity ?

Examples

α(x1, x2, x3) ≡ 0
←→ x1

x2

x3

α0,2(x1, x2) = x1x2 + x1 + x2
• •←→ x1 x2

α0,3(x1, x2, x3) = x1x2x3 + x1x2 + x1x3

+x2x3 + x1 + x2 + x3

•
•

•
←→ x1

x2

x3

α1,2(x1, x2, x3) = x1x2x3 + x1x2 + x1x3

+x2x3 + x2 + x3

•

•
←→ x1

x2

x3



Periodicity

•
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•
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•

• •

α̃0,11

•
•
•

α̃0,4

• •
••

•α̃0,8
•

•
•

•
•

• •

α̃0,12

•
•
•

α̃0,5

•
•
•
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•

•
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•
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•
•
•

• •
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α̃0,10 •

•
•

•
• •

•

•
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Thank you for your attention



Open questions

I Arf invariant also called "democratic invariant"

I Use properties of triangulated graphs to deduce the ones on cubic forms

I Sperner’s Lemma

I Find the algebra of derivation. It is already done for

1. n = 4 (of dimension 28)

2. n = 5 (of dimension 20)

3. n = 6 (of dimension 31)

4. n = 7 run out of memory

I Find the automorphism group for each algebra O0,n


