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Introduction & Goal

The aim of this research is to determine efficiently the solution
of a magnetodynamic problem for an unknown input parame-
ter set based on pre-computed information. This information
comes from pre-solved problems for different input parameter
sets. Therefore, we have to:

• Construct reduced order magnetodynamic models (ROM).

• Reuse information from different pre-computed solutions.

This method is demonstrated
on a nonlinear inductor-core
system where the input fre-
quency is a parameter.

FORMULATIONS

The magnetodynamic problem is ruled by (1) and can be split into
linear and nonlinear parts as in (2).

curl (ν curl a(t)) + σ∂ta(t) = js(t) (1)
⇔ curl (ν0 curl a(t)) + σ∂ta(t)− js(t)︸ ︷︷ ︸

Linear part
= −curl (ν̃ curl a(t))︸ ︷︷ ︸

Nonlinear part
(2)

POD [1, 2, 3]

Proper Orthogonal Decomposition (POD) is very efficient to ob-
tain reduced order magnetodynamic models in the linear case, or
in the nonlinear case when the input parameters do not vary. The
reduced and full vector of unknowns, resp. xr and x, are linked
with the reduction basis Ψ by

x = Ψxr

where x ∈ Rn×1, xr ∈ Rr×1 and Ψ ∈ Rn×r. We expect r << n to
reduce the number of unknowns.

The basis is obtained by a applying a thin SVD on a snapshot
matrix S. This matrix S gathers the solutions for all time steps:

S =
[
x1, x2, · · · , xT

]
∈ Rn×T

where T is the number of time steps. The reduced basis Ψ is
obtained by

[U, S, V ] = svd(S),
→ Ψ = U.

Since the number of time steps is smaller than the size of the
initial unknown vector, the matrix U doesn’t have to be truncated
as it is usually done. Here r = T .

In our case, n = 553 and r = 20.
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INTERPOLATION ON MANIFOLDS [4]

For a new input parameter set, the corresponding reduced ba-
sis Ψ∗ is unknown. Thanks to their orthogonality property, these
reduction bases Ψ lie on the orthogonal manifold where inter-
polation can be performed. To this end, the reduction bases are
mapped to the tangent space at point Q using the logarithm map-
ping:

γ = LogQ(P ) = LOGM(QTP ).

These projections lie on a plane space and can be interpolated
using a traditional technique (e.g. Lagrange inteprolation) to ob-
tain the projection of Ψ∗. This interpolated projection is mapped
back on the orthogonal manifold using the exponential mapping:

P = ExpQ(γ) = Q EXPM(γ).

In our case, P3 is the unknown reduced basis Ψ∗.

RESULTS

The input excitation of the nonlinear inductor-core system is
given by js(t) = J sin(ωt). Due to dynamical effects, the solution
spatially changes with the input frequency. Here are some
results for frequency 350Hz.

The ROM is directly con-
structed with a reduced basis
Ψ without interpolation. The
L2 error between the ROM and
the full model is plotted be-
low where the reduction basis
varies from 330 Hz to 370 Hz.

The ROM is constructed with
an interpolated reduced basis.
The interpolation uses two ba-
sis around 350Hz. The first re-
duced basis Ψ1 is fixed from so-
lution at 320Hz. The second
one Ψ2 is varying from 351Hz
to 380Hz.

330 335 340 345 350 355 360 365 370
Frequency of reduced basis

10-6

10-5

10-4

10-3

10-2

10-1

100

101

R
e
la

ti
v
e
 L

2
 e

rr
o
r

Direct

350 355 360 365 370 375 380 385
Frequency of second reduced basis

10-6

10-5

10-4

10-3

10-2

10-1

100

101

R
e
la

ti
v
e
 L

2
 e

rr
o
r

Lagrange
Orthogonal

The proposed method gives better results than the direct ap-
proach and a classical Lagrange interpolation.
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