

Outline

- Motivation
- Framework for the design under uncertainty
- Resource allocation
- Cascaded option trees
- Conclusion

Liquid-liquid extraction design under uncertainty

Motivation

- new solvent extraction processes
 - · high-viscous media
 - · fermentation broths
 - · aqueous two-phase systems
- low expertise in design and scale-up
- high uncertainties in knowledge and data

Goal: Optimal resource allocation in design of common and new solvent extraction processes

Liquid-liquid extraction design under uncertainty

3

Uncertainty as supporting information

- uncertainty of input data quantifiable
- uncertainty reducible by process development steps
- explicit consideration of uncertainties in all results
- analysis of sensitivities towards uncertainty levels
- systematic reduction of uncertainty
- economics as criterion for the selection of best option

Liquid-liquid extraction design under uncertainty

modKL as distinctness measure

- modified Kullback-Leibler distance
- modification for symmetry: modKL₁₂=modKL₂₁
- comparison of distribution p(x) and q(x):

$$m(x) = \frac{1}{2}(p(x) + q(x))$$

$$\operatorname{mod} \mathsf{KL} = \int_{-\infty}^{\infty} \frac{1}{2} p(x) \ln \frac{2p(x)}{(p(x) + q(x))} dx + \int_{-\infty}^{\infty} \frac{1}{2} q(x) \ln \frac{2q(x)}{(p(x) + q(x))} dx$$

p(x) = q(x):

mod KL = 0

 $p(x) \neq q(x)$:

 $mod KL = ln 2 \approx 0.69$

value of modKL	distinctness
0	identical
modKL < 0.65	slightly different
≥ 0.65	strongly different
0.69	totally different

Berkelmans, I., 2010: Development and Application of a Framework for Technology and Model Selection Under Uncertainty. Massachusetts Institute of Technology

!

Resource allocation

- How to choose next design step?
 cost benefit analysis
- cost:
 - · cost for research (work and material)
- benefit:
 - · reduced uncertainty
 - · less risk for decision on best process

Liquid-liquid extraction design under uncertainty

Conclusion

- use of uncertainties as additional information to process
- support for process engineer by systematic resource allocation
- remaining uncertainties at each step of process development visible
- framework for design of solvent extraction under uncertainties

Liquid-liquid extraction design under uncertainty

Thank you for your attention.

Liquid-liquid extraction design under uncertainty

Bettina Rüngeler

Bettina.Ruengeler@avt.rwth-aachen.de Aachener Verfahrenstechnik Fluid Separation Processes Wüllnerstr. 5 52064 Aachen, Germany

- Bednarz, A., Rüngeler, B., Pfennig, A., 2014: Use of Cascaded Option Trees in Chemical-Engineering Process Development, Chemie Ingenieur Technik 86 (5), DOI: 10.1002/cite.201300115
- Berkelmans, I., 2010: Development and Application of a Framework for Technology and Model Selection Under Uncertainty. Dissertation, Massachusetts Institute of Technology.
- Biegler, L. T., Grossmann, I. E., Westerberg, A. W., 1997: Systematic methods of chemical process design. Upper Saddle River, N.J. Prentice Hall PTR.
- Guthrie, K. M., 1969: Capital cost estimating. Chemical Engineering (March 24), 114–142.

Liquid-liquid extraction design under uncertainty