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ABSTRACT
Considering a small misalignment between a point-like source, a singular isothermal ellip-
soid deflector and an observer, we derive to first order simple relations between the model
parameters and the lensed image positions, and an expression for the time delay between pairs
of opposed images which is analogue to the one previously derived for the case of ε − γ

models. Combined with the first-order astrometric relations, we retrieve a simple expression
for the time delays, in agreement with Witt, Mao & Keeton, which solely depends on the
lensed image positions. The real advantage of using the first-order equations when dealing
with symmetric gravitational lens systems is to directly test the validity of the adopted lens
model without having to perform any accurate numerical fit. In this paper, we present in detail
the calculations which lead to those relations between the singular isothermal ellipsoid lens
model parameters and the lensed image positions. In addition, we model the well-known Ein-
stein cross Q2237+0305 with three families of models: ε − γ , singular isothermal ellipsoid
and non-singular isothermal ellipsoid plus shear, using a genetic algorithm from the Qubist
Optimization Toolbox. We conclude that although the non-singular isothermal ellipsoid plus
shear model shows the best agreement between the calculated and the observed image posi-
tions (〈�x〉 = 0.0026 arcsec), the more simple singular isothermal ellipsoid also leads to quite
satisfactory and acceptable results (〈�x〉 = 0.0059 arcsec).
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1 IN T RO D U C T I O N

According to Refsdal (1964a,b), the gravitational lens phenomenon
provides a powerful tool to derive the values of several cosmological
parameters, i.e. H0, ��, as well as to deduce the absolute mass of the
lensing object, independently on the distance ladder. Unfortunately,
such a determination turns out to be model dependent. However, for
the case of a small misalignment between the source, the deflector
and the observer, Wertz, Pelgrims & Surdej (2012) have recently
shown that a first-order perturbative approach applied to the lensed
image positions may lead to the determination of the Hubble param-
eter using observable quantities only (Wertz et al. 2012). Let us note
that a similar kind of approach has been developed by Alard (2007)
but his singular perturbative method proves to be more restrictive.

The main idea of this paper is to investigate for the case of the
singular isothermal ellipsoid (SIE) model whether we can derive
first-order equations linking the model parameters to the lensed
image positions only. These equations are then used in order to

� Aspirant du F.R.S. - FNRS.
†E-mail: wertz@astro.ulg.ac.be
‡Also Directeur de Recherche honoraire du F.R.S. -FNRS.

derive model-independent expressions for the time delays between
lensed images and the Hubble parameter. Let us note that the derived
expressions of H0 are consistent with the ones already presented by
Witt, Mao & Keeton (2000).

The outline of this paper is as follows. In Section 2, we recall the
basic gravitational lens and astrometric equations for the case of the
SIE. We also assume that the lensed images are not resolved indi-
vidually. Assuming a very small misalignment between the source,
the deflector and the observer, we then derive, in Section 3, first-
order expressions which link the image positions to the model pa-
rameters, as well as the possibility to infer from only observable
quantities the value of the Hubble parameter from the linearized
astrometric and time delay expressions. Afterwards, we discuss the
apparent problem of the degeneracy in determining the value of the
parameter � which represents the a priori unknown orientation of
the elliptic-shape isodensity contours, and we propose to test the
validity range of the astrometric equations. In Section 4, we test
the first-order equations for the case of the well-known quadruply
imaged quasar: Q2237+0305. We compare the first-order model
parameters obtained with those determined numerically using a so-
phisticated genetic algorithm, called FERRET, which is a component
of the Qubist Global Optimization Toolbox (Fiege 2010). Some
general conclusions form the last section.
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2 T H E S I N G U L A R I S OT H E R M A L E L L I P S O I D
M O D E L

The SIE represents a particular case of more general models with
elliptical mass distributions (Bourassa, Kantowski & Norton 1973;
Bourassa & Kantowski 1975, corrected by Bray 1984; Kormann,
Schneider & Bartelmann 1994; Keeton & Kochanek 1998). It can
be described by its normalized surface mass density κ(ρ) defined as

κ(ρ) =
√

f

2ρ
, (1)

where f represents the axis ratio and ρ =
√

x2
1 + f 2x2

2 with
xi the normalized Cartesian coordinates of the impact param-
eter x. The associated normalized deflection angle α̂(x) is
given by

α̂(x) = −
√

f

f ′

[
arcsinh

(
f ′

f
cos (ϕ)

)
e1 + arcsin(f ′ sin(ϕ)) e2

]
,

(2)

where ei represents the unit vector along the direction xi, ϕ the
angular coordinate of the impact parameter, and f ′ =

√
1 − f 2.

Accounting for the notation defined by Kormann, Schneider &
Bartelmann (1994), the e1 direction corresponds to the semiminor
axis direction of the isodensity contours. Therefore, the coordinate
system adopted in that paper is not arbitrarily oriented. Consid-
ering now an arbitrarily oriented coordinate system for which the
abscissa axis form an angle � with the semiminor axis (see Fig. 1),
the expression of the two components of the lens equation can be
expressed as

y cos (θ + � ) = r (i) cos
(
ϕ(i) + �

)
−

√
f

f ′ arcsinh

(
f ′

f
cos

(
ϕ(i) + �

))
, (3)

Figure 1. Illustration of the arbitrarily oriented coordinate system which
abscissa axis form an angle � with the semiminor axis of the isodensity
elliptic contours. The azimuthal angles θ and ϕ(i) are, respectively, associated
with the source and the ith image positions. Both are measured from the
arbitrarily oriented coordinate system.

y sin(θ + � ) = r (i) sin(ϕ(i) + � )

−
√

f

f ′ arcsin(f ′ sin(ϕ(i) + � )) , (4)

where (r(i), ϕ(i)) represent the normalized polar coordinates of the
position of the image i, (y, θ ), the normalized polar coordinates of
the point-like source and where θ and ϕ(i) are now measured from
the arbitrarily oriented coordinate system.

3 FI RST-ORDER EQUATI ONS
A N D S O L U T I O N S

3.1 Small deviations from the perfect alignment

For the case of a perfect alignment between the source, the deflector
and the observer, i.e. y = 0, we may deduce from equations (3) and
(4) the exact positions (r (i)

0 ; ϕ(i)
0 ) of the lensed images. On one hand,

equation (3) × sin(ϕ(i) + � ) − equation (4) × cos(ϕ(i) + � ) leads
to

y sin(ϕ(i) − θ )

=
√

f

f ′
[
arcsin

(
f ′ sin

(
ϕ(i) + �

))
cos

(
ϕ(i) + �

)
− arcsinh

(
f ′ cos

(
ϕ(i) + �

)
/f

)
sin

(
ϕ(i) + �

)]
, (5)

and from the latter equation and for y = 0, the exact image angular
coordinates are expressed as

ϕ
(i)
0 = iπ

2
− �, (6)

where i ∈ [0, 1, 2, 3] indicates that there are up to four lensed
images. On the other hand, equation (3) × cos(ϕ(i) + � ) + equation
(4) × sin(ϕ(i) + � ) leads to

y cos(ϕ(i) − θ ) = r (i) − 1

r (i)
ψ̂(r (i), ϕ(i) + � ), (7)

where ψ̂(r, ϕ) represents the normalized deflection potential de-
fined by

ψ̂(r, ϕ) =
√

f

f ′ r

[
sin(ϕ) arcsin(f ′ sin(ϕ))

+ cos(ϕ) arcsinh

(
f ′

f
cos(ϕ)

)]
. (8)

From equation (7) and for y = 0, the exact image radial coordinates
are expressed as

r
(0)
0 = r

(2)
0 =

√
f

f ′ arcsinh

(
f ′

f

)
, (9)

and

r
(1)
0 = r

(3)
0 =

√
f

f ′ arcsin(f ′). (10)

When considering a small misalignment between the source, the
lens and the observer, the resulting image positions only slightly
deviate from the perfect alignment case. Thus, the ith image position
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(r(i); ϕ(i)) can be expressed as

r (i) = r
(i)
0 + �r (i), (11)

and

ϕ(i) = ϕ
(i)
0 + �ϕ(i), (12)

where �r(i) and �ϕ(i) represent small variations of the image polar
coordinates, i.e. |�r(i)| � 1 and |�ϕ(i)| � 1. To first order, and
after substituting equations (11) and (12) into equation (5), the
latter becomes

y

[
sin

(
iπ

2
− θ − �

)
+ cos

(
iπ

2
− θ − �

)
�ϕ(i)

]

= −
√

f

f ′

[
arcsinh

(
f ′

f
S (i)

)
C(i) − arcsin

(
f ′C(i)

)S (i)

]
,

(13)

where S (i) = cos(iπ/2) − sin(iπ/2) �ϕ(i) and C(i) =
sin(iπ/2) + cos(iπ/2) �ϕ(i). To first order, we find that
arcsin((−1)i/2f ′�ϕ(i)) 	 (−1)i/2f ′�ϕ(i) for i ∈ {0, 2} and
arcsinh((−1)(3−i)/2f ′�ϕ(i)/f ) 	 (−1)(3−i)/2f ′�ϕ(i)/f for i ∈
{1, 3}. As a result, for i ∈ [0, 1, 2, 3], equation (13) takes the form

�ϕ(0) = −�ϕ(2) = y sin (θ + � )
√

f
[

1
f ′ arcsinh

(
f ′
f

)
− 1

] , (14)

and

�ϕ(1) = −�ϕ(3) = y cos (θ + � )
√

f
[

1
f

− 1
f ′ arcsin(f ′)

] . (15)

To first order, and after substituting equations (11) and (12) into
equation (7), the latter becomes

y

[
cos

(
θ + � − iπ

2

)
+ sin

(
θ + � − iπ

2

)
�ϕ(i)

]

= r
(i)
0 + �r (i) −

√
f

f ′

[
arcsinh

(
f ′

f
S (i)

)
S (i) + arcsin (f ′C(i))C(i)

]
.

(16)

As a result, from equations (9), (10) and for i ∈ [0, 1, 2, 3], equation
(16) reduces to

�r (0) = −�r (2) = y cos (θ + � ) , (17)

and

�r (1) = −�r (3) = y sin (θ + � ) . (18)

We note that the small azimuthal and radial variations of the lensed
image polar coordinates only depend on the source position com-
pared to the semiminor axis direction of the isodensity contours.

3.2 The SIE lens model parameters

In this section, we will recover all lens model parameters from
equations (6), (9), (10), (14), (15), (17) and (18). First of all, we
need to be careful with the handling of the measured image angular
coordinates ϕ(i). As a reminder, these coordinates are measured
from the arbitrarily oriented coordinate system, which implies that
ϕ(i) ∈ [0, 2π ]. However, according to the value of � and θ , we
may have ϕ

(i)
0 + �ϕ(i) = iπ/2 − � + �ϕ(i) < 0 with i ∈ {0, 1,

2, 3}. Therefore, for (θ + � ) ∈ [0, π ] and � ∈ [0, �ϕ(0)[, we
have, to first order, ϕ(i) = iπ/2 − � + �ϕ(i); but for (θ + � )
∈ [0, 2π ] and � ∈ [ϕ̃(i), ϕ̃(i+1)] with ϕ̃ representing the image
angular coordinate measured from the semiminor axis direction

of the isodensity contours, we have ϕ(k) = kπ/2 − � + �ϕ(k)

with k ∈ {i + 1, . . . , 3} and ϕ(l) 
= iπ/2 − � + �ϕ(l) with l ∈
{0, . . . , i}. In the latter equation, since the angular quantities are
cyclic, the two members are equivalent but not equal. In fact, we
have ϕ(l) = iπ/2 − � + �ϕ(l)mod 2π , where mod represents the
modulo operation. In the remainder of this section, we will take into
account these properties, in particular for the determination of the
parameter � .

From equations (14) and (15), we note that �ϕ(0) + �ϕ(1) +
�ϕ(2) + �ϕ(3) = 0. Therefore, we have

3∑
j=0

(
ϕ

(j )
0 + �ϕ(j )

)
= 3π − 4�. (19)

As a consequence, from the latter equation, the expression of � can
be retrieved:

� = 1

4

⎛
⎝3π −

3∑
j=0

ϕ(j )

⎞
⎠ + lπ

2
≡ �0 + lπ

2
, (20)

where l ∈ {0, 1, 2, 3, 4} such as � ∈ [ϕ̃(l−1), ϕ̃(l)] with ϕ̃(−1) = 0 and
ϕ̃(4) = ϕ̃(0). Although we are not able to determine l unequivocally
from the lensed image positions, we can reduce the degeneracy to
only two values: � real and � real + π , which lead to two equivalent
SIE models. The latter property is shown in the next section.

From equations (9)–(11), (17) and (18), we note that r(0) −
r(2) = �r(0) − �r(2) = 2 y cos(θ + � ), and r(1) − r(3) = �r(1) −
�r(3) = 2 y sin(θ + � ). Therefore, we have

θ (0) − θ (2) = 2 θS cos (θ + � ) , (21)

and

θ (1) − θ (3) = 2 θS sin (θ + � ) . (22)

Dividing equation (22) by equation (21), the relative angular coor-
dinate θ of the point-like source can be deduced from

tan (θ + � ) = θ (1) − θ (3)

θ (0) − θ (2)
. (23)

Since the determination of θ depends on the value of � , the latter
parameter seems to be also degenerated. In fact, we show in the
next section that the value of θ can be derived unequivocally.

From equations (21) and (22), the relative radial coordinate θS of
the point-like source can be expressed as

θS = 1

2

√
(θ (0) − θ (2))2 + (θ (1) − θ (3))2. (24)

From equation (17), we note that r (0) + r (2) = 2 r
(0)
0 . In addition,

from equation (18), we note that r (1) + r (3) = 2 r
(1)
0 . Therefore, we

have

θ (0) + θ (2) = 2 θE

√
f

f ′ arcsinh

(
f ′

f

)
, (25)

and

θ (1) + θ (3) = 2 θE

√
f

f ′ arcsin(f ′). (26)

Dividing equation (25) by equation (26), the axis ratio f is found to
be

arcsinh(f ′/f )

arcsin(f ′)
= θ (0) + θ (2)

θ (1) + θ (3)
, (27)

the latter equation consisting of an implicit definition of f. From
equations (25) and (26), the value of the Einstein ring angular radius
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is given by

θE = f ′

2
√

f

θ (0) + θ (2)

arcsinh(f ′/f )
= f ′

2
√

f

θ (1) + θ (3)

arcsin(f ′)
, (28)

where the axis ratio f is retrieved from equation (27).
As a result, we have thus determined the values of f, θS, θ , �

and θE from the only astrometric positions of the lensed images. In
addition, we note that the index of the lensed images i = {0, 1, 2, 3}
is in principle unknown. However, only four possible combinations
remain since the index values have to be consecutive. Furthermore,
due to the symmetries in the relations between all model parameters
and the lensed image positions (see equations 20, 23, 24, 27 and 28),
we note that the inversion between the index of two opposed lensed
images does not have any impact on their determination: 0↔2
and 1↔3. In order to differentiate the two remaining combinations

(02
?↔ 13), we only need to calculate the value of f from equation

(27). Indeed, one combination leads to f < 1 while the other one to
f > 1, which points towards a non-physical situation of having the
minor axis larger than the major one.

3.3 The degeneracy affecting the value of �

As shown in the previous section, the parameter � can only take
four possible values in accordance with the relation � l = � 0 +
lπ/2 for l ∈ {0, 1, 2, 3}. Furthermore, from equation (23) and after
substituting the different values of � , the different possible angular
coordinates θ of the source can be expressed as

θlk = atan

(
θ (1) − θ (3)

θ (0) − θ (2)

)
−

(
�0 + lπ

2

)
+ k , (29)

with k ∈ {0, 1}. From the latter equation, we may deduce eight
different combinations for the pair of parameters (� l, θ lk).

For each pair of these parameters and the already determined
values of f, θS and θE, we derive eight sets of four lensed image
positions. By comparison with the real lensed image positions, there
only remain two pairs of parameters: the real one (� real, θ real) and
another one which leads to the same lensed image positions. Due
to the symmetry of the SIE lens models which leads to a diamond-
shaped tangential caustic curve, and for fixed values of f, θS and θE,
the two pairs of parameters (� , θ ) and (� +, θ ) rigorously lead
to the same lensed image positions. As a consequence, among the
eight different remaining combinations of parameter pairs (� l, θ lk),
the only valid ones are (� real, θ real) and (� real +, θ real). We thus
find that the parameter θ real is unequivocally determined.

3.4 Time delays and the Hubble parameter

Let us now consider the determination of the value of the Hubble
parameter H0 from the measurement of the time delay �t between
two lensed image light curves for the case of the SIE lens model. The
time-delay function t(x) for the ith image is given by (Narayan &
Bartelmann 1996)

t(x(i)) =
(

1 + zl

c

) (
DOLDOS

DLS

)
θ2

E

[
1

2
(x − y)2 − ψ̂tot(x)

]
,

(30)

where zl represents the redshift of the lens, DOL, DOS and DLS repre-
sent the usual angular-diameter distances between the observer, lens
and source, c the speed of light in vacuum and ψ̂tot the total lens-
ing potential, which gradient corresponds to the general deflection

angle, apart from an irrelevant constant

α̂gen(x) = −∇xψ̂tot. (31)

For the case of the SIE lens model, the time delay between the
lensed images i and j is therefore given by

�ti,j =
(

1 + zl

c

) (
DOLDOS

DLS

)
θ2

E

[
1

2

(
x(j ) − y

)2

− 1

2
(x(i) − y)2 − ψ̂SIE(r (j ); ϕ(j )) + ψ̂SIE(r (i); ϕ(i))

]
,

(32)

where ψ̂SIE is defined by equation (8). To first order, the expression
of the lensing potential can be simplified as follows. Considering
the image i, from equations (11) and (12) we have, respectively,
r (i) = r

(i)
0 + �r (i) and ϕ(i) = iπ/2 + �ϕ(i) − � . After substituting

the latter results into equation (8), the expression of the deflection
potential for the lensed image i reduces, to first order, to

ψ̂SIE(r (i); ϕ(i)) = r
(i)
0 (r (i)

0 + �r (i)), (33)

where r
(i)
0 is defined by equations (9) and (10), and �r(i) by equations

(17) and (18). Therefore, from equations (32) and (33), the time
delay between the lensed images i and j can be expressed as

�ti,j =
(

1 + zl

c

) (
DOLDOS

DLS

) [
1

2

((
θ

(i)
0

)2
−

(
θ

(j )
0

)2
)

− θS

[
θ (j ) cos

(
ϕ

(j )
0 − θ

)
− θ (i) cos

(
ϕ

(i)
0 − θ

)
− θ

(j )
0 �ϕ(j ) sin

(
ϕ

(j )
0 − θ

)
+ θ

(i)
0 �ϕ(i) sin

(
ϕ

(i)
0 − θ

)] ]
.

(34)

Since there are three independent time delays for a four-lensed
gravitational lens system, we only specify �ti, i + 1 and �ti, i + 2.
The expression �ti, i + 1 reduces to

�ti,i+1 =
(

1 + zl

c

) (
DOLDOS

DLS

) [
1

2

((
θ

(i)
0

)2
−

(
θ

(i+1)
0

)2
)

+ θS

[
cos

( iπ

2
− � − θ

) (
θ (i) + θ

(i+1)
0 �ϕ(i+1)

)

+ sin
( iπ

2
− � − θ

) (
θ (i+1) − θ

(i)
0 �ϕ(i)

))] ]
, (35)

while �ti, i + 2 simply reduces to

�ti,i+2 = y

(
1 + zl

c

) (
DOLDOS

DLS

)
θS (θ (i) + θ (i+2))

× cos(� + θ − iπ/2). (36)

The latter equation is identical to the one already derived for a
power-law axially symmetric lens model with an external large-
scale gravitational field (the shear; see equation 92 in Wertz et al.
2012). In the latter paper, the authors had already demonstrated that
these two families of models remain strictly distinct, even at the first
order, except when the alignment between the source, the lens and
the observer is perfect or when the SIE reduces to the SIS model
without any shear. Furthermore, from equations (21) and (22), we
easily deduce that

θS cos (� + θ − iπ/2) = 1

2
(θ (i) − θ (i+2)) . (37)
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After substituting equation (37) into equation (36), the time delay
between two opposed lensed images i and i + 2 becomes

�ti,i+2 =
(

1 + zl

2c

) (
DOLDOS

DLS

)
((θ (i))2 − (θ (i+2))2) . (38)

So we have retrieved the same expression for the time delays be-
tween two lensed images as the one already derived by Witt et al.
(2000). According to them, equation (38) remains valid irrespec-
tive of the degree of misalignment. This implies that equation (36)
derived from the first-order astrometric equations is rigorously iden-
tical to the one derived without any approximation.

For completeness, we retrieve the expression of the Hubble pa-
rameter for the case of the SIE lens model. From equation (38), H0

can be expressed as

H0 = 1 + zl

2 �ti,i+2

(
zl zs

zs − zl

) (
F (zl)F (zs)

F (zs − zl)

)
[(θ (i))2 − (θ (i+2))2],

(39)

where F(z) is a function that depends on the redshift and on the
cosmological parameters �M and ��. This function, which tends
towards 1 for small values of z, can easily be calculated numerically.

3.5 Validity range of the first-order equations

We propose to test the validity range of the first-order equations (20),
(23), (24), (27) and (28). It is clear that the accuracy of these latter
equations is directly dependent on the accuracy of the two equations
(11) and (12). Indeed, for the case of a perfect alignment between
the source, the lens and the observer, the differences between the
real SIE lensed image positions and those derived from the first-
order equations should be equal to zero. As soon as the source
is no longer perfectly aligned, the first-order determination of the
lensed image positions loses some accuracy. Furthermore, these
differences become larger as the point-like source gets closer to
the tangential caustic curve. As a consequence, we can deduce a
first estimation of the validity range of the first-order equations by
illustrating the distribution of the mean error E between the exact
lensed image positions and the derived first order ones as a function
of the smallest distance D between the point-like source and the
tangential caustic curve (see Fig. 2)

E = 1

4

3∑
j=0

√(
x

(j )
1 − x

(j )
1

)2
+

(
x

(j )
2 − x

(j )
2

)2
, (40)

where xi represents the first-order lensed image positions derived
from the numerical inversion of the lens equation characterized
by the model parameters deduced from equations (20), (23), (24),
(27) and (28). The angular distance D is illustrated in Fig. 2. As
shown in Fig. 3, from a set of 1000 model parameters randomly
chosen, the mean error E increases with the degree of misalign-
ment between the source, the lens and the deflector, the latter being
represented by small values of the angular distance D between the
point-like source and the nearest point of the tangential caustic
curve. We note that the radius of the Einstein ring has been fixed
to θE = 1 arcsec. For any value of f, we notice that the condition
D ≥ 0.1 is sufficient to obtain E ≤ 0.05 arcsec, but not necessarily.
Indeed, we note that even for small values of D, we can have small
mean error values of E. This occurs when the two following con-
ditions are being fulfilled: the misalignment is very small and the
intrinsic size of the tangential caustic curve is small, i.e. for large
values of f ≤ 1. Thus, even if the source is intrinsically close to the

Figure 2. Illustration of the different angular distances involved in the test
of the validity range of the first-order equations (see text).

Figure 3. For a set of 1000 model parameters randomly chosen and θE = 1
arcsec, we have represented the distribution of the mean error E between the
exact lensed image positions and the derived first order ones as a function of
the angular distance between the point-like source and the tangential caustic
curve.

tangential caustic curve, the quantities �r(i) and �ϕ(i) remain small
compared to r

(i)
0 and ϕ

(i)
0 .

In order to further investigate this, we have represented E as
a function of the distance D (or θS since these two quantities
are correlated) divided by the smallest angular distance d be-
tween the tangential caustic curve and the centre of the lens (see
Fig. 4). The angular distance d is illustrated in Fig. 2. As shown in
Fig. 4, from the same set of the 1000 previous model parameters
and for the case θE = 1 arcsec, a more precise condition on the
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Asymptotic solutions for the SIE lens models 433

Figure 4. For the same set of 1000 model parameters randomly chosen (see
Fig. 3) and θE = 1 arcsec, we have represented the distribution of the mean
error E between the exact lensed image positions and the derived first order
ones as a function of the normalized distance D/d between the point-like
source and the tangential caustic curve (left-hand panel) and as a function of
the point-like source radial coordinate θS divided by the smallest distance
between the tangential caustic curve and the centre of the lens (right-hand
panel). The red crosses correspond to the case of the multiply imaged quasar
Q2237+0305.

alignment can be derived. For the case of a perfect alignment, i.e.
D/d = 1 and θS/d = 0, the mean error E equals zero, as expected.
Furthermore, for θS/d < 0.13, the mean error is always such as
E < 0.003 arcsec which typically corresponds to the error on the
observed positions of the lensed images of Q2237+0305. Since the
value of d is correlated with the value of f, the latter validity range
takes the form θS < 0.13 d(f) where the analytical function d(f) has
not yet been determined but could be numerically evaluated.

Furthermore, we have represented, respectively, in Figs 5, 6 and
7 the lensed images, the point-like source, the tangential critical
and caustic curves for 12 SIE models and their associated first order
ones characterized by θS/d ∈ [0.0, 0.25], θS/d ∈ [0.25, 0.50] and
θS/d ∈ [0.50, 1.25], respectively. The model parameters related to
those SIE models are given in Tables 1–3. We notice that as θS/d
increases, the accuracy of the first-order SIE model decreases.

Finally, we have determined exact and first-order time delays,
between pairs of lensed images for the first eight simulated models
represented in Figs 5–7. For this purpose, we have assumed a spa-
tially flat � cold dark matter cosmology with a value H0 = 67.3 ±
1.2 km s−1 Mpc−1 for the Hubble parameter and the matter density
parameter �m = 0.315 ± 0.017 (Planck Collaboration 2013). We
have fixed the redshifts of the simulated sources and lenses accord-
ing to realistic cases of expected multiply imaged quasars as in Finet
(2013). From the normalized redshift distribution of the sources that
are detected as multiply imaged, we have selected the most likely
redshift of the sources for �m = 0.315, i.e. zs = 2.350. For this
source redshift, we have calculated the differential contribution to
the lensing optical depth as a function of the deflector redshift. We
have then selected the most likely deflector redshift corresponding
to the maximum of this distribution, i.e. zs = 0.66, as well as those
corresponding to the two halves of its maximum, i.e. zs = 0.263
and zs = 1.294. Added to this, we have also considered the source
and lens redshifts of the gravitational lens system Q2237+0305.
The values of the corresponding time delays are summarized in
Tables 4–6. As expected, we note that the first-order time delays

Figure 5. Illustration of different lensed image configurations correspond-
ing to the SIE lens model (open circles ©) and the SIE first order one
(pluses +). The source positions associated with the SIE lens model (open
square �) and the SIE first order one (cross ×) are also represented. The lens
model parameters were randomly chosen such as θS/d(f) ∈ [0, 0.25]. The
solid lines correspond to the tangential critical and caustic curves deduced
from the SIE lens model, whereas the dashed lines correspond to the SIE
first order ones.
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434 O. Wertz and J. Surdej

Figure 6. Illustration of different lensed image configurations correspond-
ing to the SIE lens model (open circles ©) and the SIE first order one
(pluses +). The source positions associated with the SIE lens model (open
square �) and the SIE first order one (cross ×) are also represented. The lens
model parameters were randomly chosen such as θS/d(f) ∈ [0.25, 0.50]. The
solid lines correspond to the tangential critical and caustic curves deduced
from the SIE lens model, whereas the dashed lines correspond to the SIE
first order ones.

Figure 7. Illustration of different lensed image configurations correspond-
ing to the SIE lens model (open circles ©) and the SIE first order one
(pluses +). The source positions associated with the SIE lens model (open
square �) and the SIE first order one (cross ×) are also represented. The lens
model parameters were randomly chosen such as θS/d(f) ∈ [0.50, 1.25]. The
solid lines correspond to the tangential critical and caustic curves deduced
from the SIE lens model, whereas the dashed lines correspond to the SIE
first order ones.
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Table 1. Real and first-order lens parameters for the 12 SIE models repre-
sented, respectively, in Fig. 5. For each lens model denoted by #i, we have
reported the real model parameters (first line) and the retrieved first order
ones (second line).

Real f � θS θ θE θS/d
first order

#1 0.0875 0 0.0871 0.0616 0.9807 0.1876
0.0865 0.0006 0.0871 0.0610 0.9829

#2 0.6401 0.3307 0.0189 5.2981 0.8911 0.1459
0.6386 0.3300 0.0189 5.2988 0.8912

#3 0.1806 0.6614 0.0661 5.7952 1.1218 0.1379
0.1796 0.6621 0.0661 5.7944 1.1226

#4 0.0451 0.9921 0.0807 4.8440 1.1944 0.1459
0.0447 0.9896 0.0806 4.8461 1.1982

#5 0.7232 1.3228 0.0111 0.2680 0.8120 0.1280
0.7222 1.3228 0.0111 0.2680 0.8123

#6 0.3474 1.6535 0.0066 2.3762 1.0143 0.0206
0.3474 1.6535 0.0066 2.3762 1.0143

#7 0.6606 1.9842 0.0204 4.4255 0.8348 0.1799
0.6585 1.9845 0.0204 4.4249 0.8346

#8 0.3839 2.3149 0.0808 4.5837 1.1208 0.2490
0.3786 2.3189 0.0805 4.5805 1.1228

#9 0.6273 2.6456 0.0161 1.4092 1.1957 0.0886
0.6267 2.6459 0.0161 1.4092 1.1958

#10 0.0216 2.9762 0.0841 1.6905 0.8268 0.2428
0.0201 2.9770 0.0841 1.6905 0.8561

#11 0.9106 3.3069 0.0032 4.2288 1.1758 0.0866
0.9104 0.1653 0.0032 4.2290 1.1758

#12 0.8006 3.6376 0.0132 3.0002 0.8073 0.2216
0.7985 0.4965 0.0132 2.9984 0.8071

Table 2. Real and first-order lens parameters for the 12 SIE models repre-
sented, respectively, in Fig. 6. For each lens model denoted by #i, we have
reported the real model parameters (first line) and the retrieved first order
ones (second line).

Real f � θS θ θE θS/d
first order

#1 0.0991 0 0.2414 5.5107 1.1990 0.4278
0.0900 3.1177 0.2381 5.5227 1.2407

#2 0.4898 0.3307 0.1029 2.2189 1.1246 0.4061
0.4760 0.3227 0.1019 2.2266 1.1272

#3 0.1932 0.6614 0.1655 2.8239 0.9943 0.3977
0.1835 0.6723 0.1647 2.8129 1.0023

#4 0.8959 0.9921 0.0176 6.0540 1.1578 0.4151
0.8916 0.9935 0.0174 6.0528 1.1579

#5 0.0991 1.3228 0.1054 0.2658 0.8550 0.2619
0.0946 1.3225 0.1054 0.2658 0.8729

#6 0.0442 1.6535 0.1491 6.1133 0.9560 0.3372
0.0397 1.6563 0.1491 6.1134 1.0058

#7 0.5573 1.9842 0.0798 1.1888 1.1709 0.3628
0.5475 1.9846 0.0798 1.1881 1.1696

#8 0.7725 2.3149 0.0309 4.1916 1.1670 0.3102
0.7679 2.3157 0.0309 4.1888 1.1663

#9 0.3119 2.6456 0.1569 3.6847 1.0854 0.4288
0.2983 2.6470 0.1569 3.6828 1.0872

#10 0.1790 2.9762 0.2080 4.2419 1.0473 0.4640
0.1630 2.9980 0.2052 4.2355 1.0807

#11 0.3390 3.3069 0.0958 2.2684 0.9373 0.3204
0.3301 0.1577 0.0952 2.2732 0.9418

#12 0.2101 3.6376 0.2070 3.8973 1.1744 0.4328
0.1940 0.5068 0.2061 3.8979 1.2098

Table 3. Real and first-order lens parameters for the 12 SIE models repre-
sented, respectively, in Fig. 7. For each lens model denoted by #i, we have
reported the real model parameters (first line) and the retrieved first order
ones (second line).

Real f � θS θ θE θS/d
first order

#1 0.2578 0.3307 0.3797 5.0953 1.0881 0.9326
0.1858 0.2560 0.3560 5.1187 1.1923

#2 0.3317 0.6614 0.1831 3.0445 1.0887 0.5194
0.3090 0.6805 0.1803 3.0279 1.0997

#3 0.1522 0.9921 0.4275 4.7548 1.1511 0.8349
0.1102 0.9129 0.4068 4.8169 1.2520

#4 0.3480 1.3228 0.3183 2.6204 1.0330 0.9847
0.2588 1.3930 0.2941 2.5930 1.1025

#5 0.1217 1.6535 0.3406 6.1059 0.8283 0.8909
0.0780 1.6678 0.3401 6.1076 1.0078

#6 0.8842 1.9842 0.0373 6.2076 1.1691 0.7792
0.8672 1.9807 0.0367 6.1899 1.1725

#7 0.9300 2.6456 0.0248 2.4434 0.9144 1.1221
0.9066 2.6410 0.0236 2.3989 0.9173

#8 0.3424 3.6376 0.3250 4.9287 1.0863 0.9449
0.2614 0.4324 0.3040 4.9469 1.1578

#9 0.7360 3.9683 0.1326 5.5470 1.1356 1.1544
0.6634 0.8327 0.1321 5.5258 1.1241

#10 0.5449 4.6297 0.1924 3.5078 0.9882 1.0013
0.4648 1.4665 0.1888 3.4897 1.0290

#11 0.6862 4.9604 0.0829 3.7628 1.0243 0.6551
0.6577 1.8069 0.0805 3.7732 1.0266

#12 0.8936 5.2911 0.0337 0.9354 0.9076 0.9904
0.8692 2.1485 0.0337 0.9435 0.9040

Table 4. Comparison between the values of the time delays derived
from the first-order equations and the real SIE lens model ones. The
corresponding lensed image configurations are represented in Fig. 5.
The time delays are expressed in days.

Model Time delays Time delays
index zs zl (real) (to first order)

#1 1.695 0.039 �t01 1.95 1.97
�t02 0.76 0.76
�t03 1.97 1.99

#2 1.695 0.217 �t01 3.44 3.47
�t02 0.70 0.70
�t03 2.98 3.01

#3 1.695 0.54 �t01 29.47 29.68
�t02 8.59 8.59
�t03 30.34 30.55

#4 1.695 0.97 �t01 47.91 48.32
�t02 14.14 14.14
�t03 45.19 45.60

#5 2.350 0.039 �t01 0.29 0.30
�t02 −0.002 −0.002
�t03 0.37 0.38

#6 2.350 0.263 �t01 8.37 8.37
�t02 −0.25 −0.25
�t03 8.15 8.15

#7 2.350 0.66 �t01 6.32 6.40
�t02 2.04 2.04
�t03 6.55 6.63

#8 2.350 1.294 �t01 35.11 36.03
�t02 14.47 14.47
�t03 42.55 43.47
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436 O. Wertz and J. Surdej

Table 5. Comparison between the values of the time delays derived
from the first-order equations and the real SIE lens model ones. The
corresponding lensed image configurations are represented in Fig. 6.
The time delays are expressed in days.

Model Time delays Time delays
index zs zl (real) (to first order)

#1 1.695 0.039 �t01 1.11 1.33
�t02 −1.89 −1.89
�t03 2.00 2.23

#2 1.695 0.217 �t01 3.27 3.79
�t02 −5.12 −5.12
�t03 5.96 6.48

#3 1.695 0.54 �t01 13.63 15.00
�t02 −18.32 −18.32
�t03 9.81 11.18

#4 1.695 0.97 �t01 5.28 5.68
�t02 2.99 2.99
�t03 8.03 8.43

#5 2.350 0.039 �t01 1.00 1.06
�t02 −0.01 −0.01
�t03 1.40 1.46

#6 2.350 0.263 �t01 6.02 6.54
�t02 0.55 0.55
�t03 8.57 9.09

#7 2.350 0.66 �t01 9.40 10.26
�t02 −11.46 −11.46
�t03 9.11 9.97

#8 2.350 1.294 �t01 13.39 13.87
�t02 6.62 6.62
�t03 14.75 15.23

Table 6. Comparison between the values of time delays derived
from the first-order equations and the real SIE lens model ones. The
corresponding lensed image configurations are represented in Fig. 7.
The time delays are expressed in days.

Model Time delays Time delays
index zs zl (real) (to first order)

#1 1.695 0.039 �t01 4.66 5.32
�t02 2.62 2.62
�t03 2.69 3.35

#2 1.695 0.217 �t01 6.99 8.04
�t02 −8.98 −8.98
�t03 3.09 4.14

#3 1.695 0.54 �t01 64.40 71.77
�t02 47.63 47.63
�t03 49.56 56.93

#4 1.695 0.97 �t01 33.93 44.81
�t02 −46.41 −46.41
�t03 0.21 11.09

#5 2.350 0.039 �t01 0.74 1.26
�t02 0.23 0.23
�t03 2.11 2.63

#6 2.350 0.263 �t01 0.31 0.71
�t02 −0.77 −0.77
�t03 2.54 2.94

#7 2.350 0.66 �t01 3.13 3.62
�t02 0.81 0.81
�t03 0.82 1.31

#8 2.350 1.294 �t01 77.74 88.43
�t02 42.18 42.18
�t03 43.04 53.73

Table 7. The lensed image positions
for the Q2237+0305 system from the
CASTLESa survey.

−�α �δ

(arcsec) (arcsec)

A 0.0 0.0
B 0.673 ± 0.003 1.697 ± 0.003
C −0.635 ± 0.003 1.210 ± 0.003
D 0.866 ± 0.003 0.528 ± 0.003
G 0.075 ± 0.004 0.939 ± 0.003

ahttp://cfa-www.harvard.edu/castles/.

for a pair of opposed lensed images are identical to the exact time
delays.

4 A PPLI CATI ON TO A REAL CASE:
Q 2 2 3 7+0 3 0 5

The gravitational lens Q2237+0305 consists of a quadruply imaged
QSO at z = 1.695, discovered by Huchra et al. (1985) in the CfA
Redshift Survey of Galaxies. The deflector which leads to the forma-
tion of the lensed images is a nearby 15 mag face-on spiral galaxy,
at z = 0.0394 (e.g. Schmidt, Webster & Lewis Geraint 1998). Due to
its proximity, the lensing galaxy has already been explored in detail.
Different approaches have been applied to model this system, e.g. a
constant mass-to-light ratio (Schneider et al. 1988; Rix, Schneider
& Bahcall 1992; Chae, Khersonsky & Turnshek 1998; Keeton &
Kochanek 1998) or multiparametric models (e.g. a de Vaucouleurs
law and King profile, Kent & Falco 1988; singular isothermal sphere
and point mass along with external shear, Kochanek 1991; a singu-
lar power-law axially symmetric deflector with an external shear,
Wambsganss & Paczyński 1994; a non-singular power-law density
for the distribution of mass, Chae et al. 1998). The astrometric posi-
tions of the four lensed images of Q2237+0305, which come from
the CASTLES1 survey, are listed in Table 7.

For the case of a singular power-law axially symmetric model
with external shear, the so-called ε − γ model, Wertz et al. (2012)
have already derived first-order equations which link the lensed
image positions to the model parameters. As a consequence, we
may determine which set of first-order equations, between SIE and
ε − γ , leads to the best agreement with the observed lensed images.
Furthermore, we have performed numerical modelling in order to
independently determine the lens model parameters, for both the
ε−γ and SIE lens models. In addition, we have performed another
numerical modelling for the case of the non-singular isothermal
ellipsoid with external shear (NSIE + γ ) which constitutes a much
more detailed model for the deflector. For this purpose, the function
of merit to be minimized is the following

χ2
r = 1

N

3∑
j=0

(
x

(j )
1 − x

(j )
1

σ
(j )
1

)2

+ 1

N

3∑
j=0

(
x

(j )
2 − x

(j )
2

σ
(j )
2

)2

, (41)

where N represents the number of degrees of freedom, σ
(j )
1 (resp.

σ
(j )
2 ) the measured uncertainties affecting the observed positions

x
(j )
1 (resp. x

(j )
2 ), and x

(j )
i the image positions derived from the nu-

merical inversion of the lens equation characterized by the deduced
model parameters. For the case of the SIE (resp. ε − γ and NSIE
+ γ ) model, the number of independent parameters equals 3 (resp.

1 http://cfa-www.harvard.edu/castles/
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Table 8. Optimal SIE and ε − γ lens parameters for the Q2237+0305
system, derived by the FERRET sophisticated genetic algorithm which is a
component of the Qubist Global Optimization Toolbox.

SIE SIE ε − γ ε − γ NSIE + γ

first order first order

χ2
r 1.5466 12.204 18.165 – 0.7319

f 0.6649+0.0100
−0.0094 0.6479+0.0097

−0.0097 – – 0.6634+0.0110
−0.0096

� 1.9720+0.0028
−0.0029 1.9686+0.0024

−0.0024 – – 2.0111+0.0023
−0.0023

ε – – 0.6653+0.0100
−0.0094 1.5949 –

γ – – 0.1047+0.0100
−0.0094 -0.0292 0.0138+0.00012

−0.00012

ω – – 2.7437+0.0100
−0.0094 1.1729 2.7107+0.0010

−0.0010

θS 0.0652+0.0021
−0.0021 0.0669+0.0035

−0.0035 0.0595+0.0100
−0.0094 -0.0166 0.0632+0.0012

−0.0011

θ 6.1261+0.0150
−0.0146 6.0629+0.0408

−0.0408 6.0589+0.0100
−0.0094 6.0524 6.1236+0.0119

−0.0118

θE 0.8974+0.0023
−0.0023 0.9024+0.0021

−0.0021 0.8812+0.0100
−0.0094 0.8865 0.9396+0.0019

−0.0019

ρc – – – – 0.0332+0.0013
−0.0013

�xA 0.0031 0.0163 0.0064 – 0.0028
�xB 0.0087 0.0097 0.0082 – 0.0020
�xC 0.0082 0.0006 0.0210 – 0.0030
�xD 0.0036 0.0268 0.0335 – 0.0027

Notes. The parameters ε represents the slope of the power-law mass distribu-
tion, γ the magnitude of the external shear, ω the orientation of the external
shear and ρc the size of the core radius in arcsec. The lower and upper limits
correspond to the range of the lens parameters used by the genetic algorithm
routine. The distances between the lensed images and the modelled images
are represented by �x.

4 and 6). Therefore, the corresponding number of degrees of free-
dom is NSIE = 5 (resp. Nε − γ = 4 and NNSIE+γ = 2). The global
optimization has been performed using a sophisticated genetic al-
gorithm, called FERRET, which is a component of the Qubist Global
Optimization Toolbox (Fiege 2010). The best sets of parameters for
both the SIE and ε − γ models, as well as first-order lens parameters
are summarized in Table 8.

We have assumed that the errors are described by a normal dis-
tribution and are uncorrelated. Therefore, the probability that the
error of a single measurement lies in the interval [−a, a] is given
by p = erf(a/(σ

√
2)), where erf(.) represents the error function.

As a consequence, the corresponding inverse of the χ2 cumula-
tive distribution function with the number of degrees of freedom
specified by NSIE = 5 is given by χ2

cutoff = F−1(p|NSIE) = {χ2
cutoff :

F (χ2
cutoff |NSIE) = p}, where

F (χ2
cutoff |NSIE) =

χ2
cutoff∫
0

t (NSIE−2) e−t/2

2NSIE/2 �(NSIE/2)
dt . (42)

For a 1σ error calculation, we have found χ2
cutoff = 5.8876 which

leads to the reduced value χ2
r,cutoff = 1.1775. Finally, we have sepa-

rately constructed 1D paraboloid-like curves of best χ2
r as a function

of each lens model parameter. The χ2
r,cutoff associated with these

curves gives the value of the error bars (see Table 8, columns 1
and 3). Concerning the uncertainties of the first-order lens parame-
ters, we have derived them by means of the Monte Carlo method.

The SIE lens model shows the best agreement with the observed
image positions in comparison with the ε − γ model: <�xSIE > =
0.0059 arcsec whereas <�xε−γ > 	0.0173 arcsec. Therefore, this
is what convinces us to use the SIE first-order equations instead of
the ε − γ ones. Furthermore, for the case of the ε − γ model, the
first-order values of γ and θS appear to be non-physical. However,

Figure 8. Illustration of the Q2237+0305 gravitational lens system. We
have represented the corresponding surface mass density κ(ρ) characterized
by the model parameters f and � , as derived from the first-order equations.
We have both represented the lensed image positions and the source position,
all of them from the model derived by the numerical SIE fitting (see the dots),
the NSIE + γ (see the pluses +) and the first-order equations (see the open
circles ©). The diamond-shape and ellipse-shape solid lines represent the
numerically derived tangential caustic and critical curves, respectively. The
diamond-shape and ellipse-shape dashed lines represent the corresponding
first-order tangential caustic and critical curves, respectively.

we note that the determined value of θE is similar for both lens mod-
els which seems to indicate that the determination of the Einstein
angular radius very slightly depends on the choice of the deflector’s
family of models. We notice that both sets of lens parameters (SIE
and first-order SIE) are quite similar, which leads to the conclusion
that the use of the first-order astrometric equations is justified here.
For both SIE and first-order SIE models, we have derived the value
of θS/d and D/d from the parameters found in Table 8. For the case
of SIE, one finds θS/d = 0.5438, D/d = 0.5649, and for the case of
first-order SIE, θS/d = 0.5231 and D/d = 0.6054.

The NSIE + γ model shows the best agreement with the ob-
served lensed image positions in comparison with the SIE model:
< �xNSIE+γ >	 0.0026 arcsec, which is smaller than the precision
of the observed image positions (see Table 7). The large number
of independent parameters (NNSIE+γ = 6) and the very high preci-
sion on the modelled image positions explain why we have found
χ2

r < 1. We note that the parameters f, � , θS and θ between the
SIE and NSIE + γ models are very similar, which seems to indicate
that the NSIE + γ derived numerical solution is the best for this
model, i.e. not a local minimum. The addition of a core leads to the
appearance of a fifth lensed image, denoted by E, located very close
to the gravity centre of the deflector: −�α = −0.0069 arcsec and
�δ = 0.0018 arcsec. The observational existence of a fifth lensed
image has first been reported by Racine (1991), but it has never been
independently confirmed. For the case of the SIE, the first-order SIE
and the NSIE + γ models, we have illustrated the corresponding
lensed image positions in Fig. 8. Furthermore, we have derived the
values of the time delays (in hours) and amplification ratio between
the lensed image A and the other ones. We have summarized all
the information in Table 9. As expected, the comparison between
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Table 9. Comparison between the values of the time delays (in hours) and
amplification ratios between pairs of lensed images derived from the first-
order equations and the real SIE and NSIE + γ models for Q2237+0305.

SIE SIE NSIE + γ

first order

�tAD/h −5.3821 ± 0.6841 −7.2966 ± 0.5278 −5.4112 ± 0.4291
�tAB/h 2.5992 ± 0.7172 2.5983 ± 0.6152 2.5080 ± 0.5192
�tAC/h −17.969 ± 0.6969 −19.877 ± 0.7448 −18.009 ± 0.6192
�tCD/h 12.587 ± 0.6849 12.580 ± 0.6541 12.597 ± 0.5812

μB/μA 0.797 172 – 0.84483
μC/μA −0.184 621 – −0.294 92
μD/μA −0.305 474 – −0.490 83
μE/μA – – 0.001 2186

Notes. We have fixed the value of the Hubble parameter to 67.3 ± 1.2 km
s−1Mpc−1 and the matter density parameter �m = 0.315 ± 0.017 (Planck
Collaboration 2013).

Table 10. Model predictions for the time delays (in hours) �tAB, �tAC and
�tAD for Q2237+0305.

Reference Lens model �tAB/h �tAC/h �tAD/h

Schneider et al. Constant 2.4 29.5 26.6
(1988) mass-to-light ratio

Best fit 0.54 −6.48 −6.12

Model 1 −2.1 −11 −7.1
Rix et al. (1992) Model 2 −1.5 −10.1 −6.1

Model 2a 1.7 −9.8 −3.7
Best fit 1.3 −7.4 −2.8

Wambsganss Point lens 2.97 −17.41 −4.87
& Paczyński SIS 1.51 −8.91 −2.46
(1994) Best fit 0.44 −2.54 −0.7

Schmidt et al. Bar accounted 2.0 −16.2 −4.9
(1998)

Chae et al. Triaxial model [0.13,3.4] [−16.6,−0.77] [−5.5,−0.22]
(1998)

Notes. The model 1 by Rix et al. (1992) refers to an R1/4 profile, model
2, R1/4 with unresolved nucleus and model 2a is identical to model 2 with
only image positions fitted. The model in Schmidt et al. (1998) takes into
account the central galaxy bar.

the values of the time delay �tAB (resp. �tCD) for the case of the
SIE and the first-order SIE models are extremely close. Indeed, we
have shown that the first-order time delay expression (equation 38)
is identical to the one derived by Witt et al. (2000). Since equa-
tion (38) remains valid without any approximation for any pairs of
lensed images, equation (35) seems to be useless. However, the SIE
(resp. ε − γ ) first-order equations (20), (23), (24), (27) and (28)
have the advantage to test straightforwardly, and without any nu-
merical simulations, to what extent the SIE (resp. ε − γ ) family of
models constitutes a good choice and therefore whether the derived
values for the time delays and amplification ratios are trustworthy.
Without using these first-order equations, equation (38) could still
be applied to any symmetric quadruply imaged quasar but without
the immediate confidence that the SIE family of models consti-
tutes a good approximation to represent the mass distribution. For
Q2237+0305, we have shown that the ε − γ family of models did
not properly fit the lensed image positions while the SIE family of
models does.

The values of the estimated time delay listed in Table 9 can
be compared with those in Table 10 which constitutes a summary
of the model predictions for Q2237+0305. A description of the
corresponding lens models may be found in Vakulik et al. (2006).

We note that the determination of the time delays depends on the
considered models. Unfortunately, the possibility of measuring very
accurate time delays between two lensed images from their light
curves seems to be very difficult. Different attempts have already
been performed (see e.g. Koptelova, Oknyanskij & Shimanovskaya
2006; Vakulik et al. 2006) but none of them allows the authors to
definitely conclude. The uncertainties obtained, which correspond
to a 95 per cent confidence level, exceed 100 per cent. Therefore,
we are not able to compare the measured and the predicted time
delays. In order to estimate the value of the Hubble parameter with,
at least, the same precision as the Planck Collaboration (2013), we
have calculated that the uncertainties on �tAB and �tCD should
be, respectively, smaller than σAB ≤ 0.0465 h (i.e. 2.8 min) and
σCD ≤ 0.225 h (i.e. 13.5 min).

5 C O N C L U S I O N S

Use of the first-order equations leads to a straightforward method
of determining whether the deflector’s mass distribution can be
modelled with the SIE or ε − γ family of models, without the need
of any precise model fitting. We have retrieved the same expression
for the time delays between pairs of opposite lensed images as
already published by Witt et al. (2000). However, combined with
the first-order equations, we could easily estimate the validity of
these time delay estimates and the relevance of the use of such
a family of models. In order to obtain a mean astrometric error
≤0.003 arcsec, the validity range of the first-order equations has
been estimated to be θS < 0.13 d(f) which is similar to the one
already deduced for the ε − γ family of models (see Wertz et al.
2012).

Application to the quadruply imaged quasar Q2237+0305 con-
stitutes a very interesting way of comparing the results of accurate
SIE modelling with those derived from the first-order equations. We
have noticed that the model parameters deduced from the first-order
equations and the numerical fit are very closed. This leads to the
conclusion that the numerical fit, besides being time consuming,
does not bring any significant improvement in this case. The degree
of misalignment has been evaluated to θS/d = 0.5438 > 0.13. This
latter value allows us to understand why the mean astrometric error
<�x1er order > = 0.0134 arcsec is larger than the 0.003 arcsec which
corresponds to the error on the observed positions.

Unfortunately, the uncertainties obtained for the observed time
delays between the light curves of pairs of lensed images make
any comparison very risky. However, we have shown that in order
to derive the Hubble parameter with a high precision requires very
accurate values for the time delays. Therefore, we suggest that mon-
itoring the gravitational lens system Q2237+0305 with a very high
time sampling should constitute a promising way of determining
accurate values of the time delays and a precise determination of
the Hubble parameter based upon gravitational lensing.
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