

Using 2D-PIV measurements to compute unsteady aerodynamic loads on a flat plate at high angle of attack

A. GUISSART¹, L. P. BERNAL², G. DIMITRIADIS¹
and V.E. TERRAPON¹

¹Department of Aerospace and Mechanical Engineering, University of Liege

²Department of Aerospace Engineering, University of Michigan

Motivation

Forces measurement
using load sensor

Not always possible

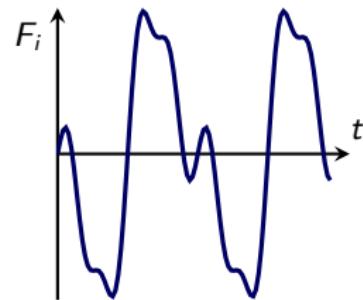
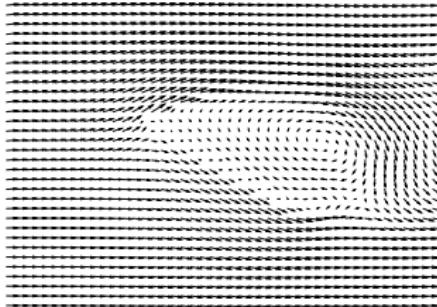
- Moving body with high inertia
- Small forces
- Sectional loads

Motivation

Forces measurement
using load sensor

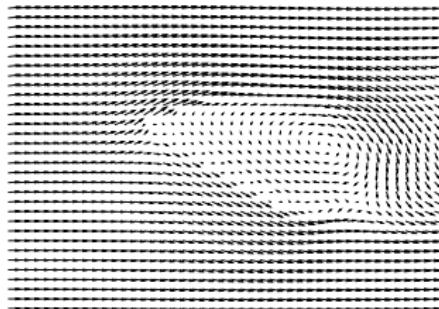
Not always possible

- Moving body with high inertia
- Small forces
- Sectional loads



Compute forces using PIV measurements

Objective

From PIV experiment

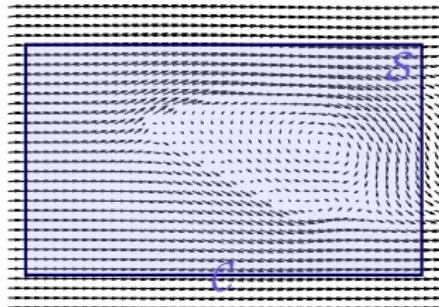

calculate

Indirect calculation of forces

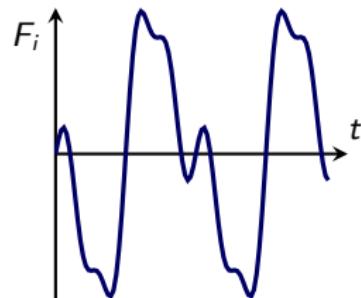
Objective

From PIV experiment

Indirect calculation of forces



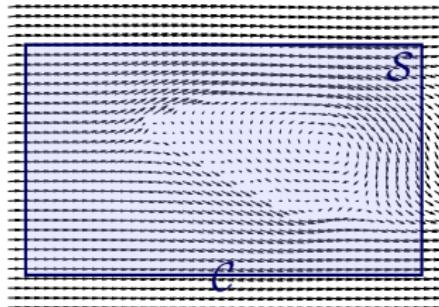
Integral momentum equations


$$F_i = - \int_S \rho \partial_t u_i dS - \int_C \rho u_i (u_j n_j) dC - \int_C \rho n_i dC + \int_C \tau_{ij} n_j dC$$

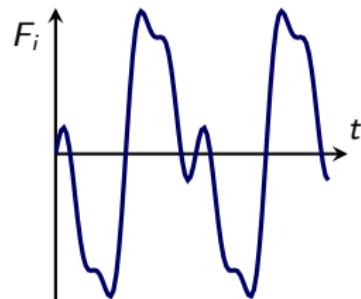
Objective

From PIV experiment

Indirect calculation of forces



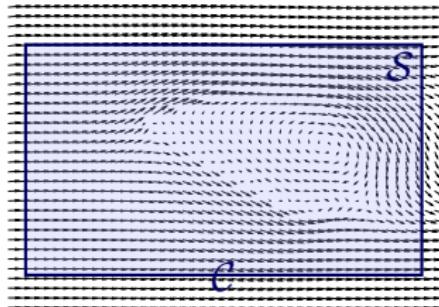
Integral momentum equations


$$F_i = - \int_{\mathcal{S}} \rho \partial_t u_i d\mathcal{S} - \int_{\mathcal{C}} \rho u_i (u_j n_j) d\mathcal{C} - \int_{\mathcal{C}} \rho n_i d\mathcal{C} + \int_{\mathcal{C}} \tau_{ij} n_j d\mathcal{C}$$

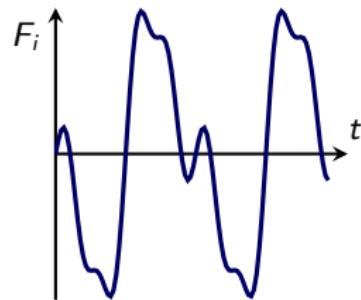
Objective

From PIV experiment

Indirect calculation of forces



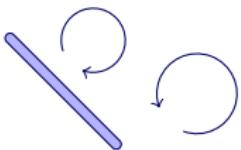
Integral momentum equations


$$F_i = - \int_S \rho \partial_t \mathbf{u}_i dS - \int_C \rho \mathbf{u}_i (\mathbf{u}_j n_j) dC - \int_C \rho n_i dC + \int_C \tau_{ij} n_j dC$$

Objective

From PIV experiment

Indirect calculation of forces

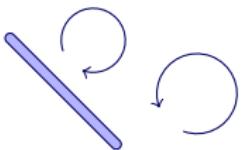


Integral momentum equations

$$F_i = - \int_S \rho \partial_t u_i dS - \int_C \rho u_i (u_j n_j) dC - \int_C p n_i dC + \int_C \tau_{ij} n_j dC$$

Test cases

Static flat plate


Physics of phenomenon

- Nearly periodic vortex shedding
- Phase averaging \Rightarrow synchronization

\Rightarrow Small amplitude pitching motion

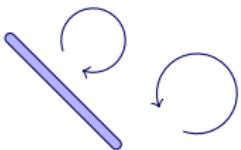
Test cases

Static flat plate

Physics of phenomenon

- Nearly periodic vortex shedding
- Phase averaging \Rightarrow synchronization
- \Rightarrow Small amplitude pitching motion

Without synchronization


- Time averaging
- \Rightarrow **Mean c_l & c_d**

With synchronization

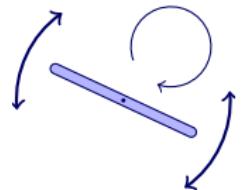
- Phase averaging
- \Rightarrow **Evolution of $c_l(t)$ & $c_d(t)$**

Test cases

Static flat plate

Physics of phenomenon

- Nearly periodic vortex shedding
- Phase averaging \Rightarrow synchronization
- \Rightarrow Small amplitude pitching motion

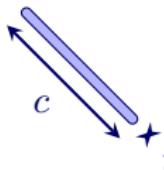

Without synchronization

- Time averaging
- \Rightarrow Mean c_l & c_d

With synchronization

- Phase averaging
- \Rightarrow Evolution of $c_l(t)$ & $c_d(t)$

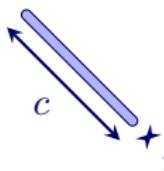
Large amplitude pitching flat plate



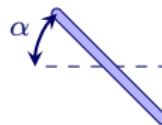
Physics of phenomenon

- Periodic shedding due to pitching
- Phase averaging using motion
- \Rightarrow Evolution of $c_l(t)$ & $c_d(t)$

Test cases

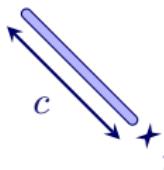

Flat plate

- $c = 7.6\text{cm}$
- $c/t = 16$
- Rounded edges

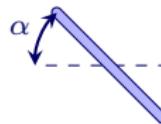

Test cases

Flat plate

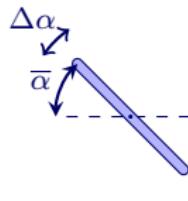
- $c = 7.6\text{cm}$
- $c/t = 16$
- Rounded edges


1. Static

- $\text{Re} = 4 \cdot 10^4$
- $\alpha = 30^\circ \text{ & } 45^\circ$
- Mean flow only

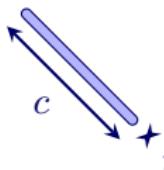

Test cases

Flat plate

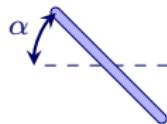

- $c = 7.6\text{cm}$
- $c/t = 16$
- Rounded edges

1. Static

- $\text{Re} = 4 \cdot 10^4$
- $\alpha = 30^\circ \text{ & } 45^\circ$
- Mean flow only


2. Small amplitude pitching

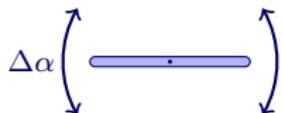
- $\alpha = \bar{\alpha} + \Delta\alpha \sin(2\pi ft)$
- $\bar{\alpha} = 30^\circ \text{ & } 45^\circ$
- $\Delta\alpha \approx 1^\circ$
- f based on $\text{St} = 0.155$


Test cases

Flat plate


- $c = 7.6\text{cm}$
- $c/t = 16$
- Rounded edges

1. Static


- $\text{Re} = 4 \cdot 10^4$
- $\alpha = 30^\circ \text{ & } 45^\circ$
- Mean flow only

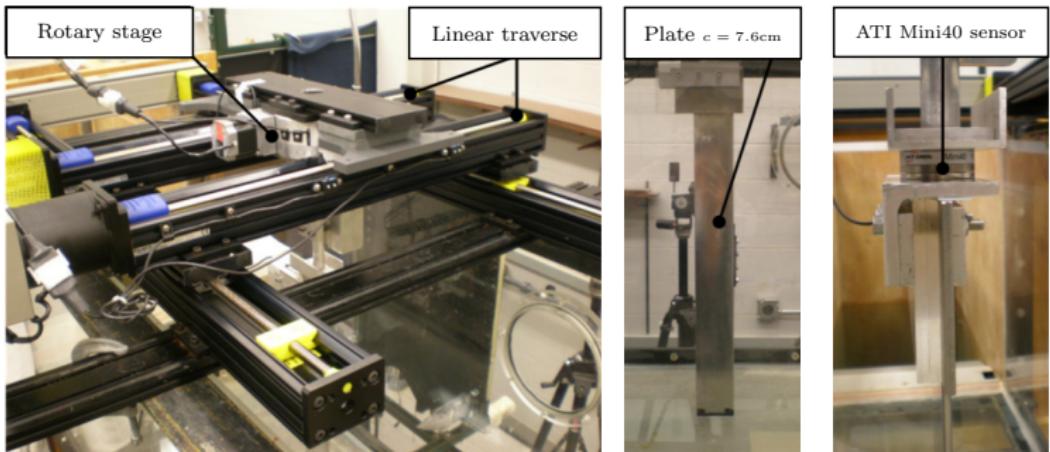
2. Small amplitude pitching

- $\alpha = \bar{\alpha} + \Delta\alpha \sin(2\pi ft)$
- $\bar{\alpha} = 30^\circ \text{ & } 45^\circ$
- $\Delta\alpha \approx 1^\circ$
- f based on $\text{St} = 0.155$

3. Large amplitude pitching

- $\text{Re} = 2 \cdot 10^4$
- $\bar{\alpha} = 0^\circ$
- $\Delta\alpha = 30^\circ$
- f based on $k = 0.2$

Methodology

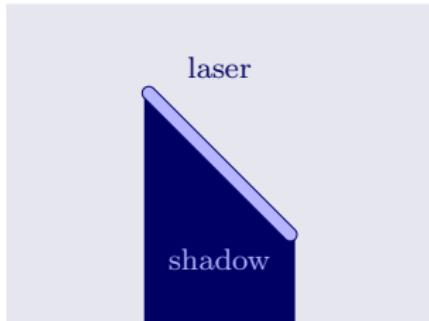

- Water channel
- PIV
 - ⇒ Synchronization
- Direct force measurements
 - ⇒ Comparison

Data collection

Pre-processing

Forces calculation

Methodology

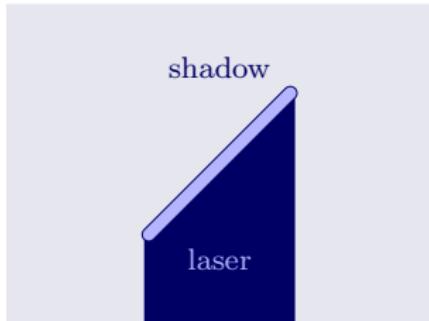


Data collection

Pre-processing

Forces calculation

Methodology

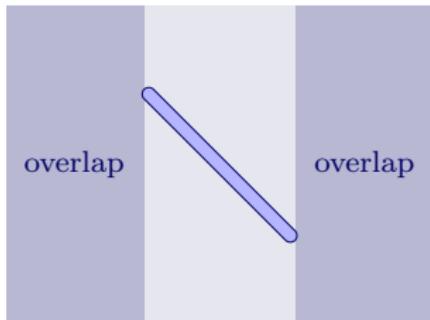

- Shadow due to mounting
- Use of symmetry
- Stitching of two images
 - ⇒ Overlap use for stitching
 - ⇒ Overlap may cause troubles

Data collection

Pre-processing

Forces calculation

Methodology

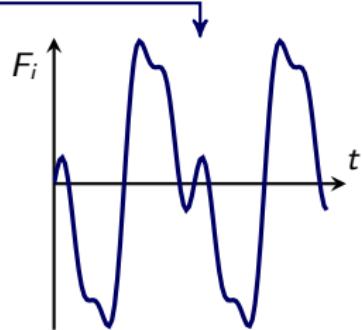
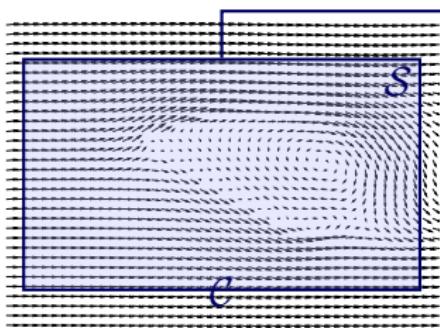

- Shadow due to mounting
- Use of symmetry
- Stitching of two images
 - ⇒ Overlap use for stitching
 - ⇒ Overlap may cause troubles

Data collection

Pre-processing

Forces calculation

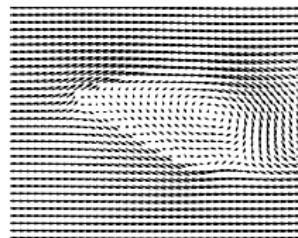
Methodology

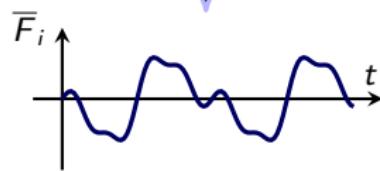
- Shadow due to mounting
- Use of symmetry
- Stitching of two images
 - ⇒ Overlap use for stitching
 - ⇒ Overlap may cause troubles

Methodology

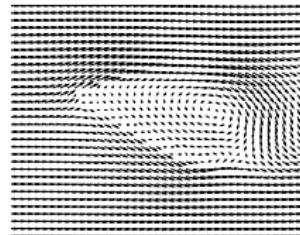
$$F_i = - \int_S \rho \partial_t u_i dS - \int_C \rho u_i (u_j n_j) dC - \int_C \rho n_i dC + \int_C \tau_{ij} n_j dC$$



Data collection

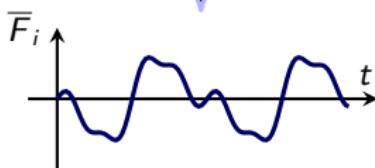
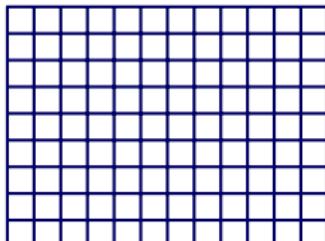

Pre-processing

Forces calculation

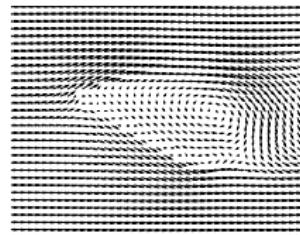

Methodology: forces calculation

$$\begin{aligned}\bar{F}_i = & - \int_S \rho \partial_t \bar{u}_i \, d\mathcal{S} \\ & - \int_C \rho \bar{u}_i \bar{u}_j n_j \, d\mathcal{C} \\ & - \int_C (\bar{p} n_i - \bar{\tau}_{ij} n_j) \, d\mathcal{C} \\ & - \int_C \rho \bar{u}'_i \bar{u}'_j n_j \, d\mathcal{C}\end{aligned}$$

Methodology: forces calculation

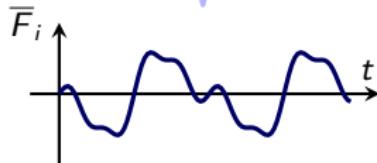
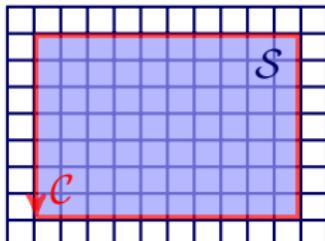



PIV data

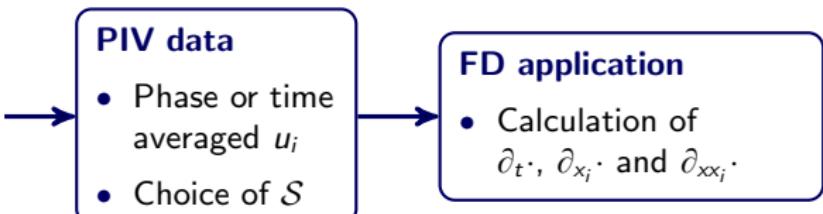
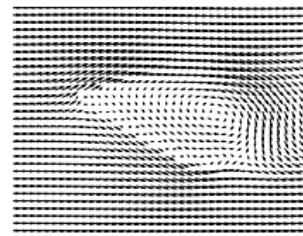

- Phase or time averaged \bar{u}_i
- Choice of \mathcal{S}

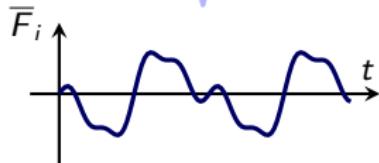
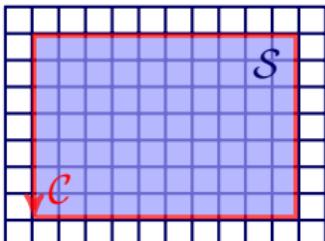
$$\begin{aligned}\bar{F}_i = & - \int_{\mathcal{S}} \rho \partial_t \bar{u}_i \, d\mathcal{S} \\ & - \int_{\mathcal{C}} \rho \bar{u}_i \bar{u}_j n_j \, d\mathcal{C} \\ & - \int_{\mathcal{C}} (\bar{p} n_i - \bar{\tau}_{ij} n_j) \, d\mathcal{C} \\ & - \int_{\mathcal{C}} \rho \bar{u}'_i \bar{u}'_j n_j \, d\mathcal{C}\end{aligned}$$

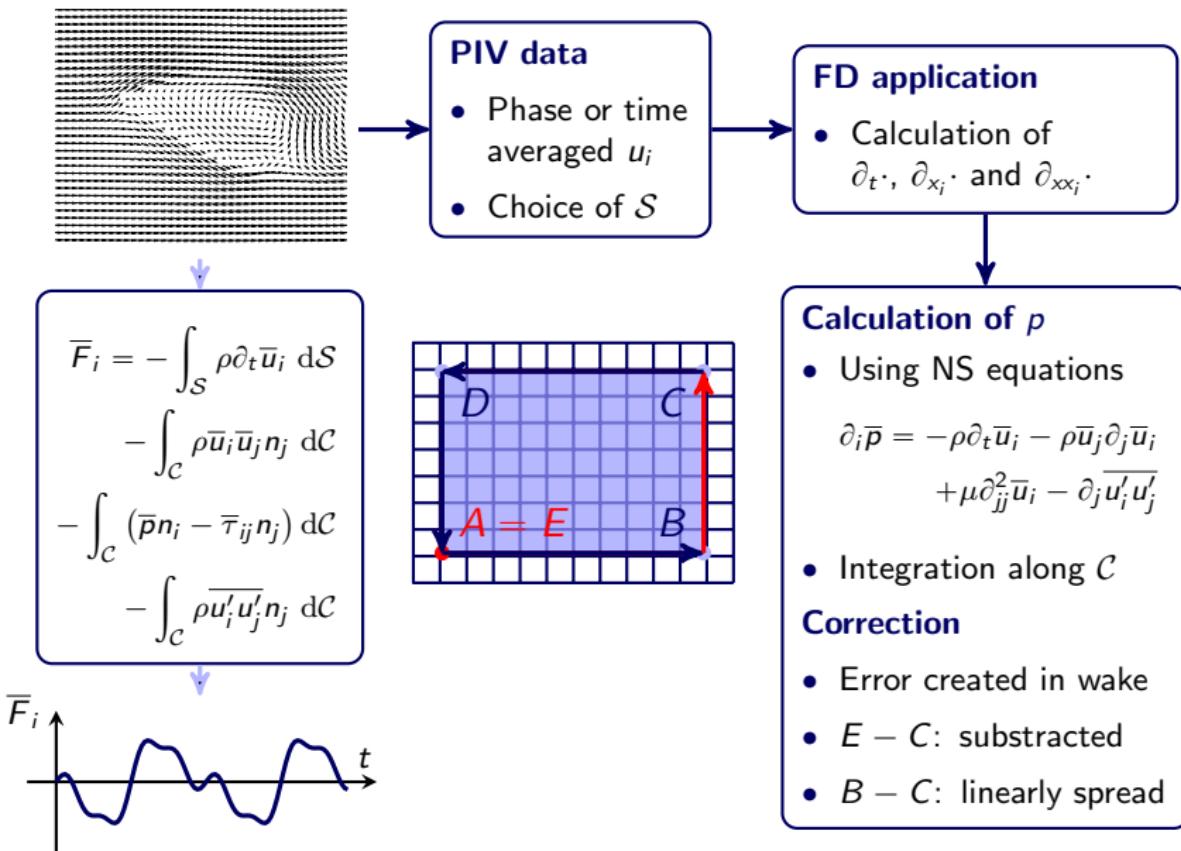
Methodology: forces calculation

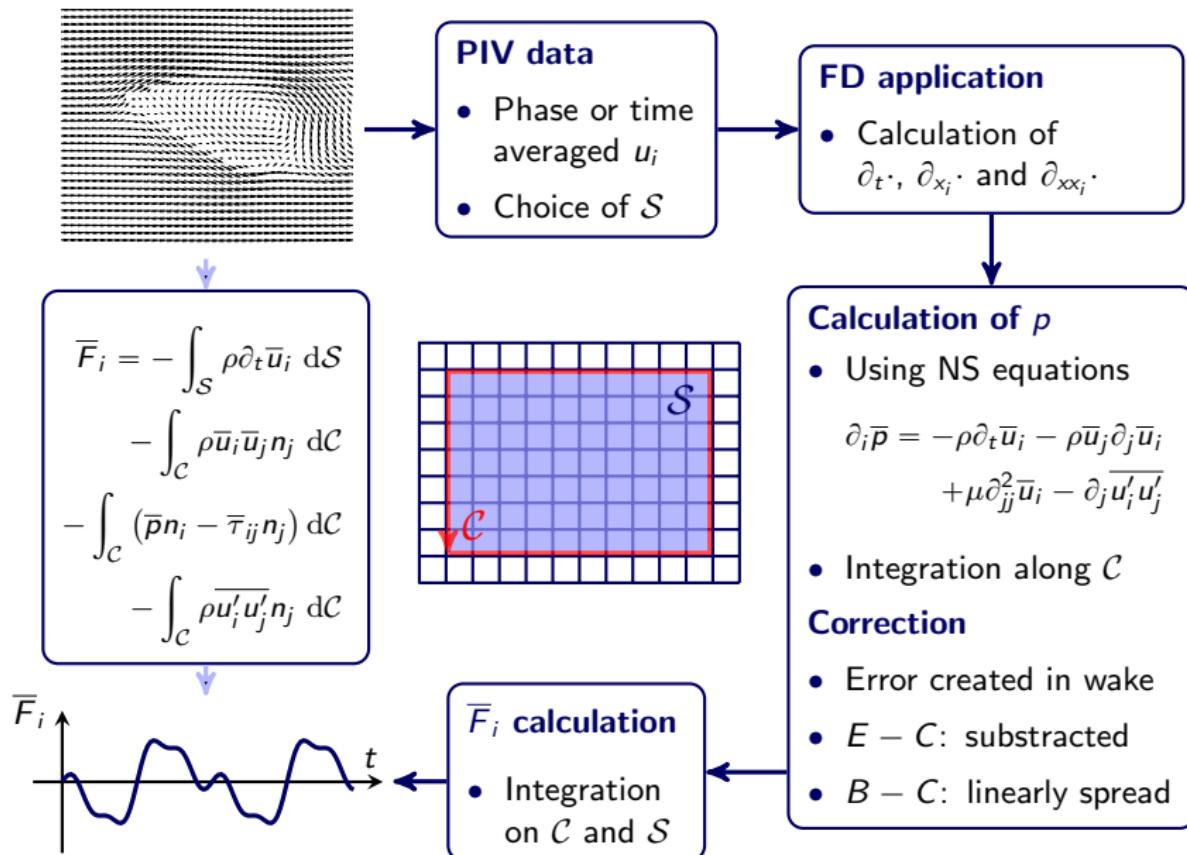



PIV data



- Phase or time averaged \bar{u}_i
- Choice of \mathcal{S}

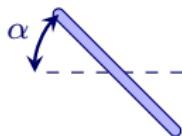


$$\begin{aligned}\bar{F}_i = & - \int_{\mathcal{S}} \rho \partial_t \bar{u}_i \, d\mathcal{S} \\ & - \int_{\mathcal{C}} \rho \bar{u}_i \bar{u}_j n_j \, d\mathcal{C} \\ & - \int_{\mathcal{C}} (\bar{p} n_i - \bar{\tau}_{ij} n_j) \, d\mathcal{C} \\ & - \int_{\mathcal{C}} \rho \bar{u}'_i \bar{u}'_j n_j \, d\mathcal{C}\end{aligned}$$


Methodology: forces calculation


$$\begin{aligned}\bar{F}_i = & - \int_S \rho \partial_t \bar{u}_i \, dS \\ & - \int_C \rho \bar{u}_i \bar{u}_j n_j \, dC \\ & - \int_C (\bar{p} n_i - \bar{\tau}_{ij} n_j) \, dC \\ & - \int_C \rho \bar{u}_i' \bar{u}_j' n_j \, dC\end{aligned}$$

Methodology: forces calculation

Methodology: forces calculation

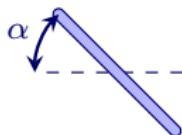


Static

$$\alpha = 30^\circ$$

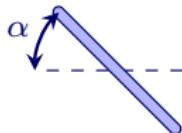
$$\alpha = 45^\circ$$

α	$\overline{c_l}$	$\overline{c_d}$	$\overline{c_l}$	$\overline{c_d}$
Indirect calculation	1.05 ± 0.01	0.60 ± 0.03	1.07 ± 0.08	1.08 ± 0.03
Direct measurement	0.97 ± 0.04	0.62 ± 0.03	1.02 ± 0.09	1.11 ± 0.12



Static

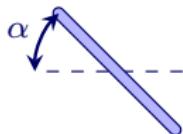
$$\alpha = 30^\circ$$


$$\alpha = 45^\circ$$

α	$\overline{c_l}$	$\overline{c_d}$	$\overline{c_l}$	$\overline{c_d}$
Indirect calculation	1.05 ± 0.01	0.60 ± 0.03	1.07 ± 0.08	1.08 ± 0.03
Direct measurement	0.97 ± 0.04	0.62 ± 0.03	1.02 ± 0.09	1.11 ± 0.12

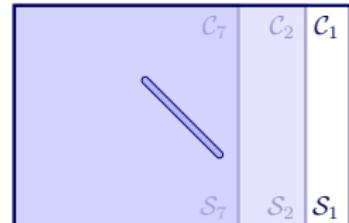
Static

α	$\alpha = 30^\circ$		$\alpha = 45^\circ$	
	$\overline{c_l}$	$\overline{c_d}$	$\overline{c_l}$	$\overline{c_d}$
Indirect calculation	1.05 ± 0.01	0.60 ± 0.03	1.07 ± 0.08	1.08 ± 0.03
Direct measurement	0.97 ± 0.04	0.62 ± 0.03	1.02 ± 0.09	1.11 ± 0.12

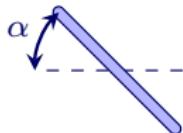


Meaning of standard deviation

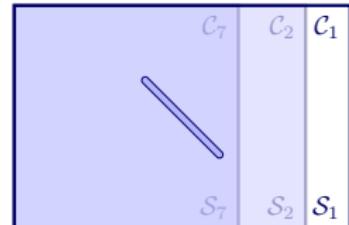
- Indirect calculation
⇒ 7 different surfaces \mathcal{S}
- Direct measurement
⇒ averaging measurements


Static

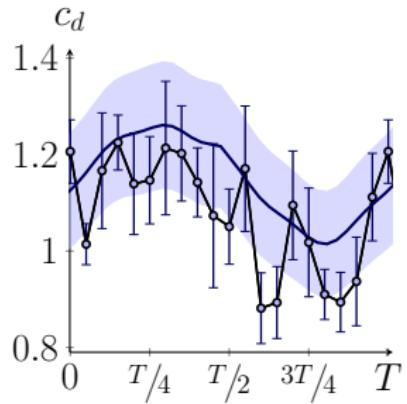
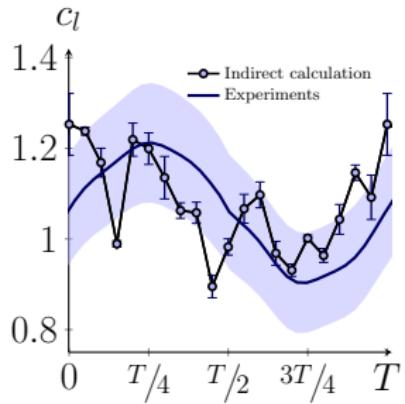
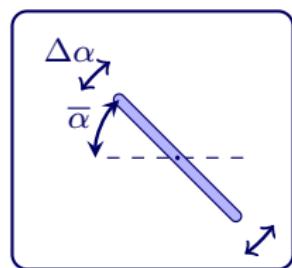
α	$\alpha = 30^\circ$		$\alpha = 45^\circ$	
	$\overline{c_l}$	$\overline{c_d}$	$\overline{c_l}$	$\overline{c_d}$
Indirect calculation	1.05 ± 0.01	0.60 ± 0.03	1.07 ± 0.08	1.08 ± 0.03
Direct measurement	0.97 ± 0.04	0.62 ± 0.03	1.02 ± 0.09	1.11 ± 0.12


Meaning of standard deviation

- Indirect calculation
⇒ 7 different surfaces \mathcal{S}
- Direct measurement
⇒ averaging measurements

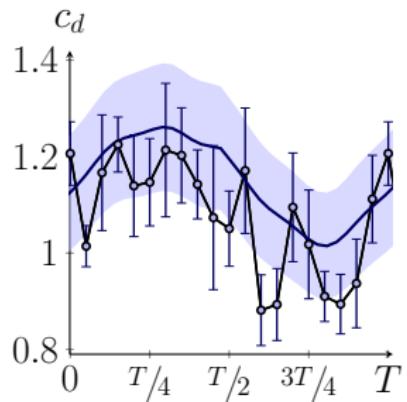
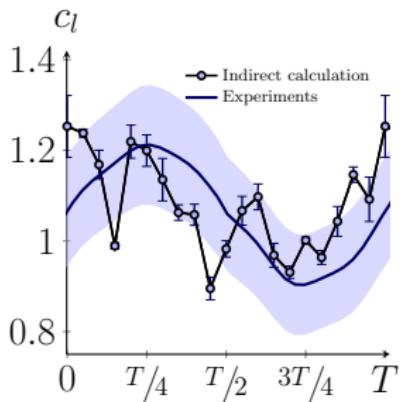
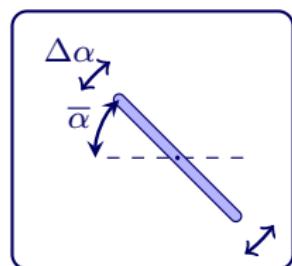

Static

α	$\alpha = 30^\circ$		$\alpha = 45^\circ$	
	$\overline{c_l}$	$\overline{c_d}$	$\overline{c_l}$	$\overline{c_d}$
Indirect calculation	1.05 ± 0.01	0.60 ± 0.03	1.07 ± 0.08	1.08 ± 0.03
Direct measurement	0.97 ± 0.04	0.62 ± 0.03	1.02 ± 0.09	1.11 ± 0.12

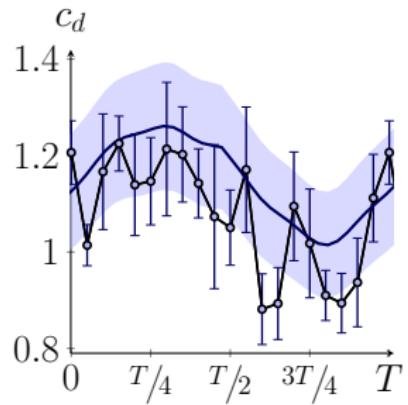
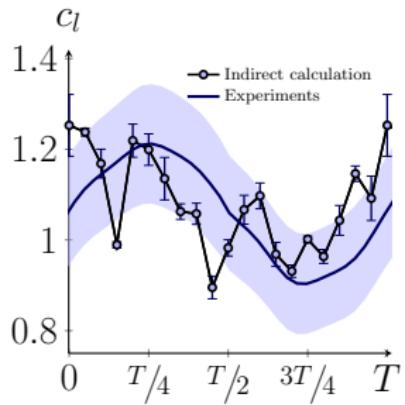
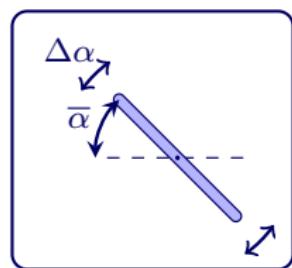




Meaning of standard deviation

- Indirect calculation
⇒ 7 different surfaces \mathcal{S}
- Direct measurement
⇒ averaging measurements

Small amplitude pitching

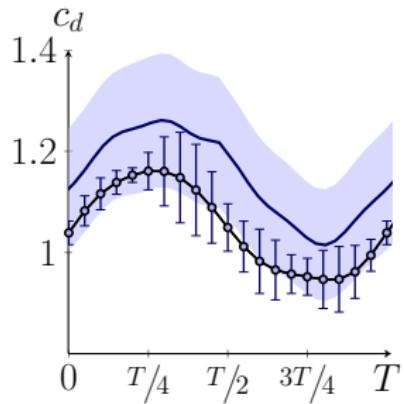
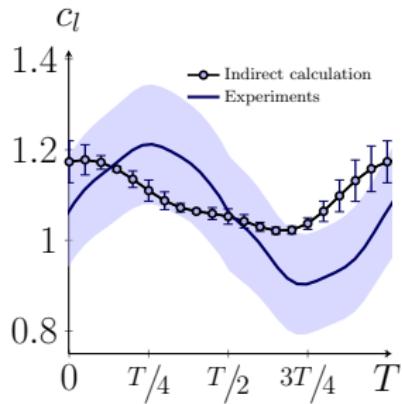
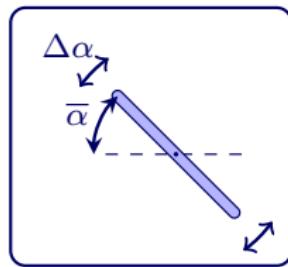



α	$\alpha = 30^\circ$				$\alpha = 45^\circ$			
	\bar{c}_l	c_l^{rms}	\bar{c}_d	c_d^{rms}	\bar{c}_l	c_l^{rms}	\bar{c}_d	c_d^{rms}
Indirect calculation	1.14	0.15	0.61	0.14	1.08	0.10	1.07	0.12
Direct measurement	1.08	0.06	0.69	0.02	1.06	0.11	1.15	0.09

Small amplitude pitching

α	$\alpha = 30^\circ$				$\alpha = 45^\circ$			
	\bar{c}_l	c_l^{rms}	\bar{c}_d	c_d^{rms}	\bar{c}_l	c_l^{rms}	\bar{c}_d	c_d^{rms}
Indirect calculation	1.14	0.15	0.61	0.14	1.08	0.10	1.07	0.12
Direct measurement	1.08	0.06	0.69	0.02	1.06	0.11	1.15	0.09

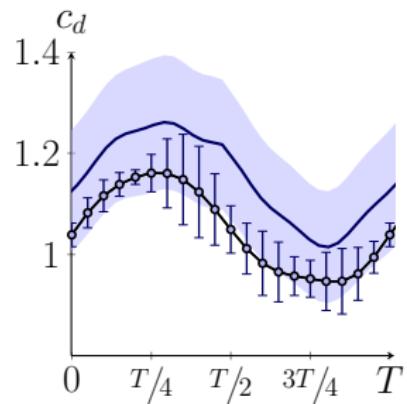
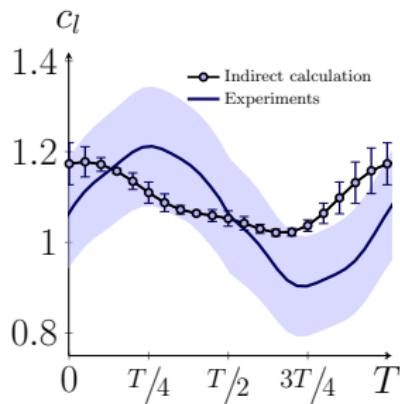
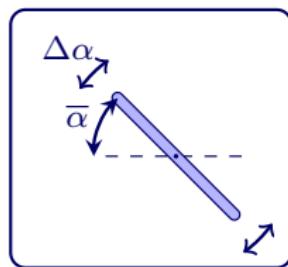
Small amplitude pitching

α	$\alpha = 30^\circ$				$\alpha = 45^\circ$			
	\bar{c}_l	c_l^{rms}	\bar{c}_d	c_d^{rms}	\bar{c}_l	c_l^{rms}	\bar{c}_d	c_d^{rms}
Indirect calculation	1.14	0.15	0.61	0.14	1.08	0.10	1.07	0.12
Direct measurement	1.08	0.06	0.69	0.02	1.06	0.11	1.15	0.09

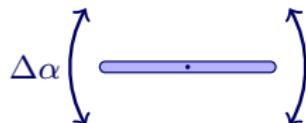



Methodology

DMD finds single frequency modes ϕ_i^{DMD}

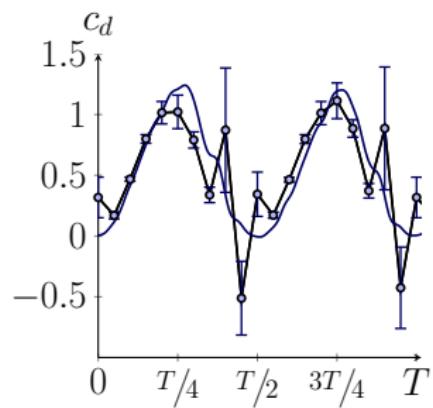
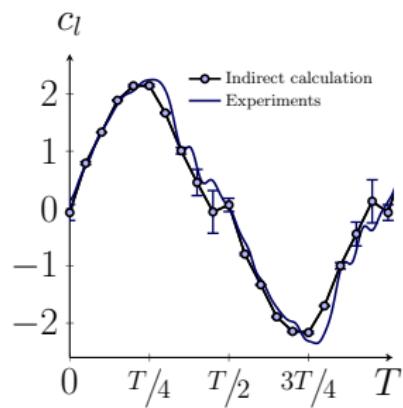
$$\mathbf{u}(x, y, t) = \sum_{i=1}^N \underbrace{a_i^{\text{DMD}}}_{\text{amplitude}} \underbrace{\exp(\lambda_i^{\text{DMD}} t)}_{\text{time evolution}} \underbrace{\phi_i^{\text{DMD}}(x, y)}_{\text{spatial mode}}$$

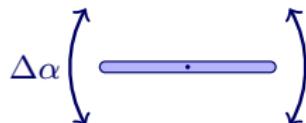
Small amplitude pitching with DMD

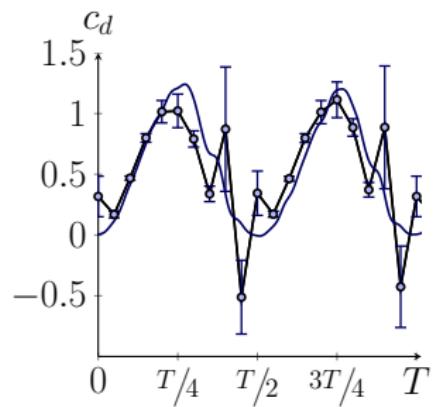
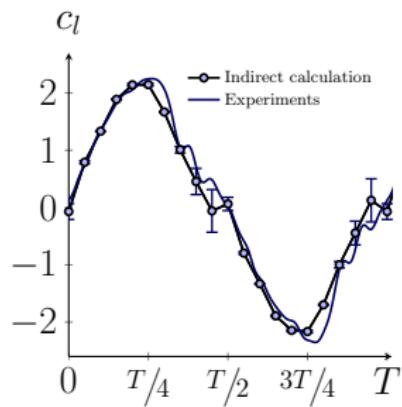

α	30°				45°			
	$\overline{c_l}$	c_l^{rms}	$\overline{c_d}$	c_d^{rms}	$\overline{c_l}$	c_l^{rms}	$\overline{c_d}$	c_d^{rms}
Indirect (without DMD)	1.14	0.15	0.61	0.14	1.08	0.10	1.07	0.12
Indirect (with DMD)	1.14	0.09	0.61	0.03	1.10	0.06	1.05	0.08
Direct measurement	1.08	0.06	0.69	0.02	1.06	0.11	1.15	0.09

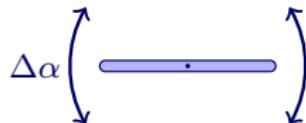
Small amplitude pitching with DMD

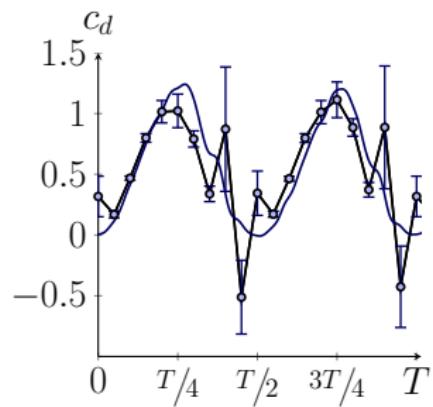
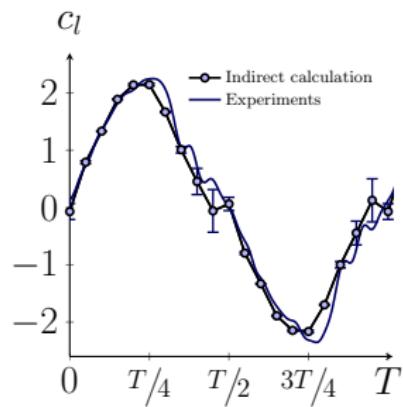



α	30°				45°			
	$\overline{c_l}$	c_l^{rms}	$\overline{c_d}$	c_d^{rms}	$\overline{c_l}$	c_l^{rms}	$\overline{c_d}$	c_d^{rms}
Indirect (without DMD)	1.14	0.15	0.61	0.14	1.08	0.10	1.07	0.12
Indirect (with DMD)	1.14	0.09	0.61	0.03	1.10	0.06	1.05	0.08
Direct measurement	1.08	0.06	0.69	0.02	1.06	0.11	1.15	0.09


Large amplitude pitching



α	$0^\circ \pm 30^\circ$			
	$\overline{c_l}$	c_l^{rms}	$\overline{c_d}$	c_d^{rms}
Indirect calculation	0.02	1.48	0.58	0.44
Direct measurement	0.03	1.45	0.55	0.42


Large amplitude pitching



α	$0^\circ \pm 30^\circ$			
	$\overline{c_l}$	c_l^{rms}	$\overline{c_d}$	c_d^{rms}
Indirect calculation	0.02	1.48	0.58	0.44
Direct measurement	0.03	1.45	0.55	0.42

Large amplitude pitching

α	$0^\circ \pm 30^\circ$			
	$\overline{c_l}$	c_l^{rms}	$\overline{c_d}$	c_d^{rms}
Indirect calculation	0.02	1.48	0.58	0.44
Direct measurement	0.03	1.45	0.55	0.42

Conclusion and future work

Indirect method is able to estimate forces

- Good estimation of mean coefficients
- Good estimation of temporal evolution for large amplitude
- **Method is noise sensitive**

⇒ **DMD can be used to reduce the noise**

- Further study impact of resolutions, window size, ...
- Comparison with other formulations