on-anvil percussion or as being due to the use of these pieces as wedges. A series of lithic experiments was carried out in order to identify the formation process of the damaged edges and their characteristics. Data results were utilised as a basis for the techno-functional analysis of assemblages from Italian sites differing in geography and chronology (Gr. La Fabbrica (GR, Tuscany); Palaeolithic site; S.Stefano (AQ, Abruzzi) and Torre Sabea (LE, Apulia): Neolithics sites). The goal of our study was to identify the role of the pièces esquillées in the selected lithic industries, highlighting similarities or differences in the choices made by the different communities.

Learning from blind tests: Residues on grinding stones and flaked stone tools

Veerle Rots
University of Liège, Service de Préhistoire, Belgium
veerle.rots@ulg.ac.be
Elspeth Hayes
Dries Cnuts
Richard Fullagar

Blind tests are important tools in the methodological development of functional studies. Their use has been infrequent in spite of their undeniable potential: they highlight identification problems, gaps in the experimental reference library, and limits to functional inferences. The possibility to test interpretations provides a major advantage for the methodology of functional analysis and it is rare in other archaeological research. It is therefore unfortunate that blind tests are often restricted to the early years of a new method. We argue that blind testing is relevant for ongoing methodological development. The rather limited use of blind tests may of course be due to stress surrounding a possible use or misuse of results to focus on an analyst's ability in identifying tool use. While blind tests are indeed useful in evaluating an apprentice's progress in recognising wear traces or residues, or for regularly testing professionals, their full interpretative potential particularly demands further methodological development of the techniques themselves. The results of a specific blind test for residues will be presented. The presented test was especially set up to evaluate the interpretative power of several techniques used in present-day residue studies. Two of the most common practices involve (1) examination of residues on the stone tool surfaces and mapping of residue locations, and (2) extraction of residues from the tool surface in order to analyse the residues more closely with a variety of optical and/or chemical techniques. Both practices can also be combined in a phased procedure. In order to increase the explanatory power, the test included both grinding stones and flaked stone tools, and it involved multiple analysts with varying levels of experience. However, the intention was not to examine the personal ability of the participants in correctly identifying tool use. We evaluate the potential of residue analysis to identify tool use and we focus in detail on the advantages and limitations of each technique involved. We reflect on the current state of blind test methodology and on how it can be further developed in the future.