Attribution des cours à option, modèle avec préférences numériques

Elective Course Allocation with numerical preferences

Maud Bay, David Homburg

HEC Management School of the University of Liège
14 rue Louvrex, 4000 Liège, Belgium maud.bay@ulg.ac.be

Plan

- Elective course allocation problem
- Mathematical formulation
- First 2-year results
- Emerging strategies, problem classification and methods
- Further work

Elective course allocation problem

Students must take a number of courses to complete their curriculum.

The classical Assignment Problem:

- each student has preferences on bundle of courses
- each course accepts a maximum number of students (seats)
- no use of monetary transfer (artificial currency is allowed)

Additionnal characteristics :

- students have preferences on individual courses
- courses schedules are predetermined
- students availability is known

Elective course allocation problem

Set S of N students s_{i}
Set C of M courses c_{j} with integral capacities $q=\left(q_{1}, \ldots, q_{M}\right)$.

Each student s_{i} has a set of permissible schedules Ψ_{i} and a utility function u_{i}
Non-permissible schedules have utility of zero
No peer effects on the utility function

Each student i has a preference function: $c_{j} \succ_{i} c_{k}$

A solution is an allocation x of courses to students : $x_{i j}=1$ if course j is allocated to student i

A solution is characterized with stability, efficiency and fairness

Elective course allocation problem

Constraints
Taking a number of elective courses is mandatory to fulfill the curriculum.

Courses:

- each course has a weight proportional to its workload (2 or 3 ECTS)
- courses schedule is known (1rst, $2^{\text {nd }}$ semester or both)
- each course can be offered multiple times (occurences) according to different schedules
- each course has a minimum and a maximum capacity (seats)

Each student

- has 2 years to achieve a given number of ECTS (according to their curriculum)
- decides how many ECTS they make each year
- specifies a maximum workload for any course (accept a 3 ECTS course or not)
- has to set a preference value for each course offered
- provides his own availability (1rst, $2^{\text {nd }}$ semester or both)
- can not take 2 courses at the same schedule
- a course cannot be granted to a student if his preference value for this course is null
- some assignments are predefined, some are forbidden

Elective course allocation problem

Numerical preferences p_{i} are used

- each student i has a budget of 100
- at least 5 courses must be given 1
- at least 5 courses must be given more than 10

Possible objectives:
welfare :

$$
\max W(x)=\sum_{i} u_{i} x_{i}
$$

faireness:

$$
\max \min _{i} u_{i} x_{i}
$$

equity:

$$
\min \max _{i, j}\left(u_{j} x_{j}-u_{i} x_{i}\right)
$$

Plan

- Elective course allocation problem
- Mathematical formulation
- First 2-year results
- Emerging strategies, problem classification and methods
- Further work

Mathematical formulation

$\sum_{o} x_{s, o} T_{o, c} \leq 1 \quad \forall s, c \quad$ student take a course only once
$x_{s, o} \leq 1-p_{o, 1} a_{s, 1} \quad \forall s, o \quad$ availability semester 1
availability semester 2
$\sum_{s} x_{s, o} T_{o, c} \leq \sum_{c} q_{c}^{\max } T_{o, c} y_{o} \quad \forall o \quad$ course maximum capacity
$\sum_{s} x_{s, o} T_{o, c} \leq \sum_{c} q_{c}^{\max } T_{o, c} y_{o} \quad \forall o \quad$ course minimum capacity
$\sum_{c} \sum_{o} x_{s, o} T_{o, c} W_{c} \geq R_{s} \quad \forall s \quad$ minimum number of ECTS required
$\sum_{c} \sum_{o} x_{s, o} T_{o, c} W_{c} \leq R_{s}+V_{s} \quad \forall s \quad$ maximum number of ECTS accepted
$\sum_{o} x_{s, o} \leq M_{s} \quad \forall s \quad$ maximum number of courses accepted
$\sum_{o} x_{s, o} T_{o, c} \geq I_{s, c} \quad \forall s, c \quad \quad i m p o s e d$ courses
$x_{s, o} \leq F_{s, o} \quad \forall s, o \quad$ forbidden courses
$\begin{array}{ll}x_{s, o} \leq \sum_{c} T_{o, c} P_{s, c} \quad \forall s, o & \text { not desired courses } \\ x_{s, o_{i}}+x_{s, o_{j}} \leq 2-D_{o_{i}, o_{j}} & \text { simultaneous courses }\end{array}$
$\begin{array}{ll}x_{s, o} \leq \sum_{c} T_{o, c} P_{s, c} \quad \forall s, o & \text { not desired courses } \\ x_{s, o_{i}}+x_{s, o_{j}} \leq 2-D_{o_{i}, o_{j}} & \text { simultaneous courses }\end{array}$

Plan

- Elective course allocation problem
- Mathematical formulation
- First 2-year results
- Emerging strategies, problem classification and methods
- Further work

First 2-year results

Data sets :

List of courses and schedule

16-Oct		20-Oct	23-Oct		30-Oct		03-Nov		06-Nov		10-Nov		13-Nov
pm	soir	am	pm	soir	pm	soir	am	pm	pm	soir	am	pm	pm
PREE 1			PREE 1		PREE 1		TECT 1	TECT 1	PREE 1		TECT 1	TECT 1	
CREM 1	METG 1		CREM 1	METX 1	CREM 1	METG 1			CREM 1	METX 1			
SCIA 1			SCIA 1		SCIA 1				SCIA 1				SCIA 1
													TOPC 1
ARGX 1			ARGX 1						ARGX 1				ARGX 1
VALP 1			VALP 1		VALP 1				VALP 1				
TECP 1			TECP 2		TECP 1				TECP 2				TECP 1
ARTM 1			ARTM 1		ARTM 1				ARTM 1				
COMN 1			COMN 2		COMN 1				COMN 2				COMN 1
RESS 1			RESS 1		RESS 1				RESS 1				
TECV 1			TECV 1						TECV 1				TECV 1
COOD 1		SUWE 1	SUWE 1		COOD 1				SUWE 1				COOD 1
			ENER 1						ENER 1				
			FECO 1		FECO 1				FECO 1				FECO 1
					COCL 1						COCL 1		COCL 1
									PECC 1				PECC 1

First 2-year results

Data sets :
number of students: M
number of occurences of courses: N

	2011-BAC2	2011- Masters	2012-BAC	2012-Masters
M	246	532	432	335
N	25	42	58	48
seats available	582	796	1129	942
ECTS available	1164	1951	2258	2169
R (required ECTS)	0	0	1378	1019
V (volonteered	804	2660	674	543
ECTS)				
Mean score	47	46	62	60
Max score	80	80	84	82

Plan

- Elective course allocation problem
- Mathematical formulation
- First 2-year results
- Emerging strategies, problem classification and methods
- Further work
- Literature

Emerging strategies, problem classification and methods

Related problems
Marriage problem
Women 1: 1 Men
each set has preferences on the other set

College admission problem
Students N: 1 College
students give preferences on colleges colleges have preferences on students
are related to Course allocation
Students N: N Courses
students give preferences on courses courses do not have preferences on students

Emerging strategies, problem classification and methods

Marriage problem

an assignment x is unstable if
there exist a man m and a woman w who prefer each other to their assignment at x

```
Theorem (Alvin Roth, 1985):
there exist no stable matching procedure for the marriage problem that makes it a
dominant strategy for all agents to state their true preferences
```

College admission problem
Students N: 1 College
an assignment is S-Optimal stable if there is no assignment x^{\prime} such that x^{\prime} is preferred for all student in S

Theorem holds (generalization, A. Roth 1985)

Course allocation problem
Students N: N Courses
students give preferences on courses / courses do not have preferences on students

Theorem holds (generalization)

Emerging strategies, problem classification and methods

Students use strategies and partially reorder their preferences taking into account course popularity levels.

Allocation mechanisms produce solutions with a lower welfare when a fraction of students are manipulating their preferences instead of a truthful play (Budish, 2011)

Literature shows that the only mechanisms that are Pareto efficent and strategy proof are dictatorships (Budish et al. 2012, Kominers et al. 2010, etc.) but those mechanisms are not equitable.

Many schools use bid mechanisms or the Harvard Draft procedure although these methods are not strategy-proof.

A bid mechanism using agents allows an uniform use of strategy and achieve a better equity

Budish proposed recently a procedure based on approximate competitive equilibrium with equal incomes (budgets of students are not equal) that proves to be resistant to strategy.

Emerging strategies, problem classification and methods

Example at Harvard Business School (Budish, Cantillon, 2012)

Three steps procedure:
Step 1 : students are asked their preferences to size the course offer
Step 2 students are asked to bid on courses the procedure outputs an assignment given as an information to students
-> courses are given a gross value
Step 3: students are asked to bid and the output is definitive

Plan

- Elective course allocation problem
- Mathematical formulation
- First 2-year results
- Emerging strategies, problem classification and methods
- Further work
- Literature

Further work

What is the Holy Grail?

In a perfect world all students are happy with their bid/preference decisions and the resulting allocation.

Reach a Nash equilibrium ?

- perfect information of all students about other student strategies
- perfect information about the minimum preference required to obtain a course
- the final solution no student is willing to change his strategy
- use agents to avoid students strategy mistakes

How?

- In depth analysis of the relation between mechanisms based on preference ordering and mechanisms based on numerical preferences
- Develop a fast procedure that provides a optimal stable allocation
- Propose an web-based bid/preference system with real-time output

Plan

- Elective course allocation problem
- Mathematical formulation
- First 2-year results
- Emerging strategies, problem classification and methods
- Further work
- Literature

Literature

Budish, E. (2011). The combinatorial assignment problem : approximate competitive equilibrium from equal incomes. Journal of Political Economy, 119(6), 1061-1103.
Budish, E. \& Cantillon, E. (2012). The multi-unit assignment problem : theory and evidence from course allocation at Harvard. American Economic Review, 102(5), 2237-2271.
Gale, D. \& Shapley, L. (1962). College admissions and the stability of marriage. The American mathematical monthly, 69, 9-15. literature review two sided matching markets
Kominers, S., Ruberry, M. \& Ullman, J. (2010). Course allocation by Proxy auction . Proceedings on the 6th Workshop on Internet \& Network Economics, 551-558.
Kristiansen, S., Sorensen, M. \& Stidsen, T. (2011). Elective course planning. European Journal of Operational Research, 215, 713-720.
Laporte, G. \& Desroches, S. (1986). The problem of assigning students to courses in a large engineering school. Computers and Operations Research, 13(4), 387-394 .
Müller, T. \& Murray, K. (2010). Comprehensive approach to student sectioning. Annals of Operations Research, 181, 249-269.
Roth, A. (1985). The college admissions problem is not equivalent to the marriage problem. Journal of economic theory, 36, 277-288 .
Roth, A. \& Sotomayor, M. (1990). Two-sided matching. A study in game-theoretic modeling and analysis. Cambridge: Cambridge University Press .

