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1 Industrial problem

The present work investigates a Dynamic Vehicle Allocation problem (DVAP) which is faced by
major forwarding companies active in road transportation. A company owning a limited fleet of
vehicles wants to maximize its operational profit over an infinite horizon divided into equal periods
(days). The profit stems from revenues for transporting full truckloads (FTL) and from costs derived
from waiting idle and moving unladen. A decision leading to a set of actions is made at every
period of time and is based on the dispatcher’s information over a restricted horizon, called rolling
horizon, as it evolves subsequently period per period. The data provided by the customers concern
their prospective loads or requirements for transportation: locations of departure and destination
cities, and a unique pick-up period for each transportation order. Moreover, the dispatcher has data
regarding travel times between cities, current location and status (unladen or loaded) of trucks. This
is known for sure and represents the deterministic part of the problem.

The stochastic component of the problem arises from the uncertainty on the requirement for the
transportation orders. More precisely, the availability of each order can be either confirmed, or
denied, a few periods ahead of the loading period (meaning that clients confirm their order, which
the carrier may still decide to fulfill, or not). For projected orders in the remote part of the rolling
horizon, the dispatcher only knows the order confirmation probability which represents the stochastic
transportation order availability. The decision problem faced by the dispatcher in each period is to
accept or to reject orders, then to assign the selected orders to trucks, taking into account prospective
and confirmed orders as well as the availability and current location of trucks. Rejected orders are
supposed to be sub-contracted at no cost while bringing no profit.

In practice, as a rule, trucking orders are communicated by the dispatching center to the drivers
and to the customers on the eve of the loading period at the latest. The loading decisions are made
when all available orders are known for the next day. In the present work, it is slightly different,
decisions are supposed to be taken at the early morning of the current decision period when the
information for the current day are all known. So, this process is performed with short regular
periods, typically equal to days. This results in a planning context which is different from an on-
line setting, where the system generates a decision whenever a piece of information changes, or a
model with long periods of time, such as in maritime transportation, wherein the accuracy of the
probabilistic forecasts may evolve over several weeks.
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2 Problem specific features and scientific contributions

Within the literature on transportation problems, many developments focus on finding one approxi-
mate or exact solution to a single period deterministic problem such as the vehicle routing problem
(VRP) or the pick-up and delivery problem (PDP), including their variants: limited or unlimited ca-
pacity, single vehicle or fleet, time windows, etc. (See [2] for a detailed review.)In such problems, the
temporal dimension is usually almost absent: it may be restricted, for instance, to an upper bound
on the duration of a tour, or to time windows at customer locations. In other cases, such as when
designing bus or train schedules, the decision-maker may restrict his attention to the computation
of periodic schedules. Even in this case, where the problem takes several periods into account, a
unique decision is made once and for all.Yet, in other decision frameworks, the time dimension can-
not be so easily disregarded. In particular, long-haul transportation firms usually have to cope with
a rolling decision process, typically unfolding over days, where deterministic or uncertain forecasts
over subsequent periods are available from customers, and where decisions can be possibly postponed
or anticipated. This framework leads to a decision process consisting of successive dependent opti-
mization phases. The present research aims at describing a strategy to tackle such problems, and
techniques to select a performing algorithmic policy (π∗).

We should also stress that the stochastic component of the problems that we handle here is not quite
standard. Indeed, in transportation models, the uncertain or stochastic element frequently relates
to a parameter value such as customer demand or travel time which can be reasonably modeled by
continuous probability distributions (see [3] for an introduction). More importantly, even though
the realization of these random variables may affect the cost or the feasibility of the solutions,
it does not modify the set of decision variables.In contrast with this situation, we consider here
discrete, Bernoulli random variables (representing the availability of transportation orders) whose
realization profoundly affects the structure of the available solutions. In fact, owing to these discrete
distributions, the optimization techniques for the model to be solved are scenario-based. Therefore,
some decision variables may typically appear in, or disappear from the models associated with these
various deterministic scenarios depending on the binary values assumed by these random variables
(as in [4] for an application).

These binary values determine the problem size for every scenario and the set of potential decisions.
So, each scenario represents a particular set of orders available for transportation within the rolling
horizon. This set obviously contains the orders confirmed in the deterministic part of the horizon,
as well as the orders associated with the specific scenario at hand. Consequently, the decision to be
made, i.e., the problem to be solved, changes significantly with each scenario, and in every period.
This is by far different from a slight variation in the values assumed by numerical parameters, such
as those that might result in scenarios associated with realizations of continuous random variables.

3 Scenario-based algorithmic strategies

This problem is computationally difficult owing to the large number of possible realizations of the
random variables, and to the combinatorial nature of the decision space. The methodology is based
on optimizing decisions for deterministic scenarios. By solving the assignment problem for a single
or a sample of scenarios, we aim at finding actions per decision period leading to profitable expected
value of policies (µπi) in the long run. Several policies πi are generated in this way from simple
heuristics to more complex approaches:
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• Deterministic approximations by single scenarios

1. Expected Value Scenario based on the expected reward for each order,
2. Modal Value Scenario assuming that orders are confirmed only if their probability of

availability is ≥ 50%.
3. Optimistic scenario assuming that all transportation orders are confirmed,
4. Pessimistic scenario (alias the myopic deterministic bound O∗

RH) assuming that none
projected order is confirmed.

• Multiple scenarios approaches (see [5])

1. Consensus algorithm: a subset of scenarios randomly generated are independently solved.
Then, the most frequent decisions among these solutions are recorded in order to generate
a promising consensus solution using a dedicated aggregating procedure.

2. Restricted Expectation algorithm: a subset of scenarios randomly generated are indepen-
dently solved. Then, each partial solution for the present decision period is successively
applied in the other scenarios. Successively, the cumulated values of the solutions taking
into account this modified decision period are computed over all scenarios. The solution
with the least expected cost is selected.

3. Subtree algorithm : from network flow models and adding non-anticipativity constraints,
it is possible to derive a formulation over subtrees of scenarios. Therefore, a subset of
randomly generated scenarios is solved at once and the solution for the decision period is
selected.

Similar approaches have proved effective for other problems; see, e.g., [1].

Using the a-posteriori information over the rolling horizon O∗
H and the overall horizon O∗

T , deter-
ministic optimization models are used to compute bounds allowing for performance evaluation and
value of information analysis(see figure 1).
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Figure 1: Bounds and values of information
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4 Results and contributions

Test are performed on various instances featuring different numbers of loads, graph sizes, sparsity,
and probability distributions. Performances are compared statistically over paired samples to assess
the significance of the observed differences among algorithmic policies πi.

Our main contribution in this work consists in testing the effectiveness of a generic, practical
methodology for tackling such multi-period transportation problems with discrete stochastic fore-
casts.

As an additional contribution, we also provide illustrative numerical estimations and discussions
for the expected value of the multi-period model (EVMPM), the expected value of the perfect
information (EVPI), the expected value of the accessible information (EVAI), the expected value
of the tail information (EVTI),the expected value of the expected value solution (EEVS) and the
expected value of the stochastic solution (EVSS)(see figure 1).

Finally, we analyze the robustness of the algorithm with respect to the accuracy of the estimation of
the probability distributions, and we discuss the sensitivity of the performance of the most promising
algorithm with respect to the length of the rolling horizon.

Results show that the subtree algorithm outperforms statistically (i.e. = π∗) other algorithmic
policies and closes by 2/3 on average the gap between the myopic bound O∗

RH and the bound O∗
H

using the a-posteriori information over the rolling horizon. Moreover, the subtree algorithm calibrated
with a 50% probability for the availability of orders remains efficient, i.e. robust, when under or over
estimating the real availability of orders.
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