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Abstract

A finite word is u is said to be bordered if u has a proper prefix which is also a suffix of u,
and unbordered otherwise. Ehrenfeucht and Silberger proved that an infinite word is purely
periodic if and only if it contains only finitely many unbordered factors. We are interested
in abelian and weak abelian analogues of this result; namely, we investigate the following
question(s): Let w be an infinite word such that all sufficiently long factors are (weakly)
abelian bordered; is w (weakly) abelian periodic? In the process we answer a question of
Avgustinovich et al. concerning the abelian critical factorization theorem.
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1. Introduction

A finite word u is bordered, if there exists a non-empty word z which is a proper prefix
and a suffix of u. The following theorem states a well-known connection between periodicity
and unbordered factors:

Theorem 1. [6, 11] An infinite word w is purely periodic if and only if there exists a constant
C such that every factor v of w with |v| ≥ C is bordered.

In this paper we are interested in extending this result to the abelian and weak abelian
settings.

Two finite words u and v are abelian equivalent if and only if for each letter a, the
number of occurrences of a in u (denoted |u|a) is equal to |v|a. In other words, u and v
are permutations of one another. An infinite word w is called abelian ultimately periodic if
w = uv1v2v3 · · · , where the vi are pairwise abelian equivalent.

An infinite word w is called weakly abelian ultimately periodic if w = uv1v2v3 · · · , where
vi are finite words with the same frequencies of letters for i ≥ 1. In other words, a word
is weakly abelian ultimately periodic if it can be factored into some prefix u followed by
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infinitely many words of possibly different lengths with the same letter frequencies. For more
on weak abelian periodicity see [2].

We say that a finite word u is abelian bordered if u contains a non-empty proper prefix
which is abelian equivalent to a suffix of u. Abelian bordered words were recently considered
in [5, 9]. A finite word u is weakly abelian bordered if it has a non-empty proper prefix and
a suffix with the same letter frequencies.

In Sections 3 and 4, we consider weak abelian borders in the binary and non-binary cases,
respectively. We prove that the condition on finitely many weak abelian unbordered factors
implies weak abelian periodicity plus some additional restrictions (Theorems 2 and 3). In
Section 5, we consider infinite words having only finitely many abelian unbordered factors.
We do not know if such words are necessarily abelian periodic. However, we are able to show
that such words have bounded abelian complexity. In Section 6, we provide an answer to
a question from [1] concerning abelian critical factorization theorem. In the last section we
summarize the results and propose some open problems.

2. Preliminaries

In this section we give some basics on words following terminology from [8] and introduce
our notions.

Given a finite non-empty set Σ (called the alphabet), we denote by Σ∗ and Σω, respec-
tively, the set of finite words and the set of (right) infinite words over the alphabet Σ. Given
a finite word u = u1u2 · · · un with n ≥ 1 and ui ∈ Σ, we denote the length n of u by |u|.
The empty word will be denoted by ε and we set |ε| = 0. For a finite or infinite word w,
we will sometimes denote by alph(w) the alphabet of the word w. Given the words w, x,
y, z such that w = xyz, x is called a prefix, y is a factor and z a suffix of w. The word x
is a proper prefix if 0 < |x| < |w|. We let w[i, j] = wiwi+1 · · ·wj denote the factor starting
at position i and ending at position j of w = w1w2w3 · · · , where the wk ∈ Σ. An infinite
word w is ultimately periodic (or briefly periodic) if for some finite words u and v it holds
w = uvω = uvv · · · ; w is purely periodic if u = ε. An infinite word is aperiodic if it is not
ultimately periodic. Given a finite word u = u1u2 · · · un with n ≥ 1 and ui ∈ Σ, for each
a ∈ Σ, we let |u|a denote the number of occurrences of the letter a in u. Two words u and v
in Σ∗ are abelian equivalent, denoted u ∼ab v, if and only if |u|a = |v|a for all a ∈ Σ. It is easy
to see that abelian equivalence is an equivalence relation on Σ∗. An infinite word w is called
abelian ultimately periodic (or briefly abelian periodic) if w = uv1v2v3 · · · , where vi ∼ab vj for
all integers i, j ≥ 1.

For a finite non-empty word w ∈ Σ∗, we define the frequency ρa(w) of a letter a ∈ Σ in w

as ρa(w) =
|w|a
|w|

. For an infinite word w ∈ Σω and a letter a ∈ Σ, if the limit

lim
n→∞

ρa(w[1..n])

exists, then we define the frequency ρa(w) of a in w to be the latter limit. The infinite word w

has uniform letter frequencies if, for every letter a of w, the ratio |w[k..k+n]|a
n+1

has a limit ρa(w)
when n → ∞, uniformly in k. In general the existence of uniform frequencies is stronger than
(prefix) frequencies, but in our consideration in fact all the words have uniform frequencies.

Now we provide some background on weak abelian periodicity from [2].
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Definition 1. An infinite word w over an alphabet Σ is called weakly abelian ultimately
periodic (or briefly weakly abelian periodic) if w = uv1v2v3 · · · , where ρa(vi) = ρa(vj) for all
a ∈ Σ and all integers i, j ≥ 1.

An infinite word w is called bounded weakly abelian periodic, if it is weakly abelian periodic
with bounded lengths of blocks, i.e., there exists C such that for every i we have |vi| ≤ C.

Example 1. The word (01)(0212)(0313)(0414) · · · is weakly abelian periodic but not bounded
weakly abelian periodic.

We make use of the following geometric interpretation of weak abelian periodicity. We
translate an infinite word w = w1w2 · · · ∈ Σω to a graph visiting points of the lattice Z

|Σ|

by interpreting letters of w as drawing instructions. In the binary case we associate 0 with
a move by the vector v0 = (1,−1), and 1 with a move by v1 = (1, 1). We start at the
origin (x0, y0) = (0, 0). At step n, we are at a point (xn−1, yn−1) and we move by a vector
corresponding to the letter wn, so that we come to a point (xn, yn) = (xn−1, yn−1)+vwn

, and
the two points (xn−1, yn−1) and (xn, yn) are connected with a line segment. We let Gw denote
the corresponding graph, and Gw(n) = (xn, yn).

Lemma 1. A weakly abelian periodic word w has a graph with infinitely many integer points
on some line with a rational slope.

We remark that instead of the vectors (1,−1) and (1, 1), one could use any other pair of
noncollinear vectors v0 and v1. For a k-letter alphabet one can consider a similar graph in
Z

k with linearly independent integer vectors v1, . . . ,vk. For example, one can take as vi a
unit vector with 1 at position i and all other coordinates equal to 0.

In the binary case and for vectors v0 = (1,−1) and v1 = (1, 1), it will be convenient for
us to use a function gw : n 7→ yn, so that Gw(n) = (n, gw(n)). It can also be regarded as
a piecewise linear function with line segments connecting integer points (see an example on
Figure 1).

Figure 1: The graph of the Thue-Morse word with v0 = (1,−1), v1 = (1, 1).

3. Weak abelian borders: binary alphabet

We proceed with the following theorem relating weak abelian borders and weak abelian
periodicity, giving one way analog of the characterization of periodicity in terms of unbordered
factors (Theorem 1):
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Theorem 2. Let w be an infinite binary word. If there exists a constant C such that every
factor v of w with |v| ≥ C is weakly abelian bordered, then w is bounded weakly abelian
periodic. Moreover, its graph lies between two rational lines and has points on each of these
two lines with bounded gaps.

Remark that following the terminology from [2], a bounded weakly abelian periodic word
is necessarily of bounded width. Namely, a word w is of bounded width if there exist two lines
with the same slope, so that the graph of w lies between these two lines. Formally, there
exist numbers α, β, β′ so that αx + β ≤ gw(x) ≤ αx + β′. We note that in the case of weak
abelian periodicity α must be rational.

We will also need the notion of balance. A word w ∈ Σω is called K-balanced, if for each
letter a and two factors u, v of w such that |u| = |v| the inequality ||u|a − |v|a| ≤ K holds.
We simply say that w is balanced if it is K-balanced for some K. We remark that balance
implies the existence of uniform letter frequencies:

Proposition 1. [3, Proposition 2.4] An infinite word w ∈ Σω is balanced if and only if it
has uniform letter frequencies and there exists a constant B such that for any factor u of w
and for all letters a ∈ Σ, we have

∣

∣|u|a − ρa(w)|u|
∣

∣ ≤ B.

In fact, the latter proposition implies that balance is equivalent to the bounded width
property. Indeed, the bounded width property implies balance. The converse is obtained by
applying the above proposition to the prefixes of the word.

Corollary 1. An infinite word is balanced if and only if it is of bounded width.

The proof of Theorem 2 heavily relies on the graph representation of the word. It consists
of several lemmas restricting the form of the word. We first prove that if a factor w[i+ 1..j]
of w is such that the graph of the word between i and j lies above or below the line segment
connecting the points (i, gw(i)) and (j, gw(j)), then w[i+ 1..j] is weakly abelian unbordered:

Lemma 2. Let w be an infinite binary word, and i, j be integers, i < j. If gw(k) >
gw(j)−gw(i)

j−i
k + gw(i)j−gw(j)i

j−i
for each i < k < j, then the factor w[i + 1..j] is weakly abelian

unbordered.

We also note that a symmetric assertion holds for the case when the graph lies below this
line: simply invert the inequality in the statement of the lemma.

Figure 2: Illustration of Lemma 2: weakly abelian unbordered factor 11010.

Proof. For any proper prefix p and any proper suffix s of w[i+ 1..j] we have ρ1(p)− ρ0(p) >
gw(j)−gw(i)

j−i
and ρ1(s)− ρ0(s) <

gw(j)−gw(i)
j−i

. Hence there is no weak abelian border.
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Figure 3: The reciprocal of Lemma 2 is not true: weakly abelian unbordered factor 1110000011000.

However, the reciprocal of the previous lemma does not hold. A counterexample is given
by the weakly abelian unbordered word 1110000011000: see Figure 3.

Lemma 3. Let w be an infinite binary word with finitely many weakly abelian unbordered
factors. Then w is balanced.

We remind that by balance we mean K-balance for some K.

Proof. Suppose the converse. Unbalance implies that for every K there exist i, j, l with
i < l < j, such that

∣

∣

∣

∣

gw(l)−
gw(j)− gw(i)

j − i
l −

gw(i)j − gw(j)i

j − i

∣

∣

∣

∣

≥ K. (1)

In other words, the point (l, gw(l)) lies at distance at least K from the line connecting the
points i and j (distance measured vertically). Indeed, unbalance implies that there exist two
factors u and v of the same length in which the number of occurrences of the letter 0 (and
hence also the letter 1) differs by more than K. Consider the factor w[i+1..j] starting with u
and ending with v. It is not hard to see that it satisfies the inequality (1) for either l = i+ |u|
or l = j − |v|.

Take the shortest such factor (i.e., choose i, j satisfying the condition (1) with the smallest
j− i). Then the graph Gw does not intersect the line segment connecting the points (i, gw(i))
and (j, gw(j)), for otherwise there exists a shorter factor satisfying (1). Hence due to Lemma
2, it remains to notice that the lengths of such factors grow asK grows (in fact, j−i > K).

Since balance implies the existence of letter frequencies, Lemma 3 implies that a word
satisfying the conditions of Theorem 2 has letter frequencies. We will now prove that the
frequencies are rational.

Lemma 4. Let w be an infinite binary word with finitely many weakly abelian unbordered
factors. Then the letter frequencies are rational.

Proof. Balance implies bounded width, i.e., there exist α, β′, β′′ such that the graph of w
lies between two lines: αx+β′ ≤ gw(x) ≤ αx+β′′. Here α is related to the letter frequencies
as follows: ρ0 = 1−α

2
and ρ1 = 1+α

2
. So, we need to prove that α is rational. Assume the

converse. Take the lowest (in the sense of the smallest β) line y = αx + β such that there
are points of the graph arbitrarily close to it. We build the line (and prove its existence) as
follows.
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Take ε > 0, divide the stripe αx + β′ ≤ y ≤ αx + β′′ into stripes of width at most
ε (width can be measured vertically, although this is not important). At least one of the
stripes contains infinitely many points (i, gw(i)) of the graph Gw. Choose the lowest such
stripe αx+β′

1 ≤ y ≤ αx+β′′
1 . Divide it into stripes of width ε1 < ε, continue the process with

εn → 0. The value of β in the desired line is obtained as a limit β = limn→∞ β′
n = limn→∞ β′′

n.
To prove that α is rational, we consider three cases:

Case 1: There are no points of the graph Gw below the line y = αx + β. In this case
take ε > 0 and consider the stripe αx + β ≤ y ≤ αx + β + ε. There are infinitely many
points in this stripe by the definition of the line y = αx + β. Consider any two consecutive
points (n1, gw(n1)) and (n2, gw(n2)) from the stripe (consecutive in the sense that for any n,
n1 < n < n2, we have gw(n) > αx+ β + ε). By Lemma 2, the factor w[n1 + 1..n2] is weakly
abelian unbordered, since the points of the graph Gw between n1 and n2 lie above the line
y = αx+ β + ε, which in turn lies above the line segment connecting the points (n1, gw(n1))
and (n2, gw(n2)).

Now we will prove that the minimal possible length (n2 − n1) grows as ε → 0. Indeed,
take the shortest factor w[n1 + 1..n2] with n1, n2 consecutive points in the stripe such that
the slope of the line segment connecting the points (n1, gw(n1)) and (n2, gw(n2)) is the closest

to α, i.e.,
∣

∣α− |gw(n2)−gw(n1)
n2−n1

|
∣

∣ is minimal among the factors of the length (n2 −n1) with both
ends in the stripe. If there are several such factors, choose one of them, say the leftmost.
Since α is irrational, it is not equal to the slope of the line connecting points (n1, gw(n1))
and (n2, gw(n2)). So, take ε′ <

∣

∣|gw(n2) − gw(n1)| − α(n2 − n1)
∣

∣, then no two points of the
graph corresponding to positions in the word at distance (n2 − n1) can simultaneously be in
the stripe αx + β ≤ y ≤ αx + β + ε′. So, the minimal distance between points in the new
(thinner) stripe of width ε′ increased, which corresponds to weak abelian unbordered factors
of length more than n2−n1. Continuing this line of reasoning and taking smaller and smaller
ε, we get arbitrary long weakly abelian unbordered factors.

Case 2: There are finitely many points of the graph Gw below the line y = αx + β
(but the number of such points is nonzero). In this case take the last point (n0, gw(n0))
below the line: gw(n0) ≤ αn0 + β, and gw(n) > αn + β for each n > n0. Consider a prefix
of length N > n0 of w, and the part of the graph between n0 and N . Choose a point n′,
n0 < n′ ≤ N , such that the point (n′, gw(n

′)) is the closest to the line among the points
(n, gw(n)), n0 < n ≤ N :

|gw(n
′)− αn′ − β| = min

n0<n≤N
|gw(n)− αn− β|.

Then due to Lemma 2, the factor w[n0+1..n′] is weak abelian unbordered. Indeed, the points
of the graph Gw between n0 and n′ lie above the line y = αx+ gw(n

′)−αn′ (the line parallel
to y = αx + β and passing through the point (n′, gw(n

′))), which in turn lies above the line
segment connecting the points (n0, gw(n0)) and (n′, gw(n

′)):

gw(n) ≥ αn+ gw(n
′)− αn′ >

gw(n
′)− gw(n0)

n′ − n0

n+
gw(n0)n

′ − gw(n
′)n0

n′ − n0

for n0 < n < n′. Since there are points of the graph arbitrary close to the line y = αx + β,
then, increasing N , we will find larger and larger values n′ and hence find arbitrary long
weakly abelian unbordered factors.
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Case 3: There are infinitely many points of the graph Gw below the line y = αx+β. Since
we chose the lowest line with the property that there are infinitely many points arbitrary
close to the line, it follows that for any ε > 0 there are only finitely many points below the line
y = αx+β−ε (if any). Take ε such that there are points below the line y = αx+β−ε. By the
condition of Case 3 there are infinitely many points in the stripe αx + β − ε ≤ y ≤ αx + β.
For each two consecutive points in the stripe the corresponding factor is weakly abelian
unbordered due to Lemma 2. As ε → 0, the lengths of such factors grow for irrational α (the
proof of this is similar to the proof of the similar fact from Case 1).

Therefore, we came to a contradiction in each case. So the frequency must be rational.

Proof of Theorem 2. Lemmas 3 and 4 imply that the graph of the word lies between two
lines of rational slope α: αn + β′ ≤ gw(n) ≤ αn + β′′ for each n. We can choose such lines
with the minimal β′′ and maximal β′. To prove the theorem it remains to show that the
graph of the word has points on each of these two lines with bounded gaps. We provide a
proof for the line y = αx+ β′, for the other line the proof is symmetric.

First we prove that there are points of the graph on the line. Clearly, for rational α there
is a fixed minimal distance from the integer points of the lattice Z2 to the line (note that for
irrational slope this does not hold). If there are no points of the graph on the line, since the
slope is rational, instead of y = αx + β′ we could choose a different line y = αx + β′′′ with
the same slope passing through the point of the graph closest to the line, and with β′′′ > β′,
which contradicts the choice of β′ as the maximal possible.

Secondly, there are infinitely many points on the line. Otherwise consider a line y =
αx + β′′′ with β′′′ > β′, with infinitely many points of the graph on the line and with the
smallest such β′′′. Note that here we need again α to be rational. Then there exists n0 such
that for all n > n0 we have gw(n) ≥ αn + β′′′, i.e., starting from n0 the graph lies above
the line. Taking the smallest possible n0 satisfying the condition, we get that the point
(n0, gw(n0)) lies below the line. Hence for each n′ > n0 corresponding to a point on the line,
i.e., with gw(n

′) = αn′+β′′′, we have that the factor w[n0+1..n′] is weakly abelian unbordered
by Lemma 2. Indeed, all the points between n0 and n′′ lie above the line y = αx + β′′′ and
hence above the line segment connecting the points (n0, gw(n0)) and (n′, gw(n

′)) of the graph
corresponding to the beginning and the end of the factor.

Finally, we need to prove that the points on the line y = αx+β′ appear in bounded gaps.
This follows from the fact that for two consecutive points n1, n2 on the line y = αx+ β′ the
factor w[n1 + 1..n2] is weakly abelian unbordered by Lemma 2.

Remark 1. Except for the case ρ0 = ρ1 = 1/2 (equal frequencies), we do not know whether
the converse of Theorem 2 is true (see Question 2). In the case of equal frequencies the
converse holds, and it could be easily seen from the graph of the word. In fact, we will prove
that all sufficiently long factors have weak abelian borders with frequencies 1/2. Frequencies
equal to 1/2 correspond to α = 0, so the graph lies between two horizontal lines y = β′ and
y = β′′, and intersects each of them with bounded gaps. Denote the maximal gap by C.
Consider a factor w[i+1..j] of length > C: j− i > C. Then there exist n′, n′′, i < n′, n′′ < j,
such that gw(n

′) = β′, gw(n
′′) = β′′. Without loss of generality n′ < n′′. For each integer β,

β′ ≤ β ≤ β′′, there exists n, n′ ≤ n ≤ n′′, such that gw(n) = β. In other words, in the interval
[n′, n′′] the graph passes through any integer horizontal line between β′ and β′′. In particular,
there exist i′, i′′, i < n′ ≤ i′, i′′ ≤ n′′ < j, such that gw(i) = gw(i

′), gw(j) = gw(j
′). So, the
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prefix w[i + 1..i′] and the suffix w[j + 1..j′] give a weak abelian border with the frequencies
1/2. But we do not see how to generalize this observation to the case of nonequal frequencies,
since in general the graph can “jump” through several rational non-horizontal lines and it
does not have to pass through all rational lines between points on lower and upper lines.

4. Weak abelian borders: nonbinary alphabet

Now we continue with non-binary alphabets and prove the analogue of Theorem 2. Basi-
cally, a non-binary word with finitely many weakly abelian unbordered factors must also be
balanced, weakly abelian periodic and have rational letter frequencies. To state the analogue
of the additional condition in Theorem 2 (graph lying between two parallel rational lines and
bounded weak abelian periodicity along those lines) we need some notation.

First, in the non-binary case, instead of bounded width we define cylinder set. Let l

denote a line in R
k, l : xi = x0

i + ait, i = 1, . . . , k, and let M be a constant. A k-dimensional
cylinder C(l,M) is defined as

C(l,M) = {x̄ ∈ R
k|d(l, x̄) ≤ M}

where d(l, x̄) denotes the distance between the point x̄ and the line l. The line l is the axis
of the cylinder.

Now we will give an analogue of the two parallel lines such that the graph lies between
those two lines and has points on each of those lines with bounded gaps. If the graph Gw

of an infinite word w over a k-letter alphabet belongs to some cylinder C(l,M), we define a
tangential hyperplane to the graph of Gw as a hyperplane H : b1x1 + · · · + bkxk = d parallel
to the line l such that for each point x̄ = (x1, . . . , xk) ∈ Gw one has b1x1 + · · · + bkxk ≥ d,
and in addition there is a point x̄′ = (x′

1, . . . , x
′
n) ∈ Gw such that b1x

′
1 + · · · + bkx

′
k = d.

We remark that a tangential hyperplane to the graph Gw does not have to be a “proper”
tangential hyperplane to the cylinder C(l,M), but it is a hyperplane parallel to it. In the
remaining part of the text, by “tangential” we always mean tangential to the graph. Next,
we define a tangential line l

′ to Gw, l
′ : xi = x′0

i + ait, i = 1, . . . , k, as a line which belongs
to some tangential hyperplane H to Gw, H : b1x1 + · · · + bkxk = d, such that for each point
x̄ ∈ Gw∩H one has also x̄ ∈ l

′. In other words, a tangential line l′ is defined as a line parallel
to the cylinder lying in some tangential hyperplane, such that the only points of the graph
belonging to the hyperplane also belong to the line. We remark that this line can be inside
the cylinder.

Now we are ready to state the non-binary analogue of Theorem 2:

Theorem 3. Let w be an infinite word over a k-letter alphabet. If there exists a constant
C such that every factor v of w with |v| ≥ C is weakly abelian bordered, then w is bounded
weakly abelian periodic. Moreover, its graph Gw belongs to a k-dimensional cylinder with axis
with rational coefficients, and each tangential line to Gw has points of Gw on it with bounded
gaps.

We emphasize that in fact Theorem 2 is a particular case of Theorem 3. We state and
prove it separately for several reasons. First, for clarity reasons: the statement of Theorem 2
is easier and more intuitive. Second, key lemmas in non-binary case are simple consequences
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of those in the binary case. On the other hand, the proof of the body of the theorem is more
involved, so there is not much repetition in the proofs.

First we prove that Lemmas 3 and 4 also hold for the non-binary case:

Lemma 5. If an infinite word has finitely many weakly abelian unbordered factors, then it
is balanced.

Proof. Assume that w is an infinite word with finitely many weakly abelian unbordered
factors. For a ∈ alph(w), consider a morphism ha : a 7→ a, b 7→ c for all b 6= a where c is a
letter not belonging to alph(w). We call such a morphism a projection. Clearly, if two words
u and v have the same letter frequencies, then so do ha(u) and ha(v), for each a ∈ alph(w).
Hence if u is weakly abelian bordered, then so is ha(u). Then ha(w) has finitely many weakly
abelian unbordered factors. Now, since a projection of w is a binary word (over the alphabet
{a, c}), we can apply Lemma 3, hence ha(w) is also balanced: There exists a constant Ka,
such that for each two factors u, v of ha(w) such that |u| = |v| the inequality ||u|a−|v|a| ≤ Ka

holds. Taking K = maxa∈Σ Ka, we get that w itself is K-balanced by definition.

Lemma 6. If an infinite word has finitely many weakly abelian unbordered factors, then its
letter frequencies are rational.

Proof. Clearly, the frequency of any letter a exists in an infinite word x if and only if the
frequency of the letter a exists in its projection ha(x), and these frequencies are equal. Since
the projection is a binary word, Lemma 4 implies that w has letter frequencies and they are
rational.

We let (b̄, x̄) denote the scalar product of vectors b̄ and x̄ : (b̄, x̄) = b1x1 + · · ·+ bkxk. We
make use of the following analogue of Lemma 2.

Lemma 7. Let w be an infinite word, and i, j be integers, i < j. If there exists a hyperplane
H : b1x1 + · · · + bkxk = d such that Gw(i), Gw(j) ∈ H and (b̄, Gw(l)) > d for each i < l < j
(or (b̄, Gw(l)) < d for each i < l < j), then the factor w[i+1..j] is weakly abelian unbordered.

Proof. Two factors w[i1 + 1..j1] and w[i2 + 1..j2] share the same letter frequencies if the
vectors Gw(j1)−Gw(i1) and Gw(j2)−Gw(i2) connecting their ends are collinear. Moreover,
they differ by a positive multiple. For any proper prefix w[i + 1..p] and any proper suffix
w[s + 1..j] of w[i + 1..j] we have (Gw(p) − Gw(i), b̄) > 0 and (Gw(j) − Gw(s), b̄) < 0, which
implies that w[i+ 1..p] and w[s+ 1..j] do not have the same letter frequencies.

Proof of Theorem 3. Like in the binary case, balance implies that Gw belongs to some k-
dimensional cylinder C(l,M). The coefficients ai of the axis l of the cylinder are related to
the letter frequencies and can be defined via {v1, . . . ,vk}. Since frequencies are rational and
all vi have integer entries, the coefficients ai are also rational. In fact, the graph of the word
lies on finitely many lines with rational coefficients parallel to the cylinder axis. Clearly, in
dimension two this is equivalent to bounded width.

First notice that such tangential lines always exist. We can choose a cylinder with the
minimal M . Similarly to the binary case and using the fact that the slope vector ā of the
cylinder is rational it is not hard to show that there exists a point x̄′ ∈ Gw with d(l, x̄′) = M.
Consider the line l′ parallel to l and passing through one of such points, l′ : x̄ = x̄′+āt. Taking
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the tangential plane H to the cylinder passing through x̄′, we see that l′ is a tangential line
to the graph Gw. We remark that this tangential plane H is both a tangential plane to the
graph Gw and a “proper” tangential plane to the cylinder C(l,M). Although there can be
other tangential lines to the graph Gw lying inside the cylinder, so that the corresponding
tangential planes to Gw are not tangential to the cylinder.

To prove the theorem it remains to show that for a tangential line l
′′ : x̄ = x̄′′ + āt the

points of the graph lie on this line with bounded gaps.
Like in the binary case, we first show that there are infinitely many points of the graph

on the line l
′′. Suppose that there are only finitely many of those. Take the corresponding

tangential hyperplane H ′′ : b1x1 + · · · + bkxk = d′′ and consider the hyperplane H ′ : b1x1 +
· · ·+bkxk = d′ parallel to H ′′ such that it has infinitely many points of Gw on it (since Gw lies
on finitely many lines parallel to l

′′ due to rational coefficients, it also lies on finitely many
hyperplanes parallel to H ′′). So, there are finitely many points of Gw such that b1x1 + · · ·+
bkxk < d′, and infinitely many with b1x1 + · · ·+ bkxk = d′.

Now take the point x̄(n0) = Gw(n0) on the line with the largest n0 such that b1x
(n0)
1 +

· · ·+ bkx
(n0)
k < d′. Then for each n with b1x

(n)
1 + · · ·+ bkx

(n)
k = d′ for x̄(n) = Gw(n) the factor

w[n0 + 1..n] is weakly abelian unbordered. Indeed, arguing as in Lemma 7, for any proper
prefix w[i+1..p] and any proper suffix w[s+1..j] of w[i+1..j] we have (Gw(p)−Gw(i), b̄) > 0
and (Gw(j)−Gw(s), b̄) < 0, which implies that w[i+1..p] cannot be weakly abelian equivalent
to w[s+1..j]. So, we proved that there are infinitely many points of the graph on a tangential
line.

Finally, we need to prove that the points on the tangential line l′′ appear in bounded gaps.
It follows from the fact that for two consecutive points n1, n2 on l

′′ the factor w[n1 + 1..n2]
is weakly abelian unbordered by Lemma 7.

5. Abelian borders

In this section we consider the connections between abelian periodicity and the condition
of having finitely many abelian unbordered factors. First we show that finitely many abelian
unbordered factors is not a sufficient condition for periodicity:

Proposition 2. There exists an infinite aperiodic word w and constants C,D such that every
factor v of w with |v| ≥ C has an abelian border of length at most D.

Proof. Any aperiodic word w ∈ {010100110011, 0101001100110011}ω satisfies the condition
with C = 15 and D = 14. The proof is a fairly straightforward and not too technical case
study:

If u is a sufficiently long abelian unbordered factor, then it must begin or end with either
0100 or with 1101 because the other factors of length 4 have equal frequencies. So there are
only these two cases to consider: the factor starts with 0100 (the case of ending with 1101 is
symmetric) or with 1101 (the case of ending with 0100 is symmetric).

Consider first the case of a factor beginning with 0100. If it ends with 0, we have an
abelian border of length 1; if it ends with 01, we have an abelian border of length 2. So we
need to analyze the remaining case of the form 0100 · · · 0011.

Considering extension of the prefix 0100 to the right, one has after prefix 01 abelian period
4 with equal frequencies. Considering extension of the suffix 0011 to the left, one has abelian
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period 4 with equal frequencies. So, extending to the left the suffix, one will get an abelian
border as soon as there is a block 0101. Thus, there exists an abelian border of length 4k+2,
where k is at most 3.

Now consider the case of a factor beginning with 1101. It continues uniquely to the right
with 01001100, so that 110101001100 is the prefix of the factor. If it ends with 1, we have
an abelian border of length 1, so we need to consider the cases of ending with 00 and 10.

If it ends with 00, then it has either a suffix 0100, or 1100. The suffix 0100 extends
uniquely to the left to 11010100, giving an abelian border of length 8. The suffix 1100
extends to either 11001100 giving an abelian border of length 8, or to 110101001100, giving
an abelian border of length 12.

If it ends with 10, then it has a suffix 010 (otherwise there is an abelian border of length
3), which extends uniquely to 1010. This suffix in turn extends to 01010 (otherwise there is
an abelian border of length 5), which extends to 1101010, giving an abelian border of length
7. This concludes the proof.

We observe that all infinite words w ∈ {010100110011, 0101001100110011}ω occurring
in the proof of Proposition 2 are abelian periodic with period 2. In general, we do not
know whether an infinite word containing only finitely many abelian unbordered factors is
necessarily abelian periodic. However, we begin by showing that abelian periodicity alone
does not in general imply only finitely many abelian unbordered factors. In other words, at
least one direction of Theorem 1 fails in the abelian setting.

Proposition 3. Let x be a uniformly recurrent aperiodic word containing infinitely many
distinct palindromes. Then x admits an infinite number of abelian unbordered factors.

Proof. Let N be any positive integer. We claim that x admits a factor of the form aUb
where a and b are distinct letters and U a palindrome with |U | ≥ N . In fact, since x contains
infinitely many palindromes, there exists a palindromic factor u of x with |u| ∈ {N,N + 1}.
By uniform recurrence there exists a constant M such that every factor of x of length M
contains an occurrence of u. Since x is aperiodic, there exists a word v with |v| = 3M and
distinct letters c and d such that both cv and dv are factors of x. In the usual terminology, v
is a left special factor of x. Let η denote the center of the first occurrence of u in the prefix of
v of length M . So η is either an integer or a half integer depending on the parity of |u|. Let
U be the longest palindromic factor of v centered at η. It follows that 2M ≥ |U | ≥ |u| ≥ N .
If U is a not a prefix of v, then there exist distinct letters a and b such that the word aUb
is a factor of v centered at η. On the other hand, if U is a prefix of v, then let b be a letter
such that Ub is a prefix of v. Since both cv and dv are factors of x we can find a letter a
different from b such that aUb is a factor of x. Having established our claim, the result of
the proposition now follows immediately since any word of the form aUb with a 6= b and U
a palindrome is clearly abelian unbordered.

As an immediate corollary we have:

Corollary 2. There exist abelian periodic words having infinitely many abelian unbordered
factors.
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Proof. Let x ∈ {0, 1}ω be any binary uniformly recurrent aperiodic word containing infinitely
many palindromes. For instance x can be taken to be the Thue-Morse infinite word or any
Sturmian word. Let τ denote the morphism 0 7→ 0110, 1 7→ 1001. Then τ(x) is abelian
periodic (with abelian period 2). Moreover, it is readily verified that τ(x) is uniformly
recurrent, aperiodic, and contains infinitely many distinct palindromes. By Proposition 3, it
follows that τ(x) admits infinitely many abelian unbordered factors.

As mentioned earlier, we do not know whether the other direction of Theorem 1 holds
in the abelian context, that is whether a word having only finitely many abelian unbordered
factors is necessarily abelian periodic. However we are able to establish the abelian analogue
of the following weaker version of Theorem 1:

Theorem 4. Let x be an infinite word having only finitely many unbordered factors. Then
there exists a constant N such that x contains at most N factors of each given length n ≥ 1.
In other words, x has bounded factor complexity.

The reason this is a weaker version of Theorem 1 is because bounded complexity is
equivalent to ultimate periodicity. For this reason the converse of Theorem 4 does not hold
in general. For instance x = 01111 · · · has bounded complexity, yet contains infinitely many
unbordered prefixes.

We now give several new proofs of Theorem 1 which may be of independent interest. One
direction is of course trivial: namely, if x is purely periodic then all sufficiently long factors of
x are bordered. For the other direction, as in the original proof by Ehrenfeucht and Silberger,
we break the proof into two parts; in a first part we show that if x is any infinite word with
the property that all sufficiently long factors are bordered, then x is ultimately periodic. We
give three proofs of this first part which to our knowledge are all new. However, each of
the following proofs relies on one or more key features which do not extend to the abelian
context. See the remark following the proofs. In a second part we show that x must be
purely periodic. Also our proof of the second part is new and greatly simplifies the original
proof by Ehrenfeucht and Silberger.

Proof of Theorem 1. Let U(x) denote the set of unbordered factors of x. Clearly if x is
purely periodic then U(x) is finite. Conversely, assume U(x) is finite. We first show that x
is ultimately periodic.

A first quantitative proof of this was given by K. Saari in which he shows that for any
aperiodic word x and any positive integer n, the number Lx(n) of Lyndon words of length
≤ n occurring in x is greater or equal to Lf (n) where f is the Fibonacci word. See Theorem 3
and Remark 3 in [11].

A second proof, also using Lyndon words proceeds as follows: If x is aperiodic, then by
Proposition 4.8 in [4], x contains an infinite Lyndon word x′ in its shift orbit closure, i.e.,
there exists an ordering of the alphabet of x relative to which x′ is lexicographically smaller
than all its proper suffixes. Since x′ begins in infinitely many unbordered prefixes, it follows
that x contains infinitely many unbordered factors.

A third proof uses the so-called Duval conjecture, first proved by the second author
together with D. Nowotka in [7], which states that if v is a word of length 2n such that
the prefix u of v of length n is unbordered and every factor of v of length greater than n
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is bordered, then v = uu. Assume U(x) is finite and let u ∈ U(x) be of maximal length.
Then by the Duval conjecture, every occurrence of u in x is an occurrence of u2. Hence x is
ultimately periodic with period u.

A fourth proof, perhaps the simplest in that it is completely self contained, proceeds
as follows: Assume U(x) is finite. By replacing x if necessary by some suffix of x, we can
assume that each u ∈ U(x) is recurrent in x, i.e., occurs in x an infinite number of times.
Let u ∈ U(x) be of maximal length. Let v be any first return to u in x, i.e., vu is a factor
of x which begins and ends in u and |vu|u = 2. Then since u is unbordered, |v| ≥ |u| i.e.,
u is a prefix of v. If |v| > |u|, then v is bordered (by maximality of |u|). Let v′ denote the
shortest border of v. Then v′ ∈ U(x) from which it follows that |v′| ≤ |u| and hence v′ is a
proper prefix of u (since u is not a suffix of v). But then the factor v′u of x is an unbordered
factor of x of length greater than |u|, a contradiction. Hence, if v is a first return to u, then
|v| = |u|, i.e., v = u. It follows that x is ultimately periodic with period u.

We next show that if x = x1x2x3 · · · is ultimately periodic and all sufficiently long factors
of x are bordered, then x is purely periodic. Let x′ denote the left infinite word · · · x3x2x1

obtained by reflecting x. By assumption there exists a primitive word u such that ωu is a
prefix of x′ (where ωu denotes the left infinite word · · · uuu). Clearly if u = a for some letter
a, then x′ = ωa. Thus we can assume that u contains at least two distinct letters. Let < be
a linear order of alph(x) and let <′ denote the opposite order, i.e., a <′ b if and only if b < a.
Let M (m, respectively) denote the Lyndon conjugate of u relative to < (<′, respectively).
Without loss of generality we can write x′ = ωMz = ωmyz for some suffix z of x′ and some
suffix y of M . We will show that z is a prefix of Mω and hence that x′ is purely periodic. Let
Mz denote the prefix of Mω of length |z| and myz the prefix of mω of length |yz|. Since M is
unbordered and all sufficiently long factors of x′ are bordered, it follows that z is a product
of prefixes of M and hence that z ≤ Mz. Similarly, yz ≤′ myz or equivalently yz ≥ myz.
Since mω = yMω, we deduce that z ≥ Mz and hence z = Mz as required.

Remark 2. We note that none of the above proofs readily extend to the abelian context. In
fact, we know of no suitable analogue of Lyndon words in the abelian setting. Also, the Duval
conjecture fails in the abelian setting. More precisely, there exists an infinite word x with
the following properties: i) x begins in an unbordered factor u, ii) all factors of x of length
greater than |u| are abelian bordered, iii) the prefix of x of length 2|u| is not an abelian square.
To see this, let y be any infinite word in {010100110011, 0101001100110011}ω beginning in
(0101001100110011)2. Let x denote the second shift of y, i.e., x = (01)−1y. Then x begins
in the unbordered factor u = 01001100110011 of length 14. As in the proof of Proposition 2,
every factor of x of length greater than 14 is abelian bordered. Yet it is easily checked that
the prefix of length 28 of x is not an abelian square, i.e., not of the form uu′ with u′ abelian
equivalent to u. Finally, the fourth proof uses the following fact which is no longer true in
the abelian setting, namely that if v is a proper prefix of an unbordered word u, then vu
is unbordered. For instance, we can take the prefix v = 01 of the abelian unbordered word
u = 010011. Yet vu = 01010011 is abelian bordered.

We end by establishing the following abelian analogue of Theorem 4:

Theorem 5. Let x be an infinite word having only finitely many abelian unbordered factors.
Then there exists a constant N such that x contains at most N abelian equivalence classes of
factors of each given length n ≥ 1. In other words, x has bounded abelian factor complexity.
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Proof. Since the condition that x has only finitely many abelian unbordered factors implies
that x has only finitely many weakly abelian unbordered factors, it follows that all conclusions
we derived earlier in the weak abelian setting still hold. In particular x is balanced. Thus x
has bounded abelian complexity (see Lemma 3 in [10]).

6. A non-abelian periodic word with bounded abelian square at each position

In [1], the following open question was proposed: Let w be an infinite word and C be an
integer such that each position in w is a centre of an abelian square of length at most C. Is
w abelian periodic? We answer this question negatively by providing an example (actually,
a family of examples).

Consider a family of infinite words of the following form:

(000101010111000111000(111000)∗111010101)ω

A straightforward case study shows that words of this form have an abelian square of length
at most 12 at each position. It is not hard to see that this family contains abelian aperiodic
words.

7. Conclusions and open questions

We conclude with the summary of our results and propose two open problems.

Question 1. Let w be an infinite word and C a constant such that every factor v of w with
|v| ≥ C is abelian bordered. Does it follow that w is abelian periodic?

Recall that we showed that there exist examples of words satisfying these conditions which
are not periodic (Proposition 2), but all examples we have are abelian periodic.

The next question asks whether the converse of Theorem 3 (and in particular Theorem
2) is true:

Question 2. Let w be an infinite bounded weakly abelian periodic word over a k-letter alphabet
such that its graph Gw belongs to a k-dimensional cylinder with axis with rational coefficients,
and each tangential line to Gw has points of Gw on it with bounded gaps. Does it follow that
w has only finitely many weakly abelian unbordered factors?

We remark that in the case of binary alphabets and letter frequencies equal to 1/2 the
answer to this question is positive (see Remark after Theorem 2).

Our main results and open questions are summarized in Figure 4.
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Figure 4: Results and open questions. WAP means “weakly abelian periodic”. Condition 1: The graph Gw

of the word belongs to a k-dimensional cylinder with axis with rational coefficients, and each tangential line
to Gw has points of Gw on it with bounded gaps.
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