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Introduction

Introduction

A C∞ function f is analytic at x0 ∈ Ω if its Taylor series at x0 converges to f on an
open neighbourhood of x0. Using Cauchy’s estimates, it is equivalent to have the
existence of a compact neighborhood K of x0 and of two constants C, h > 0 such that

sup
x∈K

∣∣Dkf(x)
∣∣ ≤ Chkk! ∀k ∈ N0.

We say that a function is nowhere analytic on an interval if it is not analytic at any point
of the interval.

Many examples of C∞ nowhere analytic functions exist. An example was given by
Cellérier (1890) with the function defined for all x ∈ R by

f(x) =

+∞∑
n=0

sin(anx)

n!

where a is a positive integer larger than 1.
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Introduction

Question.
How large is the set of nowhere analytic functions in the Fréchet space C∞([0, 1])?
Is it possible to construct large structures of nowhere analytic functions?

Lineability (Aron, Gurariy, Seoane-Sepúlveda 2005)

Let X be a topological vector space, M a subset of X , and µ a cardinal number.

(1) The set M is lineable if M ∪ {0} contains an infinite dimensional vector
subspace. If the dimension of this subspace is µ, M is said to be µ-lineable.

(2) When the above linear space can be chosen to be dense in X , we say that M is
(µ-)dense-lineable.

Results. Genericity (different notions) and extension using Gevrey classes

• Morgenstern 1954

• Cater 1984

• Salzmann and Zeller 1955

• Bernal-Gonzalez 2008

• Bastin, E., Nicolay 2012

• Conejero, Jiménez-Rodríguez, Muñoz-Fernández and
Seoane-Sepúlveda 2012

• Bartoszewicz, Bienias, Filipczak and Gła̧b 2013

• Bastin, Conejero, E. and Seoane 2014
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Denjoy-Carleman classes

Denjoy-Carleman classes

Question. Similar results in the context of classes of ultradifferentiable functions?

An arbitrary sequence of positive real numbers M = (Mk)k∈N0
is called a weight

sequence.

Roumieu classes
Let Ω be an open subset of R and M be a weight sequence. The space E{M}(Ω) is
defined by

E{M}(Ω) :=
{
f ∈ C∞(Ω) : ∀K ⊆ Ω compact ∃h > 0 such that ‖f‖MK,h < +∞

}
,

where

‖f‖MK,h := sup
k∈N0

sup
x∈K

|Dkf(x)|
hkMk

.

If f ∈ E{M}(Ω), we say that f is M -ultradifferentiable of Roumieu type on Ω.

Particular case. The weight sequences (k!)k∈N0 and ((k!)α)k∈N0 with α > 1.
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Denjoy-Carleman classes

Beurling classes
Let Ω be an open subset of R and M be a weight sequence. The space E(M)(Ω) is
defined by

E(M)(Ω) :=
{
f ∈ C∞(Ω) : ∀K ⊆ Ω compact ,∀h > 0, ‖f‖MK,h < +∞

}
.

If f ∈ E(M)(Ω), we say that f is M -ultradifferentiable of Beurling type on Ω and we
use the representation

E(M)(Ω) = proj
←−−−
K⊆Ω

proj
←−−
h>0

EM,h(K)

to endow E(M)(Ω) with a structure of Fréchet space.

Of course, we always have E(M)(Ω) ⊆ E{M}(Ω).

Questions.

• When do we have E{M}(Ω) ⊆ E(N)(Ω)?

• In that case, “how small” is E{M}(Ω) in E(N)(Ω)?
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Denjoy-Carleman classes

General assumptions.

• We assume that any weight sequence M is logarithmically convex, i.e.

M2
k ≤Mk−1Mk+1, ∀k ∈ N .

It implies that the space E{M}(Ω) is an algebra.

• We assume that any weight sequence M is such that M0 = 1.

• We will often work with non-quasianalytic weight sequences M , i.e. such that

+∞∑
k=1

(Mk)−1/k < +∞.

By Denjoy-Carleman theorem, it is equivalent to the fact that there exists
non-zero functions with compact support in E{M}(R).
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Denjoy-Carleman classes

Inclusions between Denjoy-Carleman classes
Notation. Given two weight sequences M and N , we write

M �N ⇐⇒ lim
k→+∞

(
Mk

Nk

) 1
k

= 0.

Proposition
Let M,N be two weight sequences and let Ω be an open subset of R. Then

M �N ⇐⇒ E{M}(Ω) ⊆ E(N)(Ω)

and in this case, the inclusion is strict.

Keys.
• If M �N , then there exists a weight sequence L such that M � L�N .
• The function

θ(x) =

+∞∑
k=1

Mk

2k

(
Mk−1

Mk

)k
exp

(
2i

Mk

Mk−1
x

)
belongs to E{M}(R). Moreover, |Dkθ(0)| ≥Mk∀k ∈ N0, so that θ /∈ E(M)(R).
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Denjoy-Carleman classes

Construction

Definition
We say that a function is nowhere in E{M} if its restriction to any open and non-empty
subset Ω of R never belongs to E{M}(Ω).

Proposition
Assume that M and N are two weight sequences such that M �N . If M is
non-quasianalytic, there exists a function of E(N)(R) which is nowhere in E{M}.

Proof. From Lemma 1, there is N? such that M � N? � N. Applying recursively
this lemma, we get a sequence (L(p))p∈N of weight sequences such that

M � L(1) � L(2) � · · ·� L(p) � · · ·�N? �N.

For every p ∈ N, Lemma 2 allows us to consider a function fp ∈ E{L(p)}(R) such that

|Djfp(0)| ≥ L(p)
j , ∀j ∈ N0 .
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Denjoy-Carleman classes

Since M is non-quasianalytic,

∃φ ∈ E{M}(R), suppϕ compact , φ ≡ 1 in a nbh of 0.

Let {xp : p ∈ N0} be a dense subset of R with x0 = 0. For every p ∈ N, we can find
kp > 0 such that the function

φp := φ
(
kp(· − xp)

)
has its support disjoint from {x0, . . . , xp−1}. We define gp

gp(x) := fp(x− xp)︸ ︷︷ ︸
∈E{L(p)}(R)

φp(x)︸ ︷︷ ︸
∈E{M}(R)

∈ E(N?)(R).

Let γp > 0 be such that

sup
x∈R
|Djgp(x)| ≤ γpN?

j , ∀j ∈ N0

and define the function g by

g :=

+∞∑
p=1

1

γp2p
gp.
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Denjoy-Carleman classes

1. g ∈ E(N)(R): for every j ∈ N0 and every x ∈ R, we have

+∞∑
p=1

1

γp2p
|Djgp(x)| ≤

+∞∑
p=1

1

2p
N?
j ≤ N?

j

which implies that g belongs to E{N?}(R) ⊆ E(N)(R).

2. g is nowhere in E{M}: By contradiction, assume that there exists an open subset Ω
of R such that g ∈ E{M}(Ω). Let p0 ∈ N such that xp0 ∈ Ω. Remark that

+∞∑
p=p0

1

γp2p
gp = g︸︷︷︸

∈E{M}(Ω)⊆E
(L(p0))

(Ω)

−
p0−1∑
p=1

1

γp2p
gp︸ ︷︷ ︸

∈E
(L(p0))

(Ω)

∈ E(L(p0))(Ω).

But, since the support of gp is disjoint of xp0 for every p > p0, we also have∣∣∣∣∣
+∞∑
p=p0

1

γp2p
Djgp(xp0)

∣∣∣∣∣ =
1

γp02p0

∣∣Djgp0(xp0)
∣∣ =

1

γp02p0

∣∣Djfp0(0)
∣∣ ≥ 1

γp02p0
L

(p0)
j

for every j ∈ N0, hence a contradiction.
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Denjoy-Carleman classes

Remark. Given a sequence (L(p))p∈N such that

M � L(1) � L(2) � · · ·� L(p) � · · ·�N∗ �N

and a dense subset {xp : p ∈ N0} of R, we have constructed a function g such that

• g ∈ E{N∗}(R)

• /∈ E(L(p))(Ω) for every neighbourhood Ω of xp.

−→ Main tool for the lineability!
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Denjoy-Carleman classes

Lineability

Proposition
Assume that M �N . If M is non quasianalytic, the set of functions of E(N)(R) which
are nowhere in E{M} is c-lineable.

Idea of the proof. For every t ∈ (0, 1), we set

L
(t)
k := (Mk)1−t(Nk)t ∀k ∈ N0 .

Then M � L(t) �N for all t ∈ (0, 1) and L(t) � L(s) if t < s.

Remark that

M � L( t2 ) � L( 2t
3 ) � L( 3t

4 ) � · · ·� L(t) �N, ∀t ∈ (0, 1).

and we can consider gt ∈ E{L(t)}(R) which is not in E(
L((1− 1

p
)t))(Ω), for any open

neighbourhood Ω of xp and for any p ≥ 2. Then take

D = span{gt : t ∈ (0, 1)}.
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Denjoy-Carleman classes

Dense-lineability

Remark. The set of polynomials is dense in E(N)(R). Let (tm)m∈N be a sequence of
different elements of (0, 1) and let (Ptm)m∈N be a dense sequence of polynomials in
E(N)(R).

For every m ∈ N, let km > 0 be such that kmgtm ∈ Um, where {Um : m ∈ N} is a
0-neighbourhoods basis in E(N)(R) .
We set

Dd = span
{
Pt + ktgt : t ∈ (0, 1)

}
where kt = 1 and Pt = 0 if t 6= tm for every m ∈ N.

Proposition
Assume that M �N . If M is non quasianalytic, then Dd is dense in E(N)(R),
dimDd = c and any non zero function of Dd is nowhere in E{M}. In particular, the set
of functions of E(N)(R) which are nowhere in E{M} is c-dense-lineable in E(N)(R).
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Denjoy-Carleman classes

Case of countable unions

Let N be a weight sequence and let (M (n))n∈N be a sequence of weight sequences
such that M (n) �N for every n ∈ N.

Question.
What about the set of functions of E(N)(R) which are nowhere in

⋃
n∈N E{M(n)}?

Proposition

If there is n0 ∈ N such that the weight sequence M (n0) is non quasianalytic, the set of
functions of E(N)(R) which are nowhere in

⋃
n∈N E{M(n)} is c-dense-lineable in

E(N)(R).

Idea. Construct a weight sequence P such that⋃
n∈N
E{M(n)} ⊆ E{P} ( E(N).
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Denjoy-Carleman classes

Gevrey classes
They correspond to Roumieu classes given by the weight sequence

Mk := (k!)α, k ∈ N0 .

Corollary
Let α > 1. The set of functions of E((k!)α)(R) which are nowhere in E{(k!)β} for every
β ∈ (1, α), is c-dense-lineable in E((k!)α)(R).

Proof. It suffices to apply the previous result the weight sequences M (n) (n ∈ N)
given by

M
(n)
k := (k!)βn , k ∈ N0,

where (βn)n∈N is an increasing sequence of (1, α) that converges to α.

Proposition (Schmets, Valdivia 1991)
Let α > 1. The set of functions of E((k!)α)(R) which are nowhere in E{(k!)β} for every
β ∈ (1, α) is residual in E((k!)α)(R).
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More with weight functions

More with weight functions

Definition
A function ω : [0,+∞)→ [0,+∞) is called a weight function if it is continuous,
increasing and satisfies ω(0) = 0 as well as the following conditions

(α) There exists L ≥ 1 such that ω(2t) ≤ Lω(t) + L, t ≥ 0,

(β)
∫ +∞

1

ω(t)

t2
dt < +∞,

(γ) log(t) = o(ω(t))) as t tends to infinity,

(δ) ϕω : t 7→ ω(et) is convex on [0,+∞).

The Young conjugate of ϕω is defined by

ϕ∗ω(x) := sup{xy − ϕω(y) : y > 0}, x ≥ 0.
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More with weight functions

Roumieu classes
If ω is a weight function and if Ω is an open subset of Rn, we define the space
E{ω}(Ω) of ω-ultradifferentiable functions of Roumieu type on Ω by

E{ω}(Ω) := {f ∈ E(Ω) : ∀K ⊂ Ω compact ∃m ∈ N such that ‖f‖K,m < +∞} ,

where ‖f‖K,m := supα∈Nn0 supx∈K |Dαf(x)| exp
(
− 1
mϕ
∗
ω(m|α|)

)
< +∞.

Beurling classes
If ω is a weight function and if Ω is an open subset of Rn, the space E(ω)(Ω) of
ω-ultradifferentiable functions of Beurling type on Ω is defined by

E(ω)(Ω) := {f ∈ E(Ω) : ∀K ⊂ Ω compact ,∀m ∈ N, pK,m(f) < +∞} ,

where for every compact subset K of Rn and every m ∈ N

pK,m(f) := sup
α∈Nn0

sup
x∈K
|Dαf(x)| exp

(
−mϕ∗ω

(
|α|
m

))
.

We endow the space E(ω)(Ω) with its natural Fréchet space topology.
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More with weight functions

Given two weight functions ω and σ, we write

ω � σ ⇐⇒ σ(t) = o(ω(t)) as t→ +∞.

Proposition
Let ω and σ be two weight functions such that ω � σ. If Ω is a convex open subset of
Rn, then E{ω}(Ω) is strictly included in E(σ)(Ω).

Proposition
Let ω and σ be two weight functions such that ω � σ. The set of functions of E(σ)(Rn)
which are nowhere in E{ω} is dense-lineable in E(σ)(Rn).

Idea.

• Existence: Baire category theorem.

• Lineability: Construct a sequence (ω(p))p∈N of weight functions such that

ω � ω(1) � · · ·� ω(p) � ω(p+1) � · · ·� σ.
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Happy birthday!
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I hope that you are enjoying the party!
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