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Abstract 
Bio-based cyclic carbonates were synthesized by coupling CO2 with epoxidized linseed oil using a 

catalytic platform composed of a bicomponent organocatalyst. A screening of the catalytic activity of a 

series of organic salts and ionic liquids used in combination with (multi)phenolic or fluorinated hydrogen 

bond donors was realized before highlighting the synergistic effect between the organocatalyst and the 

most efficient cocatalysts. These kinetics studies, followed by IR spectroscopy under pressure, enabled 

to optimize the reaction conditions and to provide quantitative formation of the cyclocarbonated 

vegetable oil in short reaction time without using any organic solvent. 

 

Introduction 
Regarding the economical and environmental issues, finding alternatives to petrochemicals has become 

one of the most important worldwide challenges. Valorising CO2 as a C1 feedstock for producing 

building blocks[1] is seducing as it is a free and inexhaustive waste resulting from the human activity. As 

examples, carbon dioxide can be transformed into added value products such as carboxylic acids[2], esters 

or lactones[3], urea[4], carbamates[5] or isocyanates [6]. By coupling with epoxides, CO2 can be converted 

into cyclic carbonates that find applications as green solvents, electrolytes for lithium batteries or as 

monomers for the production of polycarbonates and non-isocyanate polyurethanes. However, due to the 

low reactivity of CO2 with epoxides, addition of metallic or organic catalysts is necessary, but their use 

generally suffers from some drawbacks. Indeed, some metal complexes are sensitive to hydrolysis and 

oxidation or/and are poorly selective. Additionally, some of them are toxic whereas less/non-toxic and 

eco-friendly organocatalysts such as ionic liquids and halide salts are generally only efficient at high 

temperature and pressure that favours their degradation[7]. In the last years, development of new 

bicomponent organocatalysts[8] combining the use of organic salt or ionic liquids with hydrogen bond 

donor activators such as phenolic derivatives[9], (amino)alcohols[10], carboxylic acids[11], 

(fluoro)alcohols[12], silanols[13], has been proposed to fasten the coupling of CO2 with epoxides under 

mild conditions. The efficiency of these catalytic systems has been mainly investigated for the coupling 

of CO2 with model petro-sourced small organic molecules such as propylene oxide or styrene oxide. 

Besides, the synthesis of bio-based cyclic carbonates from CO2 and epoxidized vegetables oils is a 

subject of growing interest that allows the synthesis of fully bio-based chemicals. However, the 

identification and development of efficient (organo)catalysts for synthesizing cyclic carbonates from bio-

based epoxides still remains challenging[14]. At the exception of Rokicki’s work[15], coupling of CO2 with 

vernonia oil (a naturally epoxy functionalized triglyceride) or epoxidized soybean, linseed or cotton oils 

was only promoted by tetrabutylammonium bromide (TBABr). At low CO2 pressure, the reaction was 

complete within several days at high temperature (110 °C < T < 160 °C)[16] and was fastened by using 

CO2 under supercritical conditions[17]. Addition of water or SnCl4 was also proposed as alternative to 
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improve the catalytic efficiency of the TBABr promoted CO2/epoxide coupling at moderate pressure[18]. 

However, even in the presence of these additives, conversion of the epoxidized vegetables oils into the 

cyclocarbonated ones was slow (t > 30 h) at high temperature (T = 140°C) and a CO2 pressure of 1.5 

MPa. Therefore, there is a need to develop more efficient (organo)catalysts that are active under milder 

conditions for the conversion of epoxidized vegetable oils into cyclic carbonates. These cyclocarbonated 

vegetable oils are indeed attractive synthons for the production of cheap and bio-based non-isocyanate 

polyurethanes[16a, 16b, 19], the most promising substitutes for conventional polyurethanes used in paints, 

coatings or biomaterials.  

 

In this contribution, we describe the synthesis of cyclocarbonated linseed oil (CLSO) from epoxydized 

linseed oil (ELSO) (Scheme 1) by developing a catalytic platform composed of bicomponent 

organocatalysts (Scheme 2) that fasten the reaction under mild experimental conditions. First, a survey 

of the catalytic activity of a series of organic halide salts or ionic liquids including onium (1), 

phosphonium (2), imidazolium (3), sulfonium (4), pyrolidinium (5), pyridinium (6), amidinium (7) and 

guanidinium (8) (Scheme 1) was studied in order to identify the most active organocatalyst. 

 

 

 
Scheme 1 Synthesis of CLSO by organocatalytic promoted coupling of CO2 with ELSO 
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Scheme 2 Catalytic platform developed for the synthesis of CLSO from ELSO and CO2 

 

Then, the catalytic efficiency was improved by the addition of different hydrogen bond donors activators 

(HBD) derived from (multi)phenolic compounds or fluoroalcohols, and the synergistic effects between 

the catalyst and the most efficient HBDs are highlighted by online kinetic studies using IR spectroscopy. 

 

Experimental 
 

Materials 
Epoxidized linseed oil (ELSO) was kindly donated by Vandeputte Oleochemicals (Belgium). Carbon 

dioxide N45 (purity: 99, 95%) was supplied by Air Liquide. Quaternary ammonium salts, phosphonium 

halides, 1-bromobutane, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-

5-ene (TBD), phenol, 4-nitrophenol, 4-trifluoromethylphenol, 4-methoxyphenol, 3,4,5-trifluorophenol, 

pentafluorophenol, pyrocatechol, 3-methoxypyrocatechol, 4-tertbutoxycatechol, and pyrogallol were 

purchased from Sigma-Aldrich. 5-hydroxy-2-nitrobenzotrifluoride, 1,3-bis(2-

hydroxyhexafluoroisopropyl)benzene, 2,2,2-trifluoro-tert-butanol, 1,1,1,3,3,3-hexafluoro-tert-butanol, 

perfluoro-tert-butanol were purchased from Fluorochem. 2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenol, 

hexafluoro-2-(p-toluyl)isopropanol, 1,1,1,3,3,3-hexafluoro-2-propanol were supplied by ABCR. 

Triethylsulfonium iodide, 1-butyl-1-methylpyrrolidinium iodide, 1-butylpyridinium iodide and 1-

methyl-3-octylimidazolium halides were purchased from Ioliditec. All reactants or catalysts were used 
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as received. Amidinium and guanidinium salts, respectively named and 1-butyl-2,3,4,5,7,8,9,10-

octahydropyrido[1,2-a][1,3]diazepin-1-ium bromide and 1-butyl-3,4,6,7,8,9-hexahydro-2H-

pyrimido[1,2-a]pyrimidin-1-ium bromide were respectively synthesized by quaternisation of DBU and 

TBD with 1-bromobutane. In a typical experiment, DBU (1.96 ml, 0.0131 mol) was dissolved in 10 ml 

CH2Cl2 before slow dropwise addition of 1-bromobutane (1.41 ml, 0.0131 mol). Then, the reaction was 

allowed to stir for 24 h at room temperature. After reaction, the highly viscous sample was simply 

collected by removal of the solvent and drying under vacuum. The guanidinium salts was synthesized 

following the same procedure.  

 

1-butyl-2,3,4,5,7,8,9,10-octahydropyrido[1,2-a][1,3]diazepin-1-ium bromide: 1H NMR, 250MHz 

(CDCl3): δ = 0.85 ppm (t, 3H); δ = 1.27 ppm (m, 2H), δ = 1.52 ppm (m, 2H); δ = 1.71 ppm (broad, 6H); 

δ = 2.06 ppm (m, 2H); δ = 2.83 ppm (d, 2H); 3.35 ppm < δ < 3.75 ppm (m, 8H). 

1-butyl-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium bromide: 1H NMR, 250MHz 

(CDCl3): δ = 0.85 ppm (t, 3H); δ = 1.37 ppm (m, 2H), δ = 1.54 ppm (m, 2H); δ = 1.96 ppm (broad, 6H); 

3.15 < δ < 3.35 ppm (m, 9H). 

 

Infrared set-up. The synthesis of bio-based cyclic carbonates was monitored in situ by IR spectroscopy 

using a home-made Ge ATR accessory suitable for high-pressure measurements (up to 5 MPa) and high 

temperature (up to 150 °C) coupled with a ThermoOptek interferometer (type 6700) equipped with a 

globar source, a KBr/Ge beamsplitter and a DTGS (Deuterated TriGlycine Sulphate) detector. Single 

beam spectra recorded in the spectral range (400-4000 cm-1) with a 4 cm-1 resolution were obtained after 

the Fourier transformation of 150 accumulated interferograms. Spectra were recorded every ten minutes 

for 24 h. The stainless steel cell with a volume of about 3 mL screwed above the Ge crystal provides one 

port for the inlet of mixture and CO2. A magnetic stirrer was placed into the cell to ensure good 

homogenization of the mixture. The ATR cell was heated using cartridge heaters disposed in the 

periphery of its body. A thermocouple was used and located close to a cartridge heater for the temperature 

regulation with an accuracy of about 2 °C. The cell was connected directly to the CO2 tank allowing the 

pressure to be raised up to 5 MPa. 

 

NMR characterization. 1H NMR spectra were recorded in CDCl3 at 400 MHz in the FT mode with a 

Bruker AN 400 apparatus at 25 °C 

 

Experimental procedure. Catalyst screening. 30g of ELSO were introduced in a 80 ml high pressure 

cell equipped with a mechanical stirrer using 2.32 10-3 mol of catalyst (that correspond to 1 mol% 

of catalyst compared to ELSO). Then the cell was heated to 100 °C before addition of CO2 till 

the pressure is equilibrated to 10 MPa. After 5 h, the pressure was slowly released and the 

conversion of ELSO into CLSO was determined by 1H NMR spectroscopy. The same procedure 

was applied for all the halide salts or ionic liquids tested in this study while keeping the amount 

of catalyst constant to 2.32 10-3 mol. 

 

Catalyst optimisation. 30 g of ELSO were introduced in a 80ml high pressure cell equipped with 

a mechanical stirrer in presence of 1 mol% of TBABr (0.75 g, 2.32 10-3 mol) and 1,3-bis(2-

hydroxyhexafluoroisopropyl)benzene (0.573 ml, 2.32 10-3 mol). Then the cell was heated to 

100°C before addition of CO2 till the pressure is equilibrated to 100 bar. After 5 h, the pressure 

was slowly released and the conversion of ELSO into CLSO was determined by 1H NMR 

spectroscopy. The same procedure was applied for all HBDs tested in this study.  

 



Published in: RSC Advances (2015), vol. 5, pp. 53629-53636 
Status: Postprint (Author’s version)  

 
 

Kinetic studies. In a typical experiment, a mixture composed of epoxydized linseed oil (500 µL) 

and the catalyst (5.95 10-5 mol, 2.2 mol%, 32 mg TBABr) and the pyrocatechol (11 mg, 5.95 10-

5 mol, 2.2 mol%) was introduced in the ATR reactor at ambient temperature. Then, the cell was 

heated up to the desired temperature (60 - 120 °C) before addition of CO2 (0.5 - 5 MPa). The 

infrared spectra were collected online every 10 min. At the end of the reaction, in order to 

determine the conversion of ELSO into CLSO, the ATR spectrum of the reaction mixture was 

compared with the corresponding spectrum of the neat carbonate. The absorbance of the 

carbonate peak at 1808 cm-1 corresponding to the ν (C=O) stretching mode was normalized using 

the peak corresponding to a ν (C-H) stretching mode at 2955 cm-1 which does not evolve during 

the reaction. The yield for the entire kinetic was deduced by proportionality using the Beer-

Lambert law according to Equation 1. 

 

𝑌𝑖𝑒𝑙𝑑 (%) =  
[

𝐴𝐶=𝑂
𝐴𝐶−𝐻

]
𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑖𝑥𝑡𝑢𝑟𝑒

[
𝐴𝐶=𝑂
𝐴𝐶−𝐻

]
𝑁𝑒𝑎𝑡 𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒

 [1] 

 

The same experimental protocol was applied when pyrogallol, perfluoro-tert-butanol, hexafluoro-(p-

toluyl)-isopropanol and 1,3-bis(2-hydroxyhexafluoroisopropyl)benzene were used as HBDs. All these 

syntheses were conducted at least twice in order to check the reproducibility of the obtained yields and 

kinetics.  

 

Solubility of CO2 into ELSO. 2.3 mL of ELSO were introduced in a high pressure transmission cell 

with a pathlengh of 0.49 cm and heated up at the desired temperature (from 40 to 100 °C). At a 

fixed temperature, carbon dioxide was added from 0 to 20 MPa. After thermodynamic 

equilibration (within a few minutes), an infrared spectrum of the liquid phase was collected. The 

amount of CO2 solubilized into ELSO was deduced from the height of the combination peak ν1+2 

ν2+ ν3 at 4950 cm-1 which is characteristic of CO2. In addition, the concentration of the ELSO 

can be followed from the peak at 5712 cm-1. The mass fraction of CO2 dissolved in ELSO can be 

obtained from Equation 2.[20] 

 

𝑋𝐶𝑂2
=  

[𝐶𝑂2]

[𝐶𝑂2]+ [𝐸𝐿𝑆𝑂]
 [2] 

 

Results and discussion 
 

Catalyst screening for the synthesis of carbonated linseed oil. 

To identify the most efficient organocatalyst for converting neat ELSO into CLSO, a screening of the 

catalytic activity of a series of iodide salts was first realized at 100 °C and 10 MPa. From the results 

reported in Table 1, onium, phosphonium and imidazolium salts were found to exhibit the highest 

catalytic activity with a 25 % conversion of ELSO into CSBO after 5 h (entries 1, 4, 7), whereas 

pyrrolidinium, pyridinium or triethylsulfonium salts were less efficient or even ineffective as evidenced 

by a conversion of 19, 12 and 0 % respectively. These very low activities are explained by the poor 

solubility of these salts in the CO2/linseed oil biphasic mixture. Then, the influence of the halide counter 

anion on the CO2/ESLO coupling was investigated for the most efficient onium, phosphonium or 

imidazolium organocatalysts. Coupling of CO2 with ESLO was slowed down by using the less 

nucleophilic chloride counter ion (Table 1, entries 3, 6, 9) as evidenced by a conversion of the epoxide 

into cyclic carbonate close to 20 %. In contrast, substitution of iodine by bromine counter-anion slightly 
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increased the reaction rate (Table 1, entries 2, 5, 8). In view of these results, the bromide counter ion 

offers the best compromise in terms of reactivity and steric hindrance/size even if it is less nucleophilic 

than iodide. It is supposed that its higher catalytic activity arises from its smaller size that favours its 

faster diffusion towards the internal epoxide groups of the fatty chains of the highly viscous vegetable 

oil. Finally, the coupling of CO2 with ELSO was carried out in the presence of guanidinium and 

amidinium salts as organocatalysts (catalysts 7 and 8, Scheme 1). If the amidinium salt showed a similar 

activity than the previously tested organocatalysts (Table 1, entry 13), the conversion of ELSO into 

CLSO was increased by 20 % in the presence of the guanidinium salt (Table 1, entry 14). These results 

are consistent with those reported by Foltran et al. who demonstrated that the coupling of CO2 with 

propylene oxide was improved by replacing tetrabutylammonium bromide by 1,5,7-triaza-

bicyclo[4.4.0]dec-5-enium bromide[21]. However, even at high temperature and pressure, the conversion 

of ELSO into CLSO still remains low compared to results reported for the coupling of CO2 with model 

epoxides. These observations are not surprising because the ring-opening of di-substituted epoxides is 

more difficult than the ring-opening of terminal/monosubstituted epoxides, as the result of increased 

steric hindrance. In an effort to boost the reaction and to improve the conversion yield, some 

activators are added to the reaction medium. The organocatalytic system is therefore composed 

by the organocatalyst, TBABr, and an activator that is expected to interact with the oxygen of the 

epoxide ring through hydrogen bonding and to activate it for the ring-opening. The potential 

activators that are tested are commercially available phenolic compounds and fluoroalcohols 

(Scheme 2). Some of them have been demonstrated to fasten the coupling of CO2 with model epoxides 

but were not tested on hindered epoxidized vegetable oils. The coupling of CO2 with ELSO was therefore 

investigated at 100 °C and 10 MPa using 2.2 mol% of TBABr compared to ELSO and a TBABr/HBD 

molar ratio of 1 (Table 2). As reported by Kleij, phenol (HBD 1) had no cocatalytic activity[9b] and a 

similar trend was observed for the coupling of ELSO with CO2 using 4-methoxyphenol (HBD 4). 

Substitution of the hydrogen atom in para position by a trifluoromethyl- or a nitro- electron-withdrawing 

group clearly improved the cocatalytic efficiency of phenol. Indeed the conversion was increased from 

30 to 47 % in the presence of 4-nitrophenol (HBD 2), and from 30 to 58 % in the presence of 4-

trifluoromethylphenol (HBD 3). The latter was therefore doubling the productivity in cyclocarbonated 

vegetable oils. Finally, a phenolic derivative combining two different electron-withdrawing groups in 

meta (CF3) and para (NO2) positions (HBD 5) or partially/fully fluorinated HBDs (HBDs 6 - 8) were 

poor activators with a weak increase of the epoxide conversion by 20 to 30%. Coupling of CO2 with 

ELSO was also studied using multiphenolic activators derived from catechol (HBDs 9 - 11) and 

pyrogallol (HBD 12) or fluoroalcohols. (HBDs 13 - 17). At the exception of HBD 13, all these HBDs 

exhibited the highest cocatalytic activity as evidenced by a 1.85 to 2-fold increase of the conversion of 

ELSO into CLSO. 

 

Detailed kinetic study of the TBABr/HBD promoted ELSO/CO2 coupling.  

After this first organocatalyst and activator screening, a detailed kinetic study of the synthesis of CLSO 

using the catalytic platform was realized by online IR spectroscopy under pressure and the influence of 

various experimental parameters, such as CO2 pressure, catalyst content and the temperature, on the 

conversion of ELSO into CLSO was investigated. Formation of CLSO was monitored by following the 

evolution with time of the signal at 1808 cm-1 reflecting the ν(C=O) stretching mode of CLSO (Figure 

1). The presence of CO2 dissolved in the ELSO rich phase was also highlighted by the presence of a very 

narrow peak at 2350 cm-1 corresponding to the antisymmetric stretch ν3 of CO2 that is superimposed over 

a broad doublet profile that is due to atmospheric CO2. The yield of reaction was deduced from the 

comparison of the intensity of the peak at 1808 cm1 and the peak at 2955 cm-1 corresponding to the ν(C-

H) stretching modes of the linseed oil that does not evolve during the reaction. Coupling of CO2 with 
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ELSO was catalysed by TBABr (2.2 mol%) at 80 °C and 2 MPa using HBDs 9, 12, 15, 16 and 17 

([TBABr]/[HBD] = 1) that were selected as representative activators as they showed the highest 

cocatalytic activity for the synthesis of CLSO (Figure 2). In the absence of HBD, the TBABr promoted 

reaction was slow as evidenced by a conversion of the epoxides into the corresponding cyclic carbonates 

of 45% after 1200 min. 

 

 

Table 1 Catalyst screening for the synthesis of CLSO by coupling of CO2 with ELSO. Conditions: P = 

10 MPa, T = 100 °C, catalyst = 2.32 10-3 mol, t = 5 h, ELSO = 30 g, volume of the cell = 80 ml 

 

Entry Catalyst Halide counter anion Conv (%)* 

1 

1 

I- 26 

2 Br- 30 

3 Cl- 17 

4 

2 

I- 21 

5 Br- 28 

6 Cl- 19 

7 

3 

I- 25 

8 Br- 30 

9 Cl- 20 

10 4 I- / 

11 5 I- 19 

12 6 I- 12 

13 7 Br- 28 

14 8 Br- 36 

 

* determined by 1H NMR spectroscopy by comparison of the relative intensities of the peaks 

characteristic of the CH groups of the epoxide (2.8 ppm < δ < 3.25 ppm) and the cyclic carbonate (4.6 

ppm < δ < 4.9 ppm) 
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Table 2 Hydrogen bond donors screening for the TBABr promoted coupling of CO2 with ELSO. 

Conditions: P = 10 MPa, T = 100 °C, catalyst = 2.32 10-3 mol (1 mol% compared to ELSO), 

[TBABr]/[HBD] = 1, t = 5 h, ELSO = 30 g, volume of the cell = 80 ml 

Entry HBD Reference Conv (%)* 

1 / / 30 

2  HBD 1 32 

3  HBD 2 47 

4  HBD 3 58 

5  HBD 4 31 

6 
 

HBD 5 42 

7 
 

HBD 6 41 

8 
 

HBD 7 45 

9 

 

HBD 8 38 

10 
 

HBD 9 63 

11 
 

HBD 10 55 

12 
 

HBD 11 57 

13 
 

HBD 12 56 

14 
 

HBD 13 42 

15 
 

HBD 14 58 

16 
 

HBD 15 63 

17 
 

HBD 16 55 

18 
 

HDB 17 58 

* determined by 1H NMR spectroscopy by comparison of the relative intensities of the peaks characteristic of the CH groups 

of the epoxide (2.8 ppm < δ < 3.25 ppm) and the cyclic carbonate (4.6 ppm < δ < 4.9 ppm) 
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Figure 1 Evolution with time of the ATR-IR spectra for the TBABr/HBD 15 promoted ELSO/CO2 

coupling. Conditions: T = 80 °C, P = 2 MPa, TBABr = 2.2 mol%, [TBABr]/[HBD 15] = 1 

 

 
 

Figure 2 Kinetic study of the TBABr/HBD promoted coupling of CO2 with ELSO: effect of the HBDs. 

Conditions: T = 80 °C, P = 2 MPa, TBABr = 2.2 mol%, [TBABr]/[HBD] = 1 

 

 

Synergistic effects between TBABr and the cocatalysts are highlighted by an increase of the conversion 

of ELSO into CLSO after addition of the HBDs. Figure 2 suggests that HBD 17 is slightly more efficient 

than the others HBDs as evidenced by an increase after 1200 min of the ELSO conversion from 45 % to 

66 % compared to 64 % for HBDs 9 and 16, 60 % for HBD 15 and about 50 % for HBD 12. The slightly 

higher cocatalytic activity of HBD 17 could be explained by the formation of 3 hydrogen bonds between 
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the oxygen atom of ELSO and both protons of the alcohol functions and the aromatic proton in para 

position of both hexafluoroisopropyl alcohol of HBD 17, which favor the activation of the epoxide 

groups. This assumption is supported by previous DFT calculations and NMR titration of epoxydodecane 

with HBD 17[28]. The influence of the temperature on the kinetics and the yield of the ELSO/CO2 

coupling was studied from 60 to 120°C at 2 MPa using 2.2 mol% of catalyst (TBABr) in combination 

with 2.2 mol% of perfluoro-tert-butanol (HBD 15) as a model hydrogen bond donor activator. The 

resulting kinetic profiles, illustrated in Figure 3, show that the reaction rate was strongly affected by the 

temperature. At 120°C, ELSO was quantitatively converted into CLSO in 1000 min whereas the 

conversion only reached 25 % at 60°C. Therefore, although the temperature increase (at constant CO2 

pressure) induced a slight decrease of the CO2 concentration in the ELSO phase (Figure 4 and 5), the 

CO2/epoxide coupling was favored at higher temperature. Moreover raising the temperature decreased 

the viscosity of ELSO and was consequently expected to improve the diffusion of the catalytic species 

in the reaction medium. Thermodynamic considerations show that the concentration of CO2 dissolved in 

the oil phase is increased at higher CO2 pressure as evidenced by an increase of the intensity of the peak 

at 4950 cm-1 (Figure 4). At 2 MPa and 80°C, the CO2 molar fraction is low (XCO2 < 0.05) but doubled by 

increasing the pressure to 5 MPa (XCO2 ≈ 0.1) (Figure 5). Therefore, the impact of the pressure on the 

synthesis of CLSO from ELSO and CO2 was also investigated. Reaction was performed in the presence 

of 2.2 mol% TBABr and 2.2 mol% of HDB 15 at 80°C in a pressure range of 0.5 to 5 MPa (Figure 6). 

 

 

 
 

Figure 3 Kinetic study of the TBABr/HBD 15 promoted coupling of CO2 with ELSO: effect of the 

temperature. Conditions: P = 2 MPa, TBABr = 2.2 mol%, [TBABr]/[HBD 15] = 1 
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Figure 4 IR absorption spectra of the ELSO rich phase of the ELSO/CO2 mixture at T = 100 °C for 

different CO2 pressures. 

 

 
 

Figure 5 Molar fraction of CO2 in the ELSO rich phase as a function of pressure 
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Figure 6 Kinetic study of the TBABr/HBD 15 promoted coupling of CO2 with ELSO: Pressure effect. 

Conditions: T = 80 °C, TBABr = 2.2 mol%, [TBABr]/[HBD 15] = 1 

 

For low CO2 pressures of 0.5 and 1 MPa, the reaction was slow and the yield reached a plateau between 

40 and 50 % after 1400 min. At such low pressure, the amount of CO2 dissolved in the epoxide rich phase 

is insufficient (XCO2 < 0.02) to completely convert ELSO into CLSO. Increasing the pressure had a 

positive impact on both the solubility of CO2 into ELSO and the kinetics. At 2 MPa, the molar fraction 

of CO2 dissolved in the epoxidized vegetable soybean oil was increased to 0.035, and the ELSO 

conversion into CLSO reached 60 % after 1400 minutes whereas at 5 MPa, it was almost quantitative 

(90 %) after the same period of time. This last result is the consequence of the highest concentration of 

CO2 dissolved in the oil (XCO2 ~ 0.1).  

 

Finally, the impact of the HBD 15 concentration on the ELSO/CO2 coupling was studied under optimized 

experimental conditions, i.e. a temperature of 120°C and a pressure of 5 MPa using 2.2 mol% of TBABr 

as catalyst. Figure 7 shows the typical kinetic curves for a cocatalyst loading ranging from 0 to 3.7 mol%. 

If the addition of 0.5 equivalent of HBD 15 only slightly improved the TBABr promoted coupling of 

CO2 with ELSO, the kinetic was doubled when TBABr and HBD 15 were used in equimolar amount and 

the reaction was complete within 600 minutes instead of 1200 minutes without HBD 15.  
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Figure 7 Kinetic study of the TBABr/HBD 15 promoted coupling of CO2 with ELSO: effect of HBD 

content. Conditions: T = 120 °C, P = 5 MPa, TBABr = 2.2 mol%. 

 

However, addition of an excess of HBD 15 (1.5 equivalent) compared to TBABr, had a detrimental effect 

on the kinetic as evidenced by a decrease of the rate constant compared to experiment conducted using 

an equimolar amount. This observation was related to the acidity of the proton of perfluoro-tert-butanol 

that decreased the nucleophilicity of the halide anion by strong solvation[22]. 

 

Conclusions 
Cyclocarbonated linseed oil was synthesized by coupling CO2 with epoxidized linseed oil (ELSO) using 

a catalytic platform composed of an organic halide salt or ionic liquid as organo-catalyst, and an hydrogen 

bond donor as activator. We first screened the catalytic activity of various organo-catalysts and found 

that guanidinium salt showed the best catalytic efficiency. The improvement of the CO2/epoxidized 

vegetable oil coupling reaction was then investigated by adding various activators to the reaction medium 

containing TBABr as organocatalyst. Amongst all tested activators, 1,3-bis(2-

hydroxyhexafluoroisopropyl)benzene, hexafluoro-2-(p-toluyl)isopropanol, perfluoro-tert-butanol and 

pyrocatechol are the most efficient with a doubling of the conversion of epoxide groups into cyclic 

carbonates compared to the same reaction carried out without the activator. The coupling of CO2 with 

ELSO was optimized through detailed kinetic studies highlighting the positive impact of the pressure, 

the amount of CO2 dissolved in ELSO, the temperature and the cocatalyst content on the reaction rate. 

Optimal conditions deduced from kinetic studies (TBABr/activator = 1, 2.2 mol% TBABr, 120 °C, 5 

MPa) provides quantitative conversion of ELSO into CLSO in about 600 min without using any organic 

solvent. Therefore,  when comparing the reaction conditions and kinetics previously reported[18b] (> 30 

h, 140°C, 15 bar) with our optimized conditions (10h, 120°C, 50 bar), we emphasize that the 

organocatalytic system composed of TBABr and hydrogen bond donor activator is particularly suitable 

to speed up the production of cyclocarbonated vegetable oils. However, the thermodynamic conditions 

still remain rather harsh and further research efforts are needed in order to develop more efficient 

catalysts that are active under mild conditions for the production of cyclocarbonated vegetable oils. 
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