

Standardisation of milk MIR spectra, Development of common MIR equations

Grelet C^1 , Fernandez J.A 1 , Dardenne P^1 , Baeten V^1 , Vanlierde A 1 , Soyeurt H 2 , Darimont C^1 & Dehareng F^1

Walloon Agricultural Research Center (CRA-W), Gembloux, Belgique
 University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgique
 c.grelet@cra.wallonie.be

Develop MIR models predicting cow state:

> → Variability is needed to build robust models

Variability of instruments

Instruments are different

→ Common milks analysed on 2 instruments from 2 brands

→ Common milks analysed on 2 instruments from 2 brands

→ Methane model (A.Vanlierde, 2013)

→ Common milks analysed on 2 instruments from 2 brands

→ Methane model

→ Common milks analysed on 2 instruments from the same brand

→ Methane model

Instruments are not stable in time

Fat prediction from raw spectra of an instrument analyzing an UHT milk

Instruments are not stable in time

Fat prediction from raw spectra of an instrument analyzing an UHT milk

→ maintenance operation, piece replacement

Issues:

- Not possible to create common tools
- Not possible to transfer a model on other instruments
- Instruments not stable in time

→ A model can be used on only 1 instrument and within a limited time

→ Slope/bias correction not possible for models predicting methane, fertility, ketosis... → Direct Standardisation of the spectra

Variability between instruments

Selected instruments for Master creation

Selected instruments for Master creation

Master

Brand C

18 Selected instruments for Master creation

Master

Brand C

18 Selected instruments for Master creation

Master

Standardized instruments

Brand B

Standardised instruments for creation of equations

Standardised instruments for use of equations

Brand C

Brand A

PIECE-WISE DIRECT STANDARDIZATION (PDS)

Absorbance in an area r1 (master)

→ correlated to the absorbance within R₂ (slaves)

Results

Variability of instruments

Reduce the variability of instruments Samples/Scores Plot of X212

→ Common milks analysed on the master and on a slave instrument from the same brand

→ Methane model

→ Common milks analysed on the master and on a slave instrument from another brand

→ Methane model

- →47 instruments (7 brand A, 1 brand B, 39 brand C)
- **→**Methane model
- →RMSE between master and slaves predictions, before and after standardisation

- →47 instruments (7 brand A, 1 brand B, 39 brand C)
- → Poly-Unsaturated Fatty acids model
- →RMSE between master and slaves predictions, before and after standardisation

Fatty acids models

- 1827 milk samples (standardized since 2012)
 - Brand A
 - Brand C
- Large variability of breeds (17), seasons, feeding systems and geographical areas:

	Cross validation with 4 subsets		
Description	R ² cv	RPDcv	Use
	1.00	132.99	+++
C4:0	0.93	3.67	+
C6:0	0.91	3.32	+
C8:0	0.91	3.29	+
C10:0	0.91	3.37	+
C12:0	0.92	3.62	+
C14:0	0.93	3.88	+
C14:1 cis	0.68	1.78	-
C16:0	0.94	4.18	+
C16:1 cis	0.73	1.91	-
C17:0	0.80	2.24	0
C18:0	0.84	2.51	0
Total of C18:1 trans	0.79	2.17	0
C18:1 cis9	0.95	4.35	+
Total of C18:1 cis	0.95	4.58	+
Total of C18:2	0.69	1.79	-
C18:2 cis9, cis12	0.72	1.91	-
C18:3 cis9, cis12, cis 15	0.68	1.77	-
C18:2 cis 9, Trans 11	0.74	1.95	-
Saturated FA	0.99	10.22	+++
Mono-unsaturated FA	0.97	5.83	++
Poly-unsaturated FA	0.77	2.10	0
Unsaturated FA	0.97	5.75	++
Short chain FA	0.93	3.88	+
Mid chain FA	0.97	5.53	++
Long chain	0.95	4.52	+
Bbranched FA: iso + anteis	o 0.75	2.00	0
Omega 3	0.66	1.73	-
Omega 6	0.72	1.89	-
Odd FA	0.83	2.41	0
Trans FA	0.80	2.26	0
C18:1	0.96	5.18	++

Methane model

Methane emitted by dairy cows (A.Vanlierde, 2013)

- 84 from Brand B
- 368 from Brand C

Reference values (SF6)

BHB, acetone and citrates models

- 536 milk samples all standardized
 - Brand A
 - Brand C

From France, Germany and Luxembourg

Conclusion

Common langage for all instruments

- ✓ Monthly since january 2012, 67 instruments into 27 labs.
- ✓ Merging database
- ✓ Creation of common models, more robust
- ✓ Use of the models by all instruments

Standardisation of milk mid-infrared spectra from a European dairy network, C. Grelet, J.A. Fernández Pierna, P. Dardenne, V. Baeten, F. Dehareng, Journal of Dairy Sciences, 2015, 98:2150–2160

WITH THE SUPPORT OF

Thank you for your attention

www.optimir.eu

New tools for a more sustainable dairy sector