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Sensorineural hearing loss (SNHL) is a major pathology of the inner ear that affects nearly
600 million people worldwide. Despite intensive researches, this major health problem
remains without satisfactory solutions. The pathophysiological mechanisms involved in
SNHL include oxidative stress, excitotoxicity, inflammation, and ischemia, resulting in
synaptic loss, axonal degeneration, and apoptosis of spiral ganglion neurons. The mech-
anisms associated with SNHL are shared with other neurodegenerative disorders. Cho-
lesterol homeostasis is central to numerous pathologies including neurodegenerative
diseases and cholesterol regulates major processes involved in neurons survival and func-
tion. The role of cholesterol homeostasis in the physiopathology of inner ear is largely
unexplored. In this review, we discuss the findings concerning cholesterol homeostasis in
neurodegenerative diseases and whether it should be translated into potential therapeutic
strategies for the treatment of SNHL.

Keywords: sensorineural hearing loss, cholesterol homeostasis, liver X receptor, excitotoxicity, oxysterol

INTRODUCTION
Hearing

Q2
loss constitutes a major health problem affecting 16%

of the adult population worldwide (Pleis and Lethbridge-Cejku,
2006). Aging is the main risk factor associated with hearing impair-
ment. Age-related sensorineural hearing loss (SNHL) is the third
most common disability of the elderly affecting about half of the
population over 75 years old (Gates and Mills, 2005). SNHL preva-
lence dramatically increases and is expected to keep rising based
on the rapidly increasing number of elderly people. SNHL is a
pathology of the cochlea that is generally regarded as mechanical
or chemical damage-induced hair cell death triggering spiral gan-
glion neuron (SGN) death and subsequent dysfunction of auditory
nerve (Takeno et al., 1998). Recent researches in SNHL field have
lead to a more complex vision of the relationship between inner ear
damage and SNHL. Indeed, SGN loss without hair cell damage or
death was observed (Ryals et al., 1999; White et al., 2000; Linthicum
and Fayad, 2009). Because many cell types within the cochlea,
including hair cells, SGN, and strial cells, decrease in number with
age (Ohlemiller and Gagnon, 2004), the majority of age-related
SNHL could be classified according to the type of cell degener-
ated: sensory (hair cell loss), neural (SGN loss), metabolic (strial
dysfunction), and cochlear conductive (changes in the stiffness of
the basilar membrane) (Schuknecht and Gacek, 1993). Consistent
with this, auditory neuropathy and auditory synaptopathy were
reported as a cause of SNHL. Auditory synaptopathy results from
defects of the ribbon synapses between inner hair cells and SGN
(Moser et al., 2013) leading to auditory neuropathy that is charac-
terized by auditory nerve degeneration (Worthington and Peters,
1980; Starr et al., 1996). Auditory neuropathy is responsible for
about 8% of SNHL cases and is notably associated with absent
or abnormal ABR and poor speech understanding, particularly in

noisy surroundings (Starr et al., 1996; Kraus et al., 2000; Madden
et al., 2002).

Currently, no effective medication is available to prevent or
treat SNHL. Cochlear implants bypass damaged hair cells by
providing direct electrical stimulation of SGNs. This approach
ameliorates speech production and perception in patients with a
severe-profound SNHL (Harris et al., 1995; Bond et al., 2009).
However, the beneficial effects of cochlear implants are strongly
limited by both SGN degeneration and loss (Roehm and Hansen,
2005; Shibata et al., 2011). The neurotrophic and neuroprotective
properties of neurotrophins were promising. However, first clin-
ical trials led to variable results, showed bad distribution profiles
and deleterious secondary effects such as abnormal proliferation
of Schwann cells (Winkler et al., 1997), unwanted cell migra-
tion (Williams, 1991), or weight loss (Eriksdotter Jonhagen et al.,
1998). Other trophic factors have shown effectiveness in modulat-
ing inner ear protection and repair, such as of insulin-like growth
factor 1 (IGF-1). IGF-1 is effective in the protection from electrode
trauma insertion in the guinea pig and in the recovery from sud-
den hearing loss in humans (Kikkawa et al., 2014; Nakagawa et al.,
2014). This is promising, since, in men and mice, IGF-1 deficiency
causes SNHL (Varela-Nieto et al., 2013) but more trials are needed.
During the past few decades, other key mechanisms contributing
to SNHL etiology were characterized. Indeed, noise-induced and
age-related SNHL etiology was associated with ischemia, inflam-
mation, excitotoxicity (excessive glutamate release), axonal degen-
eration, oxidative stress, and mitochondrial dysfunction (Menardo
et al., 2012). Circulatory disturbance is considered as a plausible
cause of idiopathic sudden SNHL (Kim, 1999; Merchant et al.,
2008). Ischemia by itself causes excitotoxicity, failure of energy
supply, and excess production of free radicals highlighting the
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interconnection between these deleterious processes. Excitotoxi-
city is also considered as a major mediator of inner ear damage
leading to deleterious effect on SGN function. New therapeutic
approaches that target several of these deleterious processes should
be effective for SNHL prevention and treatment.

Besides SNHL, these deleterious processes are also causative or
characteristic factors of neurodegenerative diseases. Interestingly,
cholesterol homeostasis and metabolism are central to numerous
pathologies including neurodegenerative diseases (Liu et al., 2010;
Vance, 2012) and regulate the above-mentioned processes involved
in neuron survival and functionality (Laskowitz et al., 1997;
Kang and Rivest, 2012). Consequently, interfering with choles-
terol homeostasis should afford innovative therapeutic strategies
to improve the care of SNHL. In this review, we discuss the under-
estimated potential of cholesterol homeostasis and metabolites as
a new opportunity to better understand inner ear pathologies and
afford innovative therapeutic strategies.

CHOLESTEROL HOMEOSTASIS IN BRAIN
Brain cholesterol is essential to ensure cell membrane structure,
neurotransmitter release, signal transduction, and synaptogenesis

(Pfrieger and Ungerer, 2011; Leoni and Caccia, 2013). Since the
blood–brain barrier (BBB) prevents the uptake of lipoprotein
from the circulation, all brain cholesterol is synthesized from
acetyl-CoA through the rate-limiting enzyme HMGCoA reductase
(HMGCR), tightly regulated by sterol-regulator element binding
protein (Figure 1). In adult brain, neurons mostly rely on choles-
terol from astrocytes, secreted by adenosine triphosphate-binding
cassette (ABC) members A1 and G1, and bound to apolipopro-
tein E (ApoE) particles. Neurons then uptake these lipoproteins
via receptors of the low density lipoprotein receptor family (i.e.,
LDL receptor, LDL receptor-related protein 1, and ApoE recep-
tor 2). Cholesterol is notably required to form synapses (Goritz
et al., 2002) in neuronal cells. Excess cholesterol is converted by
Cyp46 into 24(S)-hydroxycholesterol [24(S)-OHC], then secreted
directly or via ABCG4 to ApoE particles. Contrary to cholesterol,
some oxysterols are able to cross the BBB, since 24(S)-OHC is
excreted to circulation whereas 27-hydroxycholesterol (27-OHC)
reaches the brain (Figure 1).

These oxysterols fluxes are important since most of those are
endogenous ligands of liver X receptors (LXRs) (Janowski et al.,
1996; Fu et al., 2001). LXRa and LXRb are nuclear transcription

FIGURE 1 | Cholesterol homeostasis in brain. Cholesterol synthesis
takes place in astrocytes, through activation of the rate-limiting
enzyme HMGCR. Cholesterol is then loaded on ApoE particles by
ABCA1 and ABCG1 transporters. LXR activation triggers the
expression of ApoE, ABCA1, and ABCG1 at the transcriptional level.
These lipoproteins are internalized by neurons via LDL-family
receptors (LDLR, LRP1, and ApoER2). In neurons, cholesterol is
metabolized into 24(S)-OHC by Cyp46 to be excreted through the

blood–brain barrier to the liver. The impact of key players in cholesterol
homeostasis (HMGCR, LXR, ApoE-lipoproteins, and LRP1) in processes
associated with neurodegeneration is disclosed (italic). 24(S)-OHC,
24(S)-hydroxycholesterol; ABC, ATP-binding cassette; ApoER2, ApoE
receptor 2; Cyp46, cytochrome P450 46A1 or cholesterol-24-hydroxylase;
HMGCR, HMGCoA reductase; LDL, low density lipoprotein; LDLR, low
density lipoprotein receptor; LRP1, LDL-related protein 1; LXR, liver X
receptor.
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factors that are master regulators of cholesterol homeostasis (Hong
and Tontonoz, 2014), regulating the expression of the above-
mentioned cholesterol transporters (Figure 1). For instance, the
expression of ABCA1 and ABCG1 was reduced in astrocytes from
LXR-invalidated mice, and LXR was shown to be essential for
neurogenesis (Fan et al., 2008). Some oxysterols that are LXR
ligands were detected in brain and display neurotrophic activity
in vitro and in vivo (Schmidt et al., 1999; Sacchetti et al., 2009;
Theofilopoulos et al., 2013).

Cholesterol homeostasis in the inner ear is largely unexplored.
However, it is highly probable that then similar mechanisms may
rule cholesterol homeostasis in brain and cochlea. Indeed, neither
brain nor cochlea can use cholesterol from the circulation and
expression of cholesterogenic enzymes, cholesterol transporters,
and LXR was reported in both.

CHOLESTEROL HOMEOSTASIS AND NEURODEGENERATIVE
DISEASE
Deregulation of cholesterol balance is an increasingly recog-
nized characteristic of chronic neurodegenerative diseases such as
Parkinson’s, Alzheimer’s, and Huntington’s diseases (Vance, 2012).
Acute neuronal injury in stroke, brain trauma, or epileptic seizures
also impact cholesterol homeostasis in the brain (Mahley, 1988;
Adibhatla and Hatcher, 2008). Changes in brain cholesterol home-
ostasis were described during glutamate-mediated excitotoxicity,
which is involved in the deleterious effect of numerous neuro-
logical stresses such as stroke, traumatic brain injury, and noise
exposure. Nevertheless, roles of cholesterol and its metabolites
are not clear (Ong et al., 2010; Sodero et al., 2012). Short-term
glutamate mediated excitotoxicity induces a cholesterol loss from
the synaptic membranes through the stimulation of 24(S)-OHC
production potentially leading to excitotoxicity attenuation since
cholesterol and oxysterols (notably 7-ketocholesterol and cho-
lesterol epoxides, 7KC and 5,6-ECs, respectively) are promoters
of exocytosis. Other study showed that longer exposure to a
potent glutamate analog lead to increased level of cholesterol and
oxysterols (notably 7KC and 5,6-ECs) in neurons of the dam-
aged hippocampus that potentially propagate excitotoxicity and
directly induce cytotoxicity. Consistently, inhibition of choles-
terol synthesis by statins or depletion by methyl-b-cyclodextrin
prevents excitotoxicity-induced neuronal death (Ponce et al.,
2008).

On the other hand, cholesterol derived from astrocytes lipopro-
tein seems beneficial in neurons. Indeed, in glial cells, dramatic
increase of ApoE produced was described after nerve injury in
both central and peripheral nervous systems (Ignatius et al., 1986;
Boyles et al., 1989), allowing axonal regrowth, and repair of injured
neurons as shown in retinal ganglion neurons (Hayashi et al.,
2004). An upregulation of ABCA1 was also observed in vivo
during reinnervation of damaged hippocampus (Jasmin et al.,
2014). In neurons, LDL receptor family supports ApoE benefi-
cial action (Hayashi et al., 2004). For instance, LRP1 activation
promotes axonal regeneration (Yoon et al., 2013) and induces neu-
rotrophin receptor signaling (Shi et al., 2009). Altogether, these
studies showed that ApoE-lipoproteins exert antioxidant, anti-
inflammatory, and anti-excitotoxic activities and stimulate axonal
regrowth by providing cholesterol to distal axons.

Numerous studies sustain the beneficial impact of LXR in
neurodegeneration and as target for neuroprotective/regenerative
treatments. LXR receptors disruption in mice is associated with
severe neurodegeneration (Wang et al., 2002). The brain of LXR-
invalidated mice displayed enlarged brain blood vessels, lipid
deposits, proliferation of astrocytes, and loss of neurons. The
impairment of cholesterol delivery from astrocytes to neurons
should be a major cause of neurodegeneration observed in the
LXR-invalidated mice. Consistently, LXR activation using syn-
thetic ligands improves recovery in a rat model of acute brain
ischemia (Namjoshi et al., 2013). In addition to homeostasis,
role of LXR in inflammation is also major in diverse patholo-
gies including neurodegenerative diseases (Steffensen et al., 2013).
LXR activation prevents the transcription of inflammatory genes
through the inhibition of NFkB pathway. In addition, synthetic
LXR agonists reduce neuroinflammation in mice models of neu-
rodegeneration and exert neuroprotective property in vivo (Sironi
et al., 2008). Interestingly, some endogenous oxysterols do so
in vitro and in vivo (Schmidt et al., 1999; Sacchetti et al., 2009;
Theofilopoulos et al., 2013).

The studies related to brain cholesterol metabolites have
essentially focused on 24(S)-OHC. It presents a Janus face,
namely, the induction of cell death at high concentration
(above 10 µM) and, at lower doses, an adaptive protective
response against cytotoxic oxysterols. The former is due to
increased exocytosis that may aggravate excitotoxic injury (Ma
et al., 2010). The latter results from a stimulation of an
LXR-dependant increase of ABCG1 that should promote the
efflux of cytotoxic oxysterols formed during oxidative stress
(Noguchi et al., 2014). Some observations describe other oxys-
terol players in the brain. 7alpha-hydroxycholesterol (7a-OHC),
7beta-hydroxycholesterol (7b-OHC), 5,6alpha-epoxycholesterol
(5,6a-EC), 5,6beta-epoxycholesterol (5,6b-EC), and 7KC are self-
oxidation products of cholesterol that were detected in rat hip-
pocampus (Figure 2). The level of these oxysterols was strongly
increased after excitotoxicity (Ong et al., 2010). They increase
exocytosis, intracellular calcium concentrations, and cytotoxic-
ity (in particular 7KC), and could so propagate excitotoxicity.
Cholestane-3b,5a,6b-Triol (CT) was found in rat brain (Hu et al.,
2014). This oxysterol is produced by the hydrolysis of 5,6a-EC and
5,6b-EC catalyzed by the cholesterol epoxide hydrolase (ChEH)
enzymatic activity (De Medina et al., 2010). CT exhibits neuro-
protective activity both in vitro and in vivo (Figure 2). Indeed,
this oxysterol protects against glutamate-induced cytotoxicity and
decreased neuronal injury in different animal models. These bene-
ficial effects may stem from the ability of CT to bind and negatively
modulate NMDA receptors. Moreover, CT level was increased
with ischemic preconditioning and the subsequent neuroprotec-
tive effect were abolished by an inhibitor of ChEH. It is noteworthy
that 5,6-ECs and 7KC that display neurotoxic effect are, respec-
tively, substrates and inhibitor of ChEH suggesting a potential
pathophysiological inter-relation between these oxysterols that
have opposite effect on neurons.

Cholestenoic acids, intermediates in the metabolism of cho-
lesterol to bile acids, are present in neural tissues. Among
cholestenoic acids, 3b,7a-dihydroxycholest-5-en-26-oic acid and
3b-hydroxycholest-5-en-26-oic acid regulate motor neuron
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FIGURE 2 | Good and bad cholesterol metabolites in brain. As it was
described decades ago for cardiovascular diseases and more recently for
cancer, it appears that there is a balance between good and bad cholesterol
in neurodegeneration process. Cholesterol is oxidized by different ways
(enzymatic or auto-oxidation) to give rise to a large number of oxysterols.
Some appear to be bad, as they stimulate exocytosis, excitotoxicity,
apoptosis (7a-OHC, 7b-OHC, 5,6a-EC, 5,6b-EC, and 7KC, 3b-HCA – in red),
some appear to be good as they exert neuroprotective, neurotrophic, or
anti-inflammatory activities (CT, 3b,7a-diHCA, dendrogenins – in green) and
finally some whose role is not clear, such as 24(S)-OHC and CE for which
additional researches will be necessary to fully understand their
involvement in neuroprotective or neurodegenerative processes (in gray).
7a-OHC, 7alpha-hydroxycholesterol; 7b-OHC, 7beta-hydroxycholesterol;
7KC, 7-ketocholesterol; 5,6a-EC, 5,6alpha-epoxycholesterol; 5,6b-EC,
5,6beta-epoxycholesterol; CT, cholestane-3b,5a,6b-triol; 3b,7a-diHCA, 3b,7a-
dihydroxycholest-5-en-26-oic acid; 3b-HCA, 3b-hydroxycholest-5-en-26-oic
acid; 24(S)-OHC, 24-hydroxycholesterol. Cyp27, cytochrome P450 27A1;
Cyp46, cytochrome P450 46A1; Cyp7B1, cytochrome P450 7B1; ACAT-1,
Acyl-CoA cholesterol acyltransferase; ChEH, cholesterol epoxide hydrolase;
HMGCR, HMGCoA reductase.

function. 3b,7a-dihydroxycholest-5-en-26-oic acid promoted
motor neuron survival in an LXR-dependant manner whereas
3b-hydroxycholest-5-en-26-oic acid triggers motor neuron loss
(Theofilopoulos et al., 2014). These observations suggest a meta-
bolic balance at the level of cholestenoic acids that may influence
neurons fate (Figure 2). Cholesteryl esters (CEs) were detected in
the brain (Martin and Bazan, 1992; Mulas et al., 2005). CEs are pro-
duced by the esterification of cholesterol with fatty acids catalyzed
by Acyl-CoA: cholesterol acyltransferase (ACAT). CEs and ACAT-1
levels are increased in aging brain and in brain lesions. Moreover,
increased expression of ACAT-1 and CEs level were reported in
the hippocampus after excitotoxicity injury (Kim et al., 2011).
Since excitotoxicity is associated with the production of cytotoxic
oxysterols, esterification should sequester cholesterol to avoid this
deleterious process. Conversely, cholesterol storage could also be
deleterious by limiting the pool of cholesterol necessary to axonal
regrowth, lipid raft functionality, and ApoE-lipoprotein delivery

to neurons (Cutler et al., 2002). Whether CEs accumulation
constitutes a neuroprotective response or participates in neuronal
damage remains to be elucidated.

We previously reported that synthetic steroidal alkaloids
resulting from the condensation of biogenic amines and 5,6a-
epoxysterols display remarkable neurotrophic and neuroprotec-
tive activity in vitro (De Medina et al., 2009). Two of the most
effective steroidal alkaloids identified to date are 5a-hydroxy-6b[2-
(1H-imidazol-4-yl)ethylamino]cholestan-3b-ol, or dendrogenin
A and 5a-hydroxy-6b-[3-(4-aminobutylamino)propylamino]
cholest-7-en-3b-ol, or dendrogenin B. Dendrogenin B also pro-
motes motor neuron survival (De Medina et al., 2009). In addi-
tion, these compounds induce proliferation and differentiation
of neural stem cells (Khalifa et al., 2014). Dendrogenin A was
recently characterized as a metabolite of 5,6a-EC in mammal tis-
sues, including brain (De Medina et al., 2013). Thus, dendrogenins
could be involved in the maintenance of nerve functional state
including in inner ear.

As illustrated in Figure 2, cholesterol conversion in the brain is
a double edged sword that can generate good or bad metabolites.
A similar situation was reported for cancer (Silvente-Poirot and
Poirot, 2014). This cholesterol balance should be involved in the
normal and pathological physiology of the inner ear. To our knowl-
edge, cholesterol metabolism has never been precisely studied in
the inner ear.

CHOLESTEROL HOMEOSTASIS AND SNHL
Even if studies related to cholesterol homeostasis in inner ear
are scarce, some reports support a relationship between choles-
terol homeostasis deregulation and SNHL. Indeed, the genetic
syndromes Niemann–Pick type C and Smith–Lemli–Opitz that
affect, respectively, cholesterol intracellular transport and synthe-
sis display devastating neurological phenotypes including SNHL
(Di Berardino et al., 2007; King et al., 2014). Some epidemiology
studies revealed that hypercholesterolemia predisposes to SNHL
(Suzuki et al., 2000; Weng et al., 2013). Indeed, atherosclerosis, high
plasma total cholesterol, and low HDL levels are positively corre-
lated with SNHL. Medication used for prevention and treatment
of atherosclerosis such as Simvastatin were described as otoprotec-
tive in mice (Cai et al., 2009). Consistently, ApoE knockout mice
developed marked hyperlipedimia, atherosclerosis, and hearing
impairment (Guo et al., 2005). The most plausible explanation is
that hypercholesterolemia triggers the stenosis of spiral modiolar
artery leading to cochlear ischemia and subsequent SNHL. Con-
sequently, therapies that limit high plasma cholesterol level could
be useful to prevent SNHL caused by cochlear ischemia.

THERAPEUTIC PERSPECTIVES
Cholesterol homeostasis and metabolism play an important role
in neurodegenerative disease and interfere with major causative
processes, which are also strongly associated with SNHL, suggest-
ing that targeting cholesterol homeostasis should provide inno-
vative strategies to prevent and attenuate SNHL (Figure 1). On
this basis, we proposed some hypothesis to be explored for SNHL
treatment.

Statins (HMGCR inhibitors) have been proposed as treat-
ment for neurogenerative diseases including SNHL notably
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through anti-atherosclerotic effect on cochlear artery and anti-
inflammatory activity. Cholesterol-lowering agents should be use-
ful to prevent ischemia and subsequent SNHL. However, this
approach should be limited since damaged SGN need cholesterol
from astrocyte-derived ApoE-lipoproteins for axonal regrowth. It
might be preferable to use cholesterol-lowering agent not cross-
ing the BBB at least in already damaged inner ear. An interesting
approach might be a treatment with LXR agonists. These com-
pounds also prevent atherosclerosis via the stimulation of choles-
terol efflux rather than direct effect on cholesterogenesis. In the
inner ear, LXR agonists might also promote axonal regrowth of
SGN by inducing ApoE-lipoprotein formation in astrocytes. In
addition, LXR agonists exhibit direct neurotrophic effect in vitro
and anti-inflammatory activity. However, LXR ligands biologi-
cal properties are closely related to their structure and to the
cell types. For example, the 3b,7a-dihydroxycholest-5-en-26-oic
acid and 3b-hydroxycholest-5-en-26-oic acid that both target LXR
are, respectively, neuroprotective and neurotoxic (Theofilopoulos
et al., 2014). This event is associated with differential recruitment
of coactivators/corepressors and subsequent regulation of gene-
expression patterns, which strongly depend on the structure of
LXR/ligand complex (Huang et al., 2010). The discovery of the
bona fide LXR ligand for SNHL treatment remains a difficult
challenge. ApoE possesses antioxidant, anti-inflammatory, anti-
excitotoxic, and neurotrophic properties and has been proved to be
effective in treating brain injury in multiple mouse models. Conse-
quently, it is plausible that ApoE or ApoE mimetics have beneficial
effect for the prevention or the treatment of SNHL. Since LRP1
agonist exhibits axonal regrowth properties, this approach should
also be considered.

This review highlights the good and the bad side of cholesterol
metabolites in neurodegenerative diseases (Figure 2). First of all,
the determination of the endogenous level of these cholesterol
metabolites in healthy and damaged inner ear should be infor-
mative. The effect of the good cholesterol metabolites (i.e., CT,
3b,7a-dihydroxycholest-5-en-26-oic acid, dendrogenins) should
be investigated in animal models of SNHL (aminoglycosides or
noise exposure, presbycusis). Another approach that deserves to
be studied is the blockage of bad cholesterol metabolites (i.e.,
5,6-ECs, 7KC, 3b-hydroxycholest-5-en-26-oic acid). Since these
oxysterols are mainly produced by auto-oxidation, the use of
antioxidants seems sensible. Antioxidants have been extensively
investigated and are suitable preventive agents for SNHL. At
the level of cholesterol metabolism, it is probable that antiox-
idants block the production of both good and bad cholesterol
metabolites potentially limiting their efficacy. It is noteworthy that
5,6-ECs and 3b-hydroxycholest-5-en-26-oic acid are converted,
respectively, by ChEH and Cyp7B1 to produce CT and 3b,7a-
dihydroxycholest-5-en-26-oic acid previously described as neu-
roprotective. Pharmacological interventions that stimulate ChEH
and Cyp7B1 should be useful. However, concerning ChEH, the sit-
uation is more complex since CT will be formed at the expense of
dendrogenins biogenesis that also arises from enzymatic trans-
formation of 5,6a-EC (Figure 2). Gevokizumab, an antibody
targeting pro-inflammatory cytokine IL1b is under clinical evalua-
tion, for treatment of autoimmune inner ear disease. Development
of antibodies against bad cholesterol metabolites is also a potential

alternative for SNHL. Despite the impact of 24(S)-OHC and cho-
lesterol esterification in neurodegenerative diseases remain unclear
(Figure 2), their effect in the inner ear also deserve to be studied.

CONCLUDING REMARKS
This review proposes that the study of cholesterol homeostasis in
the inner ear might afford new unexplored possibilities for the
prevention and treatment of SNHL. Important tasks have to be
done to achieve this aim. First: to characterize cholesterol home-
ostasis and metabolome in normal, aged, and damaged inner ear.
Second: to determinate the impact of intervention of cholesterol
homeostasis in SNHL. Third: to investigate whether cholesterol
metabolites prevent, delay, or aggravate SNHL.
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