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Abstract. This paper studies linear and nonlinear piezoelectric vibration absorbers that are designed based
on the equal-peak method. A comparison between the performance of linear mechanical and electrical tuned
vibration absorbers coupled to a linear oscillator is first performed. Nonlinearity is then introduced in the primary
oscillator to which a new nonlinear electrical tuned vibration absorber is attached. Despite the frequency-energy
dependence of nonlinear oscillations, we show that the nonlinear absorber is capable of effectively mitigating the
vibrations of the nonlinear primary system in a large range of forcing amplitudes.

1 Introduction

Tuned vibration absorbers (TVAs) are passive devices that
allow to reduce the vibration of a host structure in a spe-
cific frequency band. An electrical TVA (ETVA) consists
of a resonant electrical shunt in series with a piezoelectric
(PZT) material attached to the host structure. Dynamical
coupling between the host and the PZT converts mechan-
ical energy into electrical energy. This electrical energy is
then dissipated by the resistor of the shunt which causes
the vibration of the host system to be mitigated. In other
words, ETVAs dissipate energy similarly to mechanical
TVAs (MTVAs) but without adding any moving part to the
host structure. Hagood and von Flotow [1] proposed an an-
alytical model of a linear ETVA, and this model was used
later by Preumont et al. [2]. A nonlinear ETVA was intro-
duced in [3], and the effects of nonlinear electrical shunts
on linear host structures were explained analytically using
a perturbation method.

The objective of the present paper is to revisit the clas-
sical equal-peak tuning rule when it is applied to both lin-
ear and nonlinear ETVAs. The paper is organized as fol-
lows. A comparison between the mitigating performance
of a linear MTVA and a linear ETVA is first presented in
Section 2. Then, Section 3 discusses how vibration mit-
igation of a nonlinear host structure can be improved by
considering a nonlinear ETVA. Conclusions of this study
are drawn in Section 4.

2 Linear piezoelectric tuned vibration
absorbers

A simplified model of a host structure with mass ;, damp-
ing B, and stiffness K is considered herein. The structure
is excited by an external harmonic force of amplitude F)
and frequency w. A PZT shunt is attached to this mechan-
ical oscillator, as illustrated in Fig. 1.
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Fig. 1. Piezoelectric vibration absorber with a (series) RL shunt.

The PZT shunt consists of a PZT rod with open-circuit
stiffness K}, and capacitance CS (under constant strain)
attached to a resonant series resistive-inductive (RL) shunt.
The steady-state vibration amplitude X; and the charge in
the PZT shunt Q are the degrees of freedom of this model.
The governing equations of motion of this system are:

MK, + B X, + (Kl +K;ZT)X1 - HQ = Fy sinwt

ML . (1)
O+RO+&Q-HX =0

The parameter H is the piezoelectric constant in the d33-
mode (axial mode), as explained in [2]. The dimensionless
form of Eq. (1) can be written as:
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where the prime stands for the derivative with respect to 7
and where the dimensionless parameters are defined in a
similar way as in [3]:
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where Kpzr is the short-circuit stiffness, and % is the elec-
tromechanical coupling factor.

The transfer function of the primary oscillator Ggry4 (y) =

% can be expressed as:

jézry +62 - 72

Geryva (y) =
4)

2.1 Equal-peak method applied to MTVAs and
ETVAs

The MTVA is a widely-used passive vibration damping de-
vice. It consists of a secondary mass M, connected to the
host structure through a spring K, and a dashpot B,, as
shown in Fig. 2.
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Fig. 2. Mechanical tuned vibration absorber (MTVA).

Considering a harmonic excitation, the equations of
motion are:

MKy + By (X1 - Xo) + BLX + Ky (X0 - X)) + Ko X,
= Fy sin wt
My + By (X5 - K1) + Ky (Xa - X1) = 0
(5)
As for the ETVA, it is more convenient to express Eq. (5)
in terms of dimensionless parameters. If one defines the

mechanical tuning parameter 6, = Z—f (w; = ,/% with

i = 1,2), the mass ratio 8 = %, & = 2\/% the modal
damping ratio of the host (i = 1) and the MTVA (i = 2)
respectively, and x; = \/L];’l_[, Eq. (5) becomes:
[1 0 {x;}+ [2(51 + Boné2) —2 «/Bamfz]{x;}
01 x2 -2 \/B&nz(fz 25mfz x2 (6)
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The receptance function of the primary mass Gyry4 (y) =
% therefore reads:

Gurya (y) =
2joméry — 7,2 + 63,,

vt = jo%ry3 — (6% + 1) y2 + j&%ry + (1 - oz%) 62

Y= 2j6mér (1 +B)y> = (1 + (1 +B)82) y? + 2jy6mér + 62,
@)

Den Hartog proposed a constructive method for the
tuning of MTVAs [4], which is still widely used today. Be-
cause the receptance function passes through two invari-
ant points that are independent of absorber damping, he

proposed (i) to adjust the absorber stiffness to have two
fixed points of equal heights, and (ii) to select the absorber
damping which is the average of the two damping values
that realize a horizontal tangent through the left and right
fixed points, respectively. This tuning condition minimizes
the maximum response amplitude of the primary system
and lays down the foundations of the so-called equal-peak
method. Assuming an undamped host structure (i.e., B] =
0), Den Hartog [4] and Brock [5] derived approximate an-
alytic formulas for the absorber stiffness and damping, re-
spectively:
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Interestingly, it is only recently that an exact closed-form
solution to this classic problem could be found [6].

Hagood and von Flotow proposed an extension of this
method to the ETVA in [1]. The design process can be
summarized as follows:

1. A PZT and an inductance L are chosen so that 6 =
oyyr = 1, which means that the electrical natural fre-
quency £, should be the same as the host structure nat-
ural frequency ;. This first design rule ensures that
the fixed points have the same amplitude.

2. A resistor value is chosen so that » = ryyr = \/Eal.
This second design rule consists in setting the ampli-
tude of Ggry4 (y) at y = dgyr = 1 to the amplitude of
the fixed points. Doing so, the two peaks in the recep-
tance curve have approximately the same amplitude,
and their maxima are very close to the fixed points.

However, it turns out that this design rule for the ETVA
is not in exact correspondence with Den Hartog’s rule, as
discussed in the next section.

2.2 Equivalence between MTVAs and ETVAs

The similarities between MTVAs and ETVAs are investi-
gated in this section through the direct comparison of Egs.
(2) and (6) for B; = 0, i.e., for u = & = 0. If the mass
matrices of these two systems are identical (unitary matri-
ces), the damping and stiffness matrices are only identical
if 3 = 0 and ) = 0, i.e., if there is no mass M, and no
shunt, respectively. This is an obvious result, because the
system reduces to the primary oscillator in both cases.

However, it is possible to design an ETVA which is
similar to a MTVA by considering small values of 8 and a;.
Additional conditions to have similar stiffness and damp-
ing matrices are (i) 6 ~ Ou, (i) @1 = PO, and (iii)
r = 2&/60,,. The first of these three equivalence conditions
requires that Q, ~ w;; this means that the electrical shunt
should be tuned at the same frequency than the MTVA.
The second condition links the coupling factor of the PZT
in the ETVA to the mass ratio 8 in the MTVA. Note that
using Hagood’s tuning rule for the ETVA (6gyyr = 1) and
Den Hartog’s tuning rule for the MTVA (6y0pr = #) is
compatible with condition (i) for small 5.

In order to illustrate this similarity between the ETVA
and MTVA, a numerical example is considered. In this ap-
plication, a mass M; of 1kg is attached to a spring K; much
stiffer than the piezoelectric stack used in the ETVA (PZT
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rod with 10mm of diameter and a thickness of 100mm),
ie., K; = «Kpzr with « = 100. If the PZT is a Morgan-
PZT806 [7], Kpzr = 53,42 % 10N/m, CS = 4,505pF and
k = 0,694. Figure 3 compares the receptance of this ETVA
tuned using Hagood’s tuning rule (67 = 1) for different
values of r:

I=THvr

L
0.9 0.95 1
Frequency ratio y

Fig. 3. Ggry4 (y) for different values of r (6 = 1).

As already discussed, considering Hagood’s tuning rule
r = ryyp consists in setting the amplitude of Ggry,4 at
vy =06 =1 (i.e., point U) and at the fixed points (i.e., points
S and 7T') to the same value. These three points are there-
fore aligned along the grey solid horizontal line in Figure
3. Clearly, this tuning rule does not provide equal peaks
in the receptance curve. By trial and error, it was found
that » = 0.87ryyr leads to a frequency response with two
equal peaks, which, in turn, gives improved performance
in terms of amplitude reduction. It is interesting to observe
that designing the ETVA using the third equivalence con-
dition between the MTVA and the ETVA, » = 2£,/4,,, gen-
erates a frequency response almost identical to the equal-
peak design found for » = 0.87ryyr.

Figure 4 depicts the frequency response of the primary
mass with an attached MTVA tuned using Egs. (8) and an
attached ETVA tuned accordingtoé = 1 andr = 0.8 7rgyr.
The fixed points P and Q of the MTVA are shown together
with their counterparts S and T for the ETVA.

= MLTVA
—ELTVA

L L
0.9 0.95 1 1.05 11
Frequency ratio y

Fig. 4. Frequency response function of a primary mass with an
attached MTVA or ETVA (equal-peak design).

Figure 4 confirms that the equivalence conditions lead
to an ETVA and a MTVA with similar, but not identical,
performance. Specifially, the frequencies of the two peaks
of Ggry4 are slightly higher than the frequencies of the

peaks of Gyry4. This is due to the fact that the equiva-
lence conditions neglect the stiffening effect of the host due
to the PZT in the ETVA. The present investigations allow
us to conclude that, for small @; (this implies large values
of ) and small 8, which is typically the case in real appli-
cations, an ETVA can be designed to provide performance
very close to the optimal performance of a MTVA.

2.3 ETVA attached to a nonlinear primary structure

The performance of a linear ETVA in nonlinear regimes of
motion is now investigated by adding a cubic spring Ky,
in the primary system:

Ml)"(l + Ble + (K1 + K;ZT)XI + Kyz X? - HQ = Fj sin wt
LO+RO+ &0-HX =0

©)
The dimensionless parameter of the nonlinear spring is k,,; =

2
(Klngl*)zKNL, and k,; = 0.000151 is chosen herein.
PZT

The frequency response of the primary mass is plot-
ted in Figure 5 for low and high forcing amplitudes cor-
responding to linear and nonlinear regimes of motion, re-
spectively. This figure indicates that the ETVA is no longer
effective when nonlinearity is activated due to the impor-
tant difference in the amplitude of the two resonance peaks.
A hardening behavior characteristic of cubic springs with
positive coefficients can also be observed in the second res-
onance peak. Clearly, in view of the frequency-energy de-
pendence of nonlinear oscillations and of the narrow band-
width of the linear ETVA, this absorber can only be effec-
tive in linear or weakly nonlinear regimes of motion.

25, T T T
_fa= 1 ( Nonlinear regime)
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Fig. 5. Frequency response of a nonlinear primary structure with
an attached linear ETVA.

3 Nonlinear piezoelectric tuned vibration
absorbers

In view of the results presented in Section 2.3, it is mean-
ingful to examine the performance of nonlinear piezoelec-
tric tuned vibration absorbers for vibration mitigation of
nonlinear primary structures. The nonlinearity can be im-
plemented using the nonlinear capacitance of the piezoce-
ramic or by adding an extra nonlinear capacitance to the
shunt [3]. The latter case is considered herein, and a cubic
nonlinear term Ay; O, with a corresponding dimension-
less parameter a,; = (C5)?6*2A4,,, is added to the shunt
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equation of the system:

Mle +BlX1 + (K1 +K1*’ZT)X1 + Knp X%
—-HQ = Fysinwt (10)
LO+RO+ x50+ Ay O —HX, =0

We note that the choice of the functional form of the non-
linear capacitance is important. It can be shown that good
performance is obtained when the same functional form as
that of the primary system is chosen.

Once the PZT is chosen, it remains to determine 6,
and a,y. To ensure satisfactory performance at low forcing
amplitudes for which the primary system behaves almost
linearly, § and » are determined according to the linear rule
presented in the previous section, i.e.,d = 1 and r = 2&,/6.
The coefficient «,; is then chosen to enforce equal peaks
in nonlinear regimes of motion. For f; = 1, Figure 6 illus-
trates that equal peaks are achieved when a,; = 3 x 107*.
The corresponding receptance curve represents a signifi-
cant improvement over the receptance curve in Figure 5.

o= 3e-4 (Optimum design) anl=1e_4

o_=4e-
nl

08 08 09 095 1 1.05 14 145 1.2
Frequency ratio y

Fig. 6. Frequency response of a nonlinear primary structure with
an attached nonlinear ETVA (f = 1).

To investigate the robustness of the design of the non-
linear ETVA, the frequency response of the nonlinear host
structure is calculated for various forcing amplitudes f;.
Figure 7 shows that equal peaks are realized from fy = 0.3
to fo = 1.2, which is an appealing result. From fy = 1.2,
the second resonance peak is characterized by a slightly
larger amplitude than the first peak. When f; = 1.5, the
detuning is much more pronounced, and, beyond fo = 1.7
(not shown here), the nonlinear ETVA gets strongly de-
tuned due to merging of a detached resonance curve with
the second resonance peak. The detailed description of this
mechanism is beyond the scope of this paper. Another in-
teresting observation is that the amplitude of the resonance

peaks does not change substantially when f; increases, which

means that the response of the coupled system is almost
proportional to the forcing amplitude, as it would be the
case for a linear system.

0.8 0.85 0.9 0.95 1 1.05 11 1.15 1.2
Frequency ratio y

Fig. 7. Frequency response of a nonlinear primary structure with
an attached nonlinear ETVA for various forcing amplitudes f.

4 Concluding remarks

The objective of this paper is to analyze the performance
of linear and nonlinear piezoelectric shunts when they are
attached to linear and nonlinear primary systems. In the
completely linear case, it was shown that the tuning rule
proposed by Hagood and von Flotow does not exactly lead
to an equal-peak design. To reach this optimum design, an
improvement of the tuning rule was proposed and validated
numerically. It was also demonstrated that equal peaks can
be maintained in a relatively large range of forcing ampli-
tudes when a nonlinear ETVA is attached to a nonlinear
primary system. These preliminary results are encourag-
ing for the further development of the concept of nonlinear
ETVA.
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