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ABSTRACT 

The paper discusses some aspects of modeling 
the wake-induced vibrations of the bundle 
conductors in transmission lines.  

The wake coupling between subconductors is 
modeled with the modified Simpson’s approach. In 
order to apply this model to the analysis of power 
transmission line (PTL), a modal representation of 
a span could be used. In present paper we study 
how application of Dynamic Reduction (Component 
Mode) technique may improve such analysis under 
finite-element approach. The present paper, to 
extent of authors’ knowledge, is the first where 
Component Mode method application is discussed 
to study the subspan oscillation. 

Finally, bundled conductors’ susceptibility to 
wake-induced vibrations is illustrated on an 
exemplary twin-bundle, three-subspan model. 
Effects of bundle parameters (initial subconductor 
spacing, frequency ratio, subconductor mass), and 
the means to account them when applying the 
component mode method are discussed.  
 

1. INTRODUCTION 
Studies of the wake-induced vibrations in 

electrical conductors have been actively conducted 
since mid 60’s and across seventies, giving rise to 
basic understanding of this spectacular 
phenomenon. Having successfully applied flutter 
theory to describe instability of leeward conductor 
in the bundle Simpson (1971/2) has established a 
range of parameters playing key role in triggering 
the oscillations. He also illustrated that undamped 
flutter theory, based on aerodynamics of the flow in 
the wake, provides necessary conditions of 
instability. 

Effect of the fluid field on the character of 
instability has been outlined in numerous studies.  
Wardlaw et al. (1975) measured the aerodynamic 
loads in the multiple bundles where a leeward 
conductor is subject to a superposition of wake 
loads from several conductors. Then the leeward  
conductor may be found in conditions similar to the 

tube patterns (e.g. heat exchangers) and studied by 
Price and Païdoussis (1984) and by Hémon (1999). 
In these works it was put special attention to 
accounting the time delay between the motions of 
neighboring cylinders. However, in bundle 
conductors accounting the time delay is not as 
significant, since the frequency of excited 
eigenmodes is quite low. As shown by  Cigada et al. 
(1995), quasi-stationary hypothesis of the flutter 
theory is fully applicable to the bundle conductors 
within the conditions, where wake-induced 
vibrations are observed: 

-wind speed: 7…15 m/s;  
-bundle separation 10… 20 conductor diameters;  
-conductor mass per unit length: 1.2 … 1.6 kg/m; 
- oscillation frequencies: 0.5 … 3 Hz. 
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Fig.1. (a) Typical mode of wake-induced oscillation 

in the conductor bundle;  
(b) Cable bundle’s model for study of the 
wake-induced instability 



2. MODEL OF WAKE-INDUCED 
INSTABILITY 

 
To recall the basic ideas, consider a two-degree-

of-freedom system shown in Fig.1. Here, the bundle 
is reduced to the fixed windward conductor and 
elastically suspended leeward cylinder. Oscillations 
of the latter around equilibrium position are 
described by following equation: 
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(1) 

 
Here,  
q stands for aerodynamic pressure, 2/( )kg m s⋅ ;  

,y z  are components of small displacement, m 
(dots denote time derivatives);  
 
d is the conductor’s diameter, m; 

V is the local wind speed at current position of 
leeward cylinder in the wake, m/s; 

, ,yy zz yzk k k are the terms of axial and coupled 
stiffnesses per unit length,  N/m, - see (3); 
m is the mass per unit length, kg/m; 

,D LF F  are the aerodynamic forces, N/m; 
, , , , ,D L Dy Ly Dz LzC C C C C C are aerodynamic 

coefficients (dimensionless) and their derivatives 
vs. displacement components (1/m-1).  

 
By equating right-hand part of (1) to zero, 

providing aerodynamic terms from wind tunnel test 
data and passing to dimensionless displacements, 
we may find numerically (via system’s roots) or 
semi-analytically (via Routh test functions T3 
(Simpson, 1971) or T2 (Kern, 1995)) the system’s 
eigenvalues whose real part vanishes to zero at the 
boundary of instability.  

On basis of (1) an important condition of 
undamped flutter theory may be obtained, that 
wake-induced instability of system is possible as the 
secondary diagonal terms in aerodynamic stiffness 
matrix become of opposite signs: 

0
Y ZL DC C <  (2) 

Being an indicator of unstable zones in the wake, 
this condition does not explain yet, why these zones 
are asymmetrical with respect to wind axis. As is 

known (EPRI, 1979), electrical conductor is prone 
to wake-induced vibrations only in the lower half-
wake. It was found after wind-tunnel tests and 
shown with the aid of (1), that asymmetry is 
imparted by static coupling between suspension’s 
modes, which in reality belongs to a blowback of 
conductor under the wind (Tsui, 1977):  
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Another important condition related to modal 

properties of structure is that initial (without wind) 
eigenfrequencies of two interacting eigenmodes 
should be separated (of the order 

/ ~ 1.06 1.1Z Yω ω … ). As shown in Fig. 2, this 
condition, fully appropriate to flutter instability, 
presumes that eigenfrequencies at zero wind must 
be distant enough so that, upon contribution of 
aerodynamic stiffness and damping terms, the 
unstable mode might arise.   

 

 
Fig. 2. Variation of 2-dof system eigenvalues on the   
wind speed. ‘+’ marker corresponds to the in-plane, 
or “vertical”, mode; ‘o’ marker – to out-of-plane, 
or “horizontal” mode.       

3. APPLICATION TO THE SUBSPAN 
INSTABILITY  

 
Above approach is, in general, easy to apply 

throughout various techniques, including finite-
element method. Its direct implementation to the 
model of the line span already makes it possible to 
obtain its complex modes whose real part can 
characterize if the span is stable or not. However, 



such an approach implies certain numerical 
difficulties, e.g. at the stage of extracting the 
modeshapes. Also, the span system is treated in a 
global manner, and results may hardly indicate what 
are stability conditions in a particular subconductor 
of a particular subspan.  

To give finite element model a more clear 
meaning in the stability study, we turn to the 
representation of structure on basis of Component 
Mode (or Craig-Bampton) method. This widespread 
technique for reduction of the order of finite-
element model in both linear and nonlinear  
problems is especially attractive in the scope of our 
study, due to possibility of compact representation  
of structure through its modal content. 

3.1 Component Mode method 

After extracting the normal modes of structure 
and expressing the internal degrees of freedom via 
modal coordinates, and boundary DOF via static 
modes, one obtains the  super element stiffness and 
mass matrices as: 
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The portions FFK  and  FFM  (call it modal 

matrices) are especially important to us, as they 
result from left-right product of original matrices of 
subconductor (normal degrees of freedom) and of 
normal eigenmodes: 

 
T

FF FFK Kφ φ=  (5) 
 
Known that only two normal modes contribute 

into the wake-induced flutter, we aim at  obtaining 
the stiffness and mass modal matrices of each 
subconductor of the order 2x2. Furthermore, we 
need from another subconductor only the 
information about its relative position, and only to 
the extent of obtaining aerodynamic stiffness and 
damping terms. At the stage of super element 
construction, the remaining part of line span may be 
omitted. However, we keep in parallel with the 
subconductor’s component modes, all necessary 
aerodynamic terms assembled in 2x2 matrices, aerC  
and aerK  for each subconductor and for each 
subspan.  

The dynamic reduction flowchart applied to a 
subconductor is shown in Fig. 3. The retained 
boundary nodes of subconductor are its span 
connections, as well as the points of fixation to the 
spacers. We look for the pairs of basic in-plane and 
out-of-plane subspan eigenmodes. Bringing them 

together, we come to the following modal stiffness 
matrix of subconductor :  
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Here, each 2x2 block represents the in-plane and 

out-of-plane stiffnesses of orthogonal modes in 
subspans.  

By analogy to the Simpson’s approach, we 
should take into account the stiffnesses’ cross-
coupling via  the blowback angle (3). However, 
instead of applying to diagonal stiffness matrix, the 
back-transformation can be done to the 
aerodynamic stiffness and damping terms:  
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- 
is a rotation matrix made with blowback angles in 
each subspan.  

Thus, we  keep the diagonal shape of structural 
stiffness matrix at this stage. Resulting system of 
equations for studying dynamic stability will now 
read (r denoting the vector of small displacements, 
in the sense of normal, or modal, coordinates for 
summary of subspans): 
 

0FF aer aer FFM r C r K K r⎡ ⎤+ + + =⎣ ⎦�� �  (7) 
 
3.1.1 Account of spacer flexibility  
Matrix of subconductor’s component modes, 

obtained via the super element provides necessary 
information  for stability study but is always 
diagonal. From the modeling point of view, 
diagonal matrix indicates perfectly rigid spacers. If 
a flexible spacer or spacer-damper must be 
considered in the models, the approach is 
straightforward. The stiffness properties enter the 
matrix in order to couple respective degrees of 
freedom. Thus, we can proceed just in the same 
manner as in transfer matrix method forwarded by 



Rawlins (1977) and Claren et al. (1971).   
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Fig.3. Flowchart for extraction of aerodynamic and 
modal  matrices to equation (7). 

4. ANALYSIS EXAMPLE 
Consider a span made of a bundle of two 

conductors. The span length is 120 m; conductor is 
ASTER-570 (diameter 30.5 mm ) Initial tension in 
subconductors is 7.55 kN.  

Initial separation of subconductors in the bundle 
was 10 diameters (in horizontal) and –2.2 diameters 
in vertical direction, so that leeward conductor is 
found in unstable position. However, the wind 
velocity was selected not too high  (10 m/s). 

 
The bundle is composed of three subspans. In 

basic case all subspans are 40 m long. We shall vary 
the position of  spacers in a way that the length of a 
middle subspan will remain constant.  

Following above chart, we compute in the 
beginning of each case the bundle’s equilibrium 
position to obtain the generalized 2x2 aerodynamic 
matrices. We then re-compute the bundle’s static 
position without the wind, however, we retain the 
tension in subconductors obtained in previous stage. 
This involves a certain simplification to the strained 
state (and, thus, modeshape) of subconductor which 
does have appropriate tension, T’, but not the 
appropriate sag. In the future work we plan to 
calculate it more precisely.  

 
Finally, the tangent stiffness and mass matrices 

are extracted for eigenvalue computation over the 

subconductor. In fact, as we look for unstable 
modes of leeward subconductor only, the rest of 
structure is omitted from super element.  After 
generation of super element, we keep its modal part 
while fixing all attachment points to  the spacers 
and retaining necessary number of modes. In this 
case, for example, we proceed with an eigenvalue 
problem of sixth order for stability study.  

 
Summary of analysis cases is presented in the 

Table below. 

 
 

 

Fig.4. Variation of real part of in-plane mode in 
subspans.  

Shown in Fig. 4 are the damping values 
corresponding to in-plane modes (in fact, those real 
parts uniquely provide instability to the bundle just 
as shown in Fig. 2). Each line corresponds to an 
appropriate analysis case (see the Table above). 
Each point refers to the subspan. Abscissas indicate 
the spacers’ coordinate (except ‘3”).  

The case of equal subspans is always avoided in 
practice, however, it is quite illustrative. The slight 
difference in span lengths gives rise to disbalance in 
values of damping. This image also indicates one 
drawback of method: because of higher modes, the 
eigenfrequencies for a shorter subspan were left 
apart and, instead of them, higher modes in adjacent 

Subspan Length, m 
No. case no.1 no.2 no.3 

1 40 40 40 
2 35 40 45 
3 30 40 50 
4 25 40 55 
5 20 40 60 



spans appeared (they were excluded from study). 
The direct way to identify the lacking modes is to 
keep some more eigenmodes in the subconductor 
super-element.  

5. CONCLUSIONS 
Further development shall include the inter-

subspan coupling via transfer matrix technique; 
studies of the connection to the spacer-damper; 
improved account of wind loads at the stage of line  
span stiffness matrix generation prior to extraction 
of subconductor's super element; and study of the 
reference case presented by Hearnshaw (1974). At 
present, the basic approaches for handling the cable 
model by Component Mode technique are 
established and first successful testings have been 
done.  
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