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ABSTRACT

The paper discusses some aspects of modeling
the wake-induced vibrations of the bundle
conductors in transmission lines.

The wake coupling between subconductors is
modeled with the modified Simpson’s approach. In
order to apply this model to the analysis of power
transmission line (PTL), a modal representation of
a span could be used. In present paper we study
how application of Dynamic Reduction (Component
Mode) technique may improve such analysis under
finite-element approach. The present paper, to
extent of authors’ knowledge, is the first where
Component Mode method application is discussed
to study the subspan oscillation.

Finally, bundled conductors’ susceptibility to
wake-induced vibrations is illustrated on an
exemplary twin-bundle, three-subspan model.
Effects of bundle parameters (initial subconductor
spacing, frequency ratio, subconductor mass), and
the means to account them when applying the
component mode method are discussed.

1. INTRODUCTION

Studies of the wake-induced vibrations in
electrical conductors have been actively conducted
since mid 60’s and across seventies, giving rise to
basic  understanding  of this  spectacular
phenomenon. Having successfully applied flutter
theory to describe instability of leeward conductor
in the bundle Simpson (1971/2) has established a
range of parameters playing key role in triggering
the oscillations. He also illustrated that undamped
flutter theory, based on aerodynamics of the flow in
the wake, provides necessary conditions of
instability.

Effect of the fluid field on the character of
instability has been outlined in numerous studies.
Wardlaw et al. (1975) measured the aerodynamic
loads in the multiple bundles where a leeward
conductor is subject to a superposition of wake
loads from several conductors. Then the leeward
conductor may be found in conditions similar to the

tube patterns (e.g. heat exchangers) and studied by
Price and Paidoussis (1984) and by Hémon (1999).
In these works it was put special attention to
accounting the time delay between the motions of
neighboring cylinders. However, in bundle
conductors accounting the time delay is not as
significant, since the frequency of excited
eigenmodes is quite low. As shown by Cigada et al.
(1995), quasi-stationary hypothesis of the flutter
theory is fully applicable to the bundle conductors
within  the conditions, where wake-induced
vibrations are observed:

-wind speed: 7...15 m/s;

-bundle separation 10... 20 conductor diameters;

-conductor mass per unit length: 1.2 ... 1.6 kg/m;

- oscillation frequencies: 0.5 ... 3 Hz.

Fig.1. (a) Typical mode of wake-induced oscillation
in the conductor bundle;
(b) Cable bundle’s model for study of the
wake-induced instability



2. MODEL OF WAKE-INDUCED
INSTABILITY

To recall the basic ideas, consider a two-degree-
of-freedom system shown in Fig.1. Here, the bundle
is reduced to the fixed windward conductor and
elastically suspended leeward cylinder. Oscillations
of the latter around equilibrium position are
described by following equation:
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Here,
q stands for aerodynamic pressure, kg /(m-s®);

y, z are components of small displacement, m
(dots denote time derivatives);

d is the conductor’s diameter, m;

V is the local wind speed at current position of
leeward cylinder in the wake, m/s;

kyy, kzz ) kyz are the terms of axial and coupled

stiffnesses per unit length, N/m, - see (3);
m is the mass per unit length, kg/m;

Fo, F_ are the aerodynamic forces, N/m;

G, G, Gy, Cy, Cp, €, are aerodynamic

coefficients (dimensionless) and their derivatives
vs. displacement components (1/m™).

By equating right-hand part of (1) to zero,
providing aerodynamic terms from wind tunnel test
data and passing to dimensionless displacements,
we may find numerically (via system’s roots) or
semi-analytically (via Routh test functions T;
(Simpson, 1971) or T, (Kern, 1995)) the system’s
eigenvalues whose real part vanishes to zero at the
boundary of instability.

On basis of (1) an important condition of
undamped flutter theory may be obtained, that
wake-induced instability of system is possible as the
secondary diagonal terms in aerodynamic stiffness
matrix become of opposite signs:

C,Cp, <0 @
Being an indicator of unstable zones in the wake,

this condition does not explain yet, why these zones
are asymmetrical with respect to wind axis. As is

known (EPRI, 1979), electrical conductor is prone
to wake-induced vibrations only in the lower half-
wake. It was found after wind-tunnel tests and
shown with the aid of (1), that asymmetry is
imparted by static coupling between suspension’s
modes, which in reality belongs to a blowback of
conductor under the wind (Tsui, 1977):
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Another important condition related to modal
properties of structure is that initial (without wind)
eigenfrequencies of two interacting eigenmodes
should be separated (of  the  order

®, o, ~1.06...1.1). As shown in Fig. 2, this

condition, fully appropriate to flutter instability,
presumes that eigenfrequencies at zero wind must
be distant enough so that, upon contribution of
aerodynamic stiffness and damping terms, the
unstable mode might arise.
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Fig. 2. Variation of 2-dof system eigenvalues on the
wind speed. ‘+’ marker corresponds to the in-plane,
or “vertical”’, mode; ‘0’ marker — to out-of-plane,
or ““horizontal” mode.

3. APPLICATION TO THE SUBSPAN
INSTABILITY

Above approach is, in general, easy to apply
throughout various techniques, including finite-
element method. Its direct implementation to the
model of the line span already makes it possible to
obtain its complex modes whose real part can
characterize if the span is stable or not. However,



such an approach implies certain numerical
difficulties, e.g. at the stage of extracting the
modeshapes. Also, the span system is treated in a
global manner, and results may hardly indicate what
are stability conditions in a particular subconductor
of a particular subspan.

To give finite element model a more clear
meaning in the stability study, we turn to the
representation of structure on basis of Component
Mode (or Craig-Bampton) method. This widespread
technique for reduction of the order of finite-
element model in both linear and nonlinear
problems is especially attractive in the scope of our
study, due to possibility of compact representation
of structure through its modal content.

3.1 Component Mode method

After extracting the normal modes of structure
and expressing the internal degrees of freedom via
modal coordinates, and boundary DOF via static
modes, one obtains the super element stiffness and
mass matrices as:
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The portions K. and M. (call it modal

matrices) are especially important to us, as they
result from left-right product of original matrices of
subconductor (normal degrees of freedom) and of
normal eigenmodes:

KFF = ¢T Kee (5)

Known that only two normal modes contribute
into the wake-induced flutter, we aim at obtaining
the stiffness and mass modal matrices of each
subconductor of the order 2x2. Furthermore, we
need from another subconductor only the
information about its relative position, and only to
the extent of obtaining aerodynamic stiffness and
damping terms. At the stage of super element
construction, the remaining part of line span may be
omitted. However, we keep in parallel with the
subconductor’s component modes, all necessary

aerodynamic terms assembled in 2x2 matrices, C,,,

and K, for each subconductor and for each

subspan.

The dynamic reduction flowchart applied to a
subconductor is shown in Fig. 3. The retained
boundary nodes of subconductor are its span
connections, as well as the points of fixation to the
spacers. We look for the pairs of basic in-plane and
out-of-plane subspan eigenmodes. Bringing them

together, we come to the following modal stiffness
matrix of subconductor :

K _O 0 0
0 K,
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Here, each 2x2 block represents the in-plane and
out-of-plane stiffnesses of orthogonal modes in
subspans.

By analogy to the Simpson’s approach, we
should take into account the stiffnesses’ cross-
coupling via the blowback angle (3). However,
instead of applying to diagonal stiffness matrix, the
back-transformation can be done to the
aerodynamic stiffness and damping terms:

~ T
Caer = R CaerR (6)
a T
Kaer = R KaerR
Here,
cosy, —siny, 0 0
siny, Cosy,
R= 0
v cosy, —siny,
Y siny,  cosy, ||

is a rotation matrix made with blowback angles in
each subspan.

Thus, we keep the diagonal shape of structural
stiffness matrix at this stage. Resulting system of
equations for studying dynamic stability will now
read (r denoting the vector of small displacements,
in the sense of normal, or modal, coordinates for
summary of subspans):

Mepf +Copef +| Koy + K Jr=0 @)

3.1.1 Account of spacer flexibility

Matrix of subconductor’s component modes,
obtained via the super element provides necessary
information  for stability study but is always
diagonal. From the modeling point of view,
diagonal matrix indicates perfectly rigid spacers. If
a flexible spacer or spacer-damper must be
considered in the models, the approach is
straightforward. The stiffness properties enter the
matrix in order to couple respective degrees of
freedom. Thus, we can proceed just in the same
manner as in transfer matrix method forwarded by



Rawlins (1977) and Claren et al. (1971).
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Fig.3. Flowchart for extraction of aerodynamic and
modal matrices to equation (7).

4. ANALYSIS EXAMPLE

Consider a span made of a bundle of two
conductors. The span length is 120 m; conductor is
ASTER-570 (diameter 30.5 mm ) Initial tension in
subconductors is 7.55 kN.

Initial separation of subconductors in the bundle
was 10 diameters (in horizontal) and —2.2 diameters
in vertical direction, so that leeward conductor is
found in unstable position. However, the wind
velocity was selected not too high (10 m/s).

The bundle is composed of three subspans. In
basic case all subspans are 40 m long. We shall vary
the position of spacers in a way that the length of a
middle subspan will remain constant.

Following above chart, we compute in the
beginning of each case the bundle’s equilibrium
position to obtain the generalized 2x2 aerodynamic
matrices. We then re-compute the bundle’s static
position without the wind, however, we retain the
tension in subconductors obtained in previous stage.
This involves a certain simplification to the strained
state (and, thus, modeshape) of subconductor which
does have appropriate tension, T’, but not the
appropriate sag. In the future work we plan to
calculate it more precisely.

Finally, the tangent stiffness and mass matrices
are extracted for eigenvalue computation over the

subconductor. In fact, as we look for unstable
modes of leeward subconductor only, the rest of
structure is omitted from super element. After
generation of super element, we keep its modal part
while fixing all attachment points to the spacers
and retaining necessary number of modes. In this
case, for example, we proceed with an eigenvalue
problem of sixth order for stability study.

Summary of analysis cases is presented in the
Table below.

Subspan Length, m
No. case no.1l no.2 no.3
1 40 40 40
2 35 40 45
3 30 40 50
4 25 40 55
5 20 40 60
0.08 . . .
—=— Case 1 SPAN:
—— Case 2 1 2 3
006F | o Cases
—— Case 4
004} | = Caseb
= 1
Boo2 .
S 2 UNSTABLE
0
1/2 STABLE
0.02 N
1 1 Il 1 3
'0'0‘50 40 B0 80 100 120

Span length

Fig.4. Variation of real part of in-plane mode in
subspans.

Shown in Fig. 4 are the damping values
corresponding to in-plane modes (in fact, those real
parts uniquely provide instability to the bundle just
as shown in Fig. 2). Each line corresponds to an
appropriate analysis case (see the Table above).
Each point refers to the subspan. Abscissas indicate
the spacers’ coordinate (except “3”).

The case of equal subspans is always avoided in
practice, however, it is quite illustrative. The slight
difference in span lengths gives rise to dishalance in
values of damping. This image also indicates one
drawback of method: because of higher modes, the
eigenfrequencies for a shorter subspan were left
apart and, instead of them, higher modes in adjacent



spans appeared (they were excluded from study).
The direct way to identify the lacking modes is to
keep some more eigenmodes in the subconductor
super-element.

5. CONCLUSIONS

Further development shall include the inter-
subspan coupling via transfer matrix technique;
studies of the connection to the spacer-damper;
improved account of wind loads at the stage of line
span stiffness matrix generation prior to extraction
of subconductor's super element; and study of the
reference case presented by Hearnshaw (1974). At
present, the basic approaches for handling the cable
model by Component Mode technique are
established and first successful testings have been
done.
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