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Review
Glossary

Erlotinib: a pharmacological inhibitor that binds in a reversible fashion to the

ATP binding site of the EGFR receptor. This EGFR inhibitor showed a survival

benefit in the treatment of lung cancer in Phase III clinical trials. Erlotinib is

more effective in patients with EGFR activating mutations.

Gefitinib: the first EGFR inhibitor approved for the treatment of non-small cell

lung carcinoma. Similarly to erlotinib, this drug binds in a reversible fashion to

the ATP-binding site of the EGFR receptor.

Oncogenes: gene candidates coding for proteins involved in tumor develop-

ment. Many oncogenes are amplified or targeted by activating mutations to act

in a genetically dominant manner.

Paronychia: a bacterial or fungal infection of the hand or foot where the nail

and skin meet.
Oncogenic proteins cooperate to promote tumor devel-
opment and progression by sustaining cell proliferation,
survival and invasiveness. Constitutive epidermal
growth factor receptor (EGFR) and nuclear factor kb
(NF-kB) activities are seen in multiple solid tumors
and combine to provide oncogenic signals to cancer
cells. Understanding how these oncogenic pathways
are connected is crucial, given their role in intrinsic or
acquired resistance to targeted anticancer therapies. We
review molecular mechanisms by which both EGFR- and
NF-kB-dependent pathways establish positive loops to
increase their oncogenic potential. We also describe how
NF-kB promotes resistance to EGFR inhibitors.

Constitutive EGFR signaling in solid tumors
Oncogenic proteins (see Glossary) cooperate to efficiently
drive tumor development and progression. Cancer cells are
indeed characterized by a powerful signaling network
showing multiple connections to survive, proliferate and
to resist to targeted anticancer therapies. Constitutive
signaling from the EGF receptor (EGFR/HER1/ERBB1),
a protein of 170 kDa and a member of the ERBB family of
receptor tyrosine kinases (RTKs; Box 1), crucially promotes
cell survival, proliferation, and invasiveness [1]. A variety
of EGF peptides trigger EGFR dimerization and phosphor-
ylation of multiple tyrosine residues in its cytoplasmic tail.
Those phosphorylated EGFR residues provide docking
sites for cytoplasmic SRC homology 2 (SH2) and phospho-
tyrosine-binding (PTB) domain-containing proteins to
specifically trigger PKC, PI3K/AKT/mTOR, SRC, STAT
and RAS/RAF/MEK1/ERK1/2 activation (Figure 1) [2,3].

More than 100 EGFR-interacting proteins have been
described so far [4]. Among them is growth factor receptor-
bound protein 2 (GRB2) which binds to phosphorylated
tyrosines 1068, 1086, and 1148. RAS is subsequently
activated by phosphorylation, a modification that relies
on son of sevenless (SOS). Activated RAS binds to RAF,
and this interaction leads to mitogen-activated protein
kinase kinase 1 (MEK1) followed by extracellular signal-
regulated kinases 1/2 (ERK1/2) phosphorylations [5,6].
RAS activation also relies on the recruitment of the
SRC homology domain-containing adaptor protein C
(SHC) to phosphorylated EGFR [7]. The p85 regulatory
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subunit of phosphatidylinositol-3-kinase (PI3K), the ki-
nase SRC, and protein tyrosine phosphatases such as
PTP1B, SHP1, and SHP2 also associate with distinct
phosphorylated EGFR residues (Figure 1) [8]. EGFR
directly or indirectly (through JAK) activates signal trans-
ducer and activator of transcription (STAT) members.
EGFR phosphorylation also triggers STAT activation
through SRC as well as the activation of PI3K that subse-
quently promotes AKT activation. Activated AKT targets
multiple substrates, including mammalian target of rapa-
mycin (mTOR). Phosphoinositide-specific  phospholipase
Cg1 (PLCg1) binds to EGFR through its SH2 domain,
becoming activated and hydrolyzing phosphatidylinositol
4,5-bisphosphate to diacylglycerol (DAG) and inositol
trisphosphate (IP3). DAG then triggers the activation of
serine/threonine kinase protein kinase C (PKC) (Figure 1).
NF-kB is also activated through the IKK complex upon
EGFR phosphorylation.

Overexpression and activating mutations of EGFR,
which have been reported in up to 30% of solid tumors
(including breast, colorectal, lung, pancreatic, gastric, head
and neck cancer, and glioblastomas), generally correlate
with a poor prognosis [9]. A variety of solid tumors, includ-
ing lung carcinomas, are indeed dependent upon EGFR
activation, and this makes them sensitive to EGFR inhi-
bitors such as erlotinib or gefitinib (see [10] for a full
description of EGFR inhibitors) [11]. Some patients suffer-
ing from lung cancer are highly responsive to gefitinib
because of activating EGFR point mutations or in-frame
deletions (Figure 1) [12,13]. These genetic alterations
Polyubiquitination: a post-translational modification in which several copies of

7 kDa ubiquitin are bound to a protein substrate to create a polyubiquitin chain.

This covalent modification involves three sequential enzymatic reactions

catalyzed by the E1 (ubiquitin-activating), E2 (ubiquitin-conjugating), and E3

(ubiquitin ligase) enzymes [78].

Xerosis: a skin disease involving the integumentary system. Symptoms include

the peeling of the outer skin layer, itching, and skin cracking.
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Box 1. ERBB members

The ERBB receptors include the EGF receptor (EGFR, also named

HER1), ERBB2 (HER2/Neu), ERBB3 (HER3), and ERBB4 (HER4), and

belong to the family of type I receptor tyrosine kinases (RTK) [79].

ERBB receptors are mainly expressed in epithelial, mesenchymal,

and neuronal cells, as well as in their progenitors. The receptors

share an extracellular ligand-binding domain, a single membrane-

spanning region, and a cytoplasmic domain that includes a

juxtamembrane domain, a region harboring an intrinsic tyrosine

kinase activity, as well as a C-terminal domain [80]. ERBB receptors

are bound by EGF-family peptides. These ligands include EGF,

transforming growth factor (TGF)-a, amphiregulin (AR), and epigen

(EPG) which bind to EGFR; b-cellulin (BTC), heparin-binding EGF

(HB-EGF), and epiregulin (EPR) which bind to both EGFR and ERBB4;

and neuregulins (NRGs) such as NRG-1 and NRG-2 that are known

to bind to both ERBB3 and ERBB4, as well as NRG-3 and NRG-4

acting as ligands for ERBB4 only [79,80]. NRG-1 has several isoforms

(type I NRG-1, also named ‘heregulin’, to type VI NRG-1). ERBB2

does not directly bind to any of these peptides, whereas ERBB3

is devoid of any strong kinase activity and only signals when bound

to other ERBB members.
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target the cytoplasmic domain of EGFR in lung adenocar-
cinomas, while, in contrast, mutations in glioblastomas
showing constitutive EGFR signaling target the extracel-
lular domain of this receptor [14,15]. Exons 18–21 of
the tyrosine kinase domain of EGFR harbor all key
mutations. About 40% of genetic alterations found in
highly-responsive patients are in exon 21, and the most
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common is L858R. Some in-frame deletions in exon 19
(DE746-A750 as well as other deletions in this exon)
account for about 46% of the reported EGFR genetic altera-
tions found in highly-responsive patients. Point mutations
in exon 18 (G719A, G719S, and G719C) have been
described in about 1% of those patients. Less-frequent
EGFR mutations underlying drug sensitivity or resistance
have been described elsewhere [16,17].

The therapeutic effectiveness of EGFR inhibitors has
been disappointing due to the emergence of resistant
cancer cells. Virtually all patients who initially respond
to EGFR inhibitors become resistant to these drugs as a
result of acquired EGFR mutations [18]. The most clinical-
ly relevant EGFR mutation found in 50% of the cases
showing acquired resistance to EGFR inhibitors (gefitinib
and erlotinib) is the T790M mutation located in exon 20
(Figure 1) [19]. This mutation, which is located within the
ATP-binding site of the kinase domain, causes steric hin-
drance for access of the inhibitor to the cleft owing to the
bulkiness of the methionine sidechain [20]. The use of
irreversible inhibitors of the EGFR kinase activity to treat
patients harboring this mutation is an attractive thera-
peutic approach, and has prompted the search for new
EGFR inhibitors that specifically target the EGFR T790M
mutation. Several molecules have been identified that
are more specific for this mutated EGFR than for the wild
type receptor [21].
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Box 2. The NF-kB family of transcription factors

NF-kB proteins, which include RelA (also named p65), RelB, and c-

Rel, share a N-terminal Rel homology domain (RHD) that is required

for homo- and heterodimerization and for binding to sequence-

specific DNA-binding sites in the promoters of �200 target genes.

These NF-kB proteins harbor a C-terminal transactivating domain

(TAD). NF-kB proteins also include p50 and p52, which are

generated from precursors NF-kB1/p105 and NF-kB2/p100. Both

p50 and p52 lack any TAD and therefore rely on other members to

drive gene expression of NF-kB-target genes. In unstimulated cells,

NF-kB proteins are sequestered in the cytoplasm through binding to

inhibitory molecules whose prototype is IkBa [81]. Other inhibitory

molecules include p100, p105, IkBb, and IkBe, as well as BCL-3, IkBz,

and IkBNS. IkB proteins as well as p100 and p105 bind to NF-kB

dimers through multiple ankyrin repeats. Stimulation with a variety

of stimuli, such as proinflammatory cytokines (e.g., TNFa and IL-1b),

Toll-like receptor ligands [e.g., lipopolysaccharide (LPS) and double-

stranded RNA (dsRNA)], triggers NF-kB activation through the so-

called ‘classical’ or ‘canonical’ pathway. This signaling pathway

leads to the IKK complex, composed of both kinases IKKa and IKKb

assembled by the scaffold protein NEMO/IKKg. The IKK complex

phosphorylates IkBa on N-terminal serines, and this triggers its

degradative polyubiquitination through the proteasome. NF-kB

dimers (mainly p50/p65 and p50/c-Rel) are consequently released

and translocated to the nucleus to drive gene transcription of

candidates involved in innate immunity, inflammation, proliferation,

and survival. Growth factors can also trigger the activation of the

IKK complex through signaling pathways described in Figure 2 in

main text.

The ‘alternative’ or ‘non-classical’ NF-kB-activating pathway is

triggered by cytokines such as BAFF and lymphotoxin-b, and leads

to the activation of an IKKa homodimer, which phosphorylates

p100. This inhibitory molecule is subsequently processed to

generate p52. NF-kB dimers (p52/RelB) move into the nucleus to

drive the expression of candidates involved in adaptive immunity,

as well as in lymphoid organogenesis. The activation of all NF-kB

signaling pathways relies on the sequential phosphorylation of

multiple proteins, as well as on the polyubiquitination of key actors

through several types of chains, the most characterized being the

K48-linked chain, which triggers the degradation of its substrate or

both linear and K63-linked chains, which enhance protein–protein

interactions [82].
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EGFR point mutations are not the only mechanism by
which cancer cells are (or become) resistant to EGFR
inhibitors. Activation of other RTKs such as ERBB2/
HER2 also occurs in cells resistant to cetuximab, an
EGFR-targeting monoclonal antibody, which paves the
way for the dual inhibition of both EGFR and HER2 to
improve the clinical response [22]. Signaling from ERBB3/
HER3 is also specifically activated in epithelial malignan-
cies treated with EGFR inhibitors [23–25]. Although HER3
lacks intrinsic kinase activity, it nevertheless strongly
activates AKT signaling as a dimer with HER2 [26,27].
Therefore, a variety of pharmacological approaches, in-
cluding HER3-blocking antibodies, have been recently
developed to circumvent resistance [10,28]. It is currently
unclear whether the use of multiple ERBB inhibitors is the
best approach, or whether other types of inhibitors have to
be combined with them. In any case, dissecting all relevant
oncogenic pathways is of paramount importance to identify
new mechanisms underlying resistance to EGFR inhibi-
tors, and to define the best combination of specific drugs to
fight epithelial malignancies. This review will focus on
molecular mechanisms by which the transcription factor
NF-kB is activated upon EGFR activation, as well as on
NF-kB-dependent pathways underlying resistance to
EGFR inhibitors.

Molecular mechanisms linking EGFR signaling to NF-kB
activation
Growth factors promote NF-kB activation through ERBB
members, but the underlying mechanisms are only now
starting to be elucidated. The family of NF-kB transcrip-
tion factors are typically activated by proinflammatory
cytokines such as tumor necrosis factor (TNF)-a or IL-
1b, as well as by Toll-like receptor (TLR) ligands through
extremely well defined signaling cascades (Box 2) [29].
Early studies demonstrated that EGF triggers NF-kB
activation through the proteasome-mediated degradation
of the inhibitory molecule IkBa in estrogen receptor ERa-
negative breast cancer cells and in lung cancer-derived
cells [30,31]. Heregulin also triggers NF-kB activation
through the IKK complex in ERa-negative and ERBB2-
positive breast cancer cells [32]. In addition, constitutive
EGFR signaling leads to NF-kB activation through IkBa

phosphorylation on serines 32 and 36 in prostate cancer
cells [33].

Although it is now well established that EGF activates
NF-kB through the IKK complex (that includes both cata-
lytic subunits IKKa and IKKb as well as the scaffold
protein NEMO/IKKg), signaling molecules that link EGFR
activation to the IKK complex have only been recently
characterized (Figure 2). Distinct pathways have been
elucidated in detail, but it remains unclear whether they
are activated simultaneously or in a cell specific manner.
EGF stimulation in prostate and breast cancer cells, as
well as in EGFR-overexpressing glioblastoma-derived
cells, triggers PKCe monoubiquitination at Lys 321 in a
PLCg1-dependent manner [34]. PKCe monoubiquitination
relies on the E3 ligase RINCK1, but not on the linear
ubiquitin assembly complex (LUBAC) that includes
HOIL-1L and HOIP. Monoubiquitinated PKCe recruits
the IKK complex to the plasma domain through a physical
interaction with a ubiquitin-binding domain in the zinc
finger of NEMO/IKKg. PKCe then activates NF-kB
through IKKb phosphorylation at Ser 177. This pathway
ultimately drives tumor growth by inducing the expression
of pyruvate kinase 2 (PKM2), the enzyme involved in the
rate-limiting final step of glycolysis. The IKKb-phosphor-
ylating kinase TGFb-activating kinase 1 (TAK1) appears
to be dispensable for this pathway, meaning that EGF as
well as proinflammatory cytokines such as TNFa and IL-
1b activate NF-kB through distinct signaling pathways
that will nevertheless converge at the IKK complex [34].

EGF-dependent NF-kB activation in some breast and
lung cancer-derived cells also relies on the scaffold protein
caspase recruitment domain (CARD), membrane-associat-
ed guanylate kinase-like domain protein 3 (CARMA3; also
referred to as CARD10), and B cell lymphoma protein 10
(BCL-10) [35]. Interestingly, both CARMA3 and BCL-10
also promote GPCR- and PKC-dependent NF-kB activation
when complexed with mucosa-associated lymphoid tissue
lymphoma translocation gene 1 (MALT1), but it is currently
unclear whether MALT1 is actually required in EGF-de-
pendent IKK phosphorylation [36,37]. MALT1, as a subunit
of the CBM (CARD10–BCL-10–MALT1) complex, recruits
the E3 ligase TRAF6, which forms K63-linked polyubiquitin
387
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Figure 2. Molecular mechanisms by which EGFR activates NF-kB. EGF binding triggers EGFR phosphorylation and its association with the SOS–GRB2 protein complex. RAS

is subsequently recruited and activated at the cell membrane to promote MEK1 and ERK1/2 activation (not depicted), a pathway that relies on the guanine nucleotide

exchange catalytic activity of SOS. Constitutive EGFR-dependent NF-kB activation relies on SOS, which triggers IKKb activation, a pathway that does not require the

catalytic activity of SOS [39]. EGFR phosphorylation (P) also triggers PLCg1 activation, followed by DAG production and PKCe monoubiquitination (Ub) by the E3 ligase

RING finger protein that interacts with C kinase 1 (RINCK1) bound to HOIL-1L and HOIP. Monoubiquitinated PKCe associates with a ubiquitin-binding domain within the zinc-

finger motif of NEMO to recruit the IKK complex to the plasma membrane. PKCe can then phosphorylate IKKb to trigger NF-kB activation [34]. EGF-dependent NF-kB

activation in cancer cells also relies on the CBM complex that includes CARMA3 and BCL-10. This complex also includes MALT1, but it is currently unclear whether this

protein is required for NF-kB activation. The CBM complex activates IKKb through TRAF6, an E3 ligase known to generate K63-linked polyubiquitin chains bound by NEMO.

Signal transduction through the CBM complex relies on PKC activation, but the PKC isoform that triggers EGF-dependent IKK phosphorylation through this cascade has not

been characterized [35]. IKKb activation is required for IkBa phosphorylation, polyubiquitination, and degradation through the proteasome. NF-kB subsequently

translocates to the nucleus to drive the expression of its target genes.
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chains, to promote IKK activation through TAK1 in T
lymphocytes [38]. Because MALT1 and BCL-10 are poly-
ubiquitinated by TRAF6, they could be bound by NEMO/
IKKg in a TAK1-independent manner, a model that fits with
the reported dispensable role of TAK1 in EGF-dependent
IKKb phosphorylation [34]. Activation of the CBM complex
relies on PKC activation, but the PKC isoform that links
EGFR activation to CARMA3 has not been identified.
Whether PKCe fulfills this function remains to be demon-
strated.

An additional pathway that links EGFR activation to
NF-kB involves the guanine nucleotide exchange factor
SOS1 [39]. Upon EGF stimulation, SOS1 binds to phos-
phorylated EGFR through the adaptor protein GRB2,
which then triggers RAS activation at the plasma mem-
brane [40]. Interestingly, its GDP–GTP exchange activity,
known to be crucial for EGF-dependent MAP kinases
activation, is dispensable for NF-kB activation upon
EGF stimulation, and this supports the notion that
SOS1 may also act as a scaffold protein to transmit onco-
genic signals [39]. Nevertheless, signaling molecules that
link SOS1 to the IKK complex are totally unknown
(Figure 2).

These studies have convincingly demonstrated that
growth factors promote NF-kB activation through signal-
ing pathways whose initial steps are largely distinct from
those triggered by proinflammatory cytokines. These sig-
naling cascades are believed to crucially contribute to
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tumor development and progression through the expres-
sion of NF-kB-dependent genes that promote cell prolifer-
ation and survival.

Crosstalk between EGFR- and NF-kB-dependent
pathways through the transcriptional induction of
target genes
While growth factors trigger NF-kB-activating cascades
upon binding to ERBB members, the transcriptional induc-
tion of some NF-kB target genes also feeds back to impact
on EGFR-dependent signaling pathways. In this context,
KIAA1199 is transcriptionally induced by NF-kB proteins in
transformed keratinocytes as well as in breast cancer-
derived cells (Figure 3) [41,42]. The oncogenic human pap-
illomavirus (HPV) also positively regulates KIAA1199 gene
transcription through BCL-3 in cervical cancer cells [41].
KIAA1199 promotes EGFR stability by limiting its EGF-
dependent degradation in lysosomes, and therefore positive-
ly regulates EGFR signaling [41]. KIAA1199 actually limits
semaphorin 3A-dependent cell death by promoting EGFR
phosphorylation and as well as EGF-dependent epithelial–
mesenchymal transition (EMT) in cervical cancer cells
[41]. As such, KIAA1199 links NF-kB-dependent gene tran-
scription to EGFR signaling to sustain cell survival and
invasion [41]. Another example of positive correlation
between NF-kB and EGFR activities has been described
in head and neck squamous cell carcinomas (HNSCCs) in
which IKKa and/or b knockdown significantly decreased
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Figure 3. The NF-kB-induced protein KIAA1199 promotes EGFR stability and signaling and protects from semaphorin 3A-mediated cell apoptosis. Human papillomavirus

(HPV) infection in keratinocytes inhibits CYLD, a ubiquitin C-terminal hydrolase. As a result, the non-degradative K63-linked polyubiquitination of BCL-3, a p50-binding

protein, is enhanced, leading to its nuclear translocation. Nuclear BCL-3 drives KIAA1199 gene transcription. KIAA1199 binds to plexin A2 to limit semaphorin 3A-dependent

cell death, and also stabilizes EGFR to promote EGF-dependent SRC and ERK1/2 activation, and subsequent epithelial–mesenchymal transition (EMT) [41].
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EGFR mRNA and protein levels [43]. In contrast to this
NF-kB signaling pathway that positively regulates EGFR
signaling, EGFR expression is negatively regulated at
the transcriptional level by receptor-interacting kinase
(RIPK1), which is typically activated by proinflammatory
and NF-kB-activating cytokines such as TNFa [44]. RIPK1
indeed appears to interfere with Sp1 activity, a transcrip-
tion factor that promotes EGFR mRNA synthesis [44].
Therefore, multiple feedback loops involving the transcrip-
tional induction of target genes that link both EGFR and
NF-kB-dependent pathways have been described, even if
they do not systematically lead to the establishment of
positive loops.

NF-kB activation as a mechanism for resistance to EGFR
inhibitors
NF-kB-activating cascades promote resistance to chemo-
therapy through multiple mechanisms, including the tran-
scriptional induction of multidrug resistance gene-1
(MDR1) in colon cancer cells [45]. Recent studies have also
defined mechanisms by which resistance occurs through
crosstalk between EGFR- and NF-kB-dependent path-
ways. The tyrosine kinase FER, known to be activated
by EGFR and PDGFR upon ligand engagement, promotes
resistance to quinacrine, a drug with antimalarial and
anticancer effects, when overexpressed in prostate cancer
cells [46–48]. Mechanistically, FER binds to EGFR to
enhance its phosphorylation on tyrosine residues, which
leads to NF-kB activation through an AKT-independent
pathway [46].

An unbiased screen for oncogenic pathways underlying
resistance to EGFR inhibitors led to the identification of
multiple candidates involved in NF-kB signaling [49].
Indeed, an unbiased short hairpin RNA (shRNA)-based
high-throughput screen carried out in lung cancer-derived
H1650 cells insensitive to EGFR inhibitors led to the
identification of several candidates, many of which act in
NF-kB-activating cascades [49]. Consistent with a role of
NF-kB in the resistance to EGFR inhibitors, the genetic
or pharmacologic inhibition of NF-kB increased the sensi-
tivity to erlotinib in several models of EGFR-mutated lung
cancers. Moreover, decreased expression of the inhibitory
IkBa protein is associated with resistance to erlotinib and
is predictive of worse progression-free survival in patients
suffering from lung cancer [49]. Consistent with a role
of NF-kB as a mediator of resistance to EGFR inhibitors,
quinacrine overcomes resistance to erlotinib, at least by
decreasing the level of SSRP1, an active subunit of the
389
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facilitates chromatin transcription (FACT) complex that
promotes NF-kB transcriptional activity [50].

The crosstalk between EGFR- and NF-kB-activating
cascades is particularly relevant in tumor-initiating cells,
which crucially promote drug resistance [51,52]. Integrin
avb3-expressing tumor-initiating cells from breast, lung,
and pancreatic carcinomas are resistant to EGFR inhibi-
tors [53]. NF-kB activation contributes to this phenotype
because integrin avb3 drives tumor stemness and resis-
tance to EGFR inhibitors by interacting with Kirsten rat
sarcoma viral oncogene homolog GTPase (KRAS) through
galectin-3 to promote the sequential activation of both
GTPase v-Ral simian leukemia oncogene homolog B
GTPase (RALB) and TANK-binding kinase-1 (TBK1),
which then targets c-Rel, a NF-kB protein [53]. Interest-
ingly, this pathway does not require the binding of any
ligand to integrin avb3, demonstrating that resistance to
EGFR inhibitors can be cell autonomous.

Cell intrinsic mechanisms of resistance to anticancer
therapies have also been described in glioblastomas, the
most common malignant primary brain cancer of adults.
40–50% of glioblastomas show EGFR gene amplification
and/or mutations, which, in both cases, cause constitutive
EGFR signaling [15]. The most common activating EGFR
mutation (EGFRvIII) results from a deletion of exons 2–7
of the EGFR gene, which causes an in-frame deletion of
267 amino acids from the receptor in its extracellular
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domain. As a consequence, EGFRvIII cannot bind to any
ligand and is constitutively active [14]. EGFRvIII triggers
mTORC2 activation, a complex composed of the kinase
mTOR bound to unique regulatory proteins, including
Rictor and SIN1 [54]. mTORC2 signals to NF-kB through
an AKT-independent pathway to promote proliferation,
survival, and cisplatin resistance in glioblastomas [55]
(Figure 4). Although it is currently unclear whether this
pathway is specifically induced in glioma cells resistant
to EGFR inhibitors, this study nevertheless shows that
NF-kB also acts as a central player in chemotherapy
resistance in glioblastoma cells harboring constitutively-
active EGFR. EGFRvIII also activates NF-kB in glioma
cells by assembling a signaling platform with TNF recep-
tor-associated protein 2 (TRAF2), RIPK1, both the cIAP1
and cIAP2 (cellular inhibitor of apoptosis 1/2) E3 ligases,
as well as TAK1 [56]. RIPK1 becomes polyubiquitinated
in a K63-linked, non-degradative manner to trigger TAK1
and subsequent IKKb phosphorylation.

All these pathways occur in a cell autonomous manner,
but it is now increasingly obvious that the microenviron-
ment also provides NF-kB-activating signals to promote
resistance to EGFR inhibitors. TNFa, mainly synthesized
by tumor-associated macrophages upon activation of
TLR-dependent pathways, acts as a paracrine signal to
trigger NF-kB activation in glioma cells [57]. This pathway
involves the activation of the serine/threonine kinase
AK1
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atypical protein kinase C (aPKC) bound to the scaffold
protein p62 to induce the expression of proinflammatory
cytokines through NF-kB. Interestingly, another pool of
aPKC interacting with the scaffold protein Par6 is specifi-
cally activated upon EGF stimulation, and drives the
expression of another set of genes such as CD44 and
MMP9 (Figure 4). Targeting aPKC activity causes tumor
regression in EGFR kinase inhibitor-resistant glioblasto-
ma [57].

Combining EGFR and NF-kB inhibitors: the way to go?
The demonstration that NF-kB contributes to resistance to
EGFR inhibitors suggests that the simultaneous inhibition
of both EGFR and NF-kB activity might be a therapeutic
strategy to circumvent resistance. While tempting, it is
currently unclear whether patients would benefit from this
combination. Preclinical studies to treat HNSCCs have
been conducted to address this issue because both EGFR
and NF-kB activity are enhanced in a high percentage of
these malignancies [58]. The EGFR-targeting cetuximab
used in combination with radiation prolonged overall sur-
vival but failed to reduce the incidence of metastasis, and
the response rate with cetuximab administered alone is not
above 13% [59]. One mechanism underlying resistance to
cetuximab results from the expression of the EGFRvIII
mutant, which has a truncated ligand-binding domain, and
signals to Lyn, a member of the SRC family of kinases and
to STAT3 in up to 42% cases of HNSCC [60,61]. Although
the EGFR inhibitor gefitinib showed some response in
clinical trials of HNSCC by decreasing EGFR, MEK1,
and NF-kB p65 phosphorylation, it failed to interfere with
these oncogenic pathways in nonresponder patients
[62]. Therefore, there was a need to combine EGFR inhi-
bitors with other targeted therapies.

Bortezomib, a proteasome inhibitor, triggers cell apo-
ptosis by blocking NF-kB activation through IkBa stabili-
zation [63]. However, bortezomib showed limited clinical
efficacy in HNSCC because NF-kB activation through the
noncanonical pathway remained unchanged [64,65]. More-
over, bortezomib did not impact on other prosurvival path-
ways driven by STAT3 and ERK1/2 phosphorylation
[64]. Therefore, the combination of bortezomib with EGFR
inhibitors was expected to improve the clinical response. A
Phase I clinical trial was carried out with patients suffer-
ing from HNSCC to assess preclinical evidence for combin-
ing the EGFR inhibitor cetuximab with bortezomib and
radiation therapy [66]. This combination showed unexpect-
edly early progression due to EGFR stabilization, in-
creased prosurvival signaling, and enhanced cytokine
expression. Bortezomib attenuated the cytotoxic effects
of cetuximab and radiation by limiting EGFR degradation
through the proteasome [66]. Proteasome inhibition actu-
ally enhanced MAPK, AKT, and STAT3 prosurvival path-
ways through both EGFR-dependent and -independent
mechanisms [67]. These studies highlighted the need to
design new combinatorial approaches by using a more-
specific NF-kB inhibitor than bortezomib, which blocks the
degradation of IkBa as well as of numerous other proteins,
including key oncogenic products [68]. Interestingly, both
IKKa and IKKb are aberrantly activated in HNSCC, act
as mediators of NF-kB activation, and enhance EGFR
signaling in HNSCC [43]. Consistently, wedelactone, a
dual IKKa/b inhibitor, more effectively inhibited NF-kB
activation than MLN120b, a specific IKKb inhibitor
[43,69]. Moreover, 17-DMAG, a geldanamycin derivative
that inhibits the heat shock protein 90 kDa (HSP90), a
molecular chaperone involved in both IKKa/b- and EGFR-
dependent signaling cascades, was more effective at trig-
gering cell death than MLN120b alone [43,70]. Therefore,
these data demonstrated why specific IKKb inhibitors
have not led to expected efficacies in preclinical studies,
and suggest that combining dual IKKa/b and EGFR inhi-
bitors would be more successful, at least for epithelial
malignancies.

Does NF-kB play any role in the toxicity of EGFR
inhibitors?
Although NF-kB activation limits the clinical response to
EGFR inhibitors, it is currently unclear whether the side
effects commonly reported with these drugs would still
occur by targeting NF-kB. Cutaneous side effects are often
described in patients treated with EGFR inhibitors (mono-
clonal antibodies or small-molecule inhibitors) [71,72]. They
include hair loss, acneiform eruption, paronychia, and xero-
sis. Mechanistically, these symptoms result from the inflam-
mation-prone response of keratinocytes to early infiltration
of macrophages and mast cells into the skin, as well as
from an increased percentage of circulating granulocytes
and platelets, but decreased percentage of lymphocytes
in the plasma [73,74]. The genetic inactivation of EGFR
in the epidermis mimics those symptoms, suggesting that
EGFR expression maintains skin immune homeostasis
[73]. EGFR-deficient keratinocytes overexpress a variety
of chemokines and cytokines (such as IL-1b, TNFa, and
IL-6) that are known to be regulated by NF-kB-dependent
pathways. However, the genetic inactivation of single proin-
flammatory pathways (e.g., TNFR1/R2, Myd88) did not
reverse the induction and maintenance of the skin pheno-
type in the EGFR-deficient mouse model [73,74]. Therefore,
it is unlikely that targeting NF-kB alone will improve
cutaneous toxicity seen with EGFR inhibitors.

Concluding remarks and future perspectives
Recent studies have elucidated the molecular mechanisms
by which targeted therapies lead to resistance in epithelial
malignancies displaying constitutive signaling from ERBB
receptors. The simultaneous administration of specific
inhibitors is the most logical approach to treat tumors
with intrinsic or acquired resistance. Combining ERBB
and NF-kB inhibitors is very promising, given the key role
of NF-kB in tumors resistant to EGFR inhibitors; however,
key issues remain unresolved (Box 3). New irreversible
EGFR inhibitors are currently being tested to treat lung
tumors harboring the T790M mutation. Given the genomic
plasticity of many aggressive solid tumors, including lung
carcinomas, it is likely that new oncogenic mutations and/
or activation of signaling pathways will occur in patients
treated with these irreversible EGFR inhibitors. Whether
NF-kB activation contributes or not to this resistance
remains to be clarified. In addition, it is currently unclear
which NF-kB inhibitor should be used in combination with
ERBB inhibitors for the best clinical response. A variety of
391



Box 3. Outstanding questions

� What is the best combination of EGFR and NF-kB inhibitors to use

in the clinic?

� Does NF-kB promote resistance in solid tumors harboring the

T790M mutation?

� Does the simultaneous inhibition of HER2 and HER3 lead to

resistance, and, if so, does NF-kB play a role?

� Does the simultaneous inhibition of both NF-kB and EGFR-

dependent signaling pathways in patients improve cutaneous

side effects typically seen with EGFR inhibitors?

� The ligand-induced versus constitutive EGFR-dependent signaling

may rely on partially distinct signaling complexes, but how can

we translate these findings to the clinic?
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IKK inhibitors have been developed over the past 15 years,
and some have been used in clinical trials [75–77]. Howev-
er, none of them have been approved so far, at least because
some doubts on the interest of targeting IKKb itself were
raised [77]. As recent studies carried out in HNSCC indi-
cated that specific IKKb inhibitors do not totally block NF-
kB activation, it is likely that other NF-kB inhibitors will
need to be tested in combination with ERBB inhibitors in
all epithelial malignancies showing constitutive signaling
from ERBB receptors [43]. Being over-specific (i.e., by
targeting only IKKb) may not be the best strategy. Finally,
combining EGFR or HER2 inhibitors with HER3 blocking
antibodies to circumvent resistance hold promise for the
future, but it is also likely that some cancer cells will
ultimately escape from this therapeutic strategy. If so,
the potential role of NF-kB in these resistant cells will
need to be explored.
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