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Abstract

There are many ways to model properties of the brain from magnetic
resonance imaging (MRI) data. One acquisition technique, known as
diffusion-weighted imaging (DWI), can map the speed and direction of
water diffusion within the brain. This work explores the quantitative
potential of DWI, in combination with other neuroimaging modalities,
for in vivo modelling of the human brain.

Fiber tractography from DWI can be used to construct a wiring diagram
of the brain (or connectome) and identify connectivity patterns between
regions. To explore the utility of connectome modelling, we constructed
brain networks from healthy subjects carrying known genetic variations.
Using machine learning, we demonstrated high classification accuracy
between subjects with different genotypes using only their connectomes.

Next, we tested whether fiber track density images could be used to de-
tect early pathological effects in patients with Parkinson’s disease. We
found increases in track density in disease-relevant regions of the white
matter, including the nigrostriatal pathway, used unbiased whole-brain
statistical testing. This result is extremely encouraging, as axonal degen-
eration within this area is challenging to identify with standard magnetic
resonance imaging contrasts.

Finally, a finite element modelling (FEM) approach was developed for
solving the electroencephalography (EEG) forward problem. Electrical
conductivity tensors were estimated from DWI in order to represent the
heterogeneous conductivity profile of the white matter. When tested
against the analytical solution, this FEM method proved more reliable
than the current state-of-the-art alternative.

Advanced brain modelling from DWI can clearly provide lucrative results.
These methods have been open-sourced for use by the community.





Propositions
In complement of the Ph.D. thesis
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1. Genetic bases shape the human connectome.

2. Most polymorphisms are subtle and may be undetectable by neuroimaging.

3. Polymorphisms in genes affecting ubiquitous neurotrophic agents can produce
macroscale structural changes in the brain.

4. Axonal damage from Lewy neurites may be the earliest sign of Parkinson’s
disease, preceding somatic atrophy in the substantia nigra.

5. In vivo identification of Parkinsonian neurodegeneration with advanced dif-
fusion imaging is possible and may be a viable alternative to presynaptic
dopaminergic radiotracers.

6. Neural source localization methods should not overlook the conductivity pro-
file of the white matter.

7. Accurate finite element head modeling can improve both passive and active
neuroscience methods.

8. Your project is not unique: release your methods early and let everyone know
what you are working on.

9. Open and distributed software development should be embraced.

10. Cloud and GPU computing tools should be taught to neuroscientists.

11. Peer review is the worst system, except for all the others.
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Glossary

18F-DOPA

[18F]-L-dihydroxyphenylalanine - Similar to L-DOPA, it is a dopamine precursor.
Its uptake in the brain can be used to assess presynaptic dopamine terminal
function. 47

circadian

Biological, mental, and behavioural changes that occur in an approximate 24-
hour cycle. Circadian ⇠ circa + dia ⇠ about + day. 42

Dipy

Dipy is a free and open source Python software package for diffusion magnetic
resonance imaging (dMRI) analysis.
Available at: http://nipy.sourceforge.net/dipy/ 13

dyskinesia

Involuntary muscle movements, tremors, and/or other uncontrollable move-
ment. 47

Freesurfer

A set of tools for analysis and visualization of structural and functional brain
imaging data. FreeSurfer contains a fully automatic structural imaging stream
for processing cross-sectional and longitudinal data.
Available at: https://surfer.nmr.mgh.harvard.edu/ 19, 54

GetDP

GetDP is a general finite element solver for discrete problems defined by the
user (e.g. electrostatics, magnetodynamics).
Available at: http://www.geuz.org/getdp/ 54
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long-term potentiation

Enhanced signalling between neurons caused by their simultaneous stimula-
tion. 41, 42

MNE

MNE is a software package for processing magnetoencephalography (MEG)
and EEG data. A Python package for further analysis, called MNE-Python, is
also available.
Available at: http://martinos.org/mne 35

MPTP

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine - a neurotoxin that destroys dopamin-
ergic neurons in the substantia nigra. 49

Nipype

Nipype is a Python project that provides a uniform interface to existing neu-
roimaging software and facilitates interaction between these packages within
a single workflow.
Available at: http://nipy.sourceforge.net/nipype/ 54

SimNIBS

SimNIBS is a MATLAB and UNIX shell script package designed for realisti-
cally calculating the electric field induced by transcranial magnetic stimulation
(TMS).
Available at: http://simnibs.org/ 54–56

single-nucleotide polymorphism

Changes from one nucleotide (e.g. G, T, A, C) to another at a specific codon
(i.e. position in the genetic code) of a certain gene. 42, 43, 45

striatum

Subcortical collection of structures. It is made up of the caudate nucleus and
the putamen. 47

substantia nigra

A largely dopaminergic region in the midbrain important for movement and
reward signalling. 47
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the FMRIB Software Library

FSL is a general library for analyzing, transforming, and manipulating MRI
data.
Available at: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ 48
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Introduction

The primary aim of this research was to combine two neuroimaging modalities:
diffusion-weighted magnetic resonance imaging (DWI) and electroencephalography
(EEG).

A relatively new method, DWI allows researchers to quantify the mobility of
water molecules within biological tissue. Diffusion of water molecules is naturally
hindered by cellular structures as well as other micro and macrostructural factors.
This technique allows researchers to trace, at a large scale, the neural tracts that
transport information throughout the brain.

EEG, which is one of the oldest methods in functional neuroscientific research,
monitors electrical signals produced by synaptic activity. Unlike MRI methods, EEG
does not create an image of the brain. Rather, it records electrical activity over time
through electrodes placed on the scalp. A key issue modern day researchers face
with EEG is identifying the origin of interesting physiological signals. Providing
tools to address this problem was one aim of this work. The secondary focus of
this work was to develop and explore advanced diffusion-weighted imaging analysis
techniques for use in future neuroscientific studies.

Chapter 1 provides a brief review of the physics, biology, and practical issues
related to diffusion-weighted imaging. Chapter 2 covers the basics of EEG and the
problem of source localization. The following three chapters describe a set of studies
performed in parallel:

I. The first study assesses genetic influences on the wiring of the human brain
using network analysis methods.

II. The second study tests whether the quantification of fiber tractogram models
can be used as a marker for Parkinson’s disease.

III. The third study describes a method for creating accurate EEG leadfield ma-
trices - a key step in localizing neuronal sources - using head models with
DWI-derived conductivity tensors.

1



2 Introduction

The full detailed manuscripts of these studies are available in Appendices A, B,
and C. For the interested reader, these manuscripts offer in-depth descriptions of the
methods, results, and implications of these studies. In Chapters 3, 4, and 5, there is
an overview of each study and a discussion of topics not present in the manuscripts.

The thesis closes by discussing the current state of the neuroimaging field in
relation to methodological reproducibility (Chapter 6) and summarizing the work
performed (Concluding remarks).



C H A P T E R 1

Diffusion-weighted imaging

Diffusion is the process of mass transport in a medium from areas of high concen-
tration to those of low concentration. Molecular diffusion describes the random
movement of molecules, also known as Brownian motion, in the absence of a con-
centration gradient. Molecular diffusion rates depend principally on the size of the
molecule and the temperature of the medium. For example, the diffusion coefficient
(or diffusivity) of water DH2O,25�C is 2.3 x 10�3 mm2/s at 25� Celsius. Diffusivity
is expressed as an area (mm2) per unit time (s) because it is proportional to the
particles’ mean velocity and mean free path (i.e. the distance travelled between
collisions).

Diffusion-weighted imaging (DWI) is a type of MRI technique in which successive
applications of strong magnetic gradient pulses are used to dephase and rephase the
spins of protons. Spins that are static will be fully refocused whereas spins that have
moved will rephase less. Regions in which there is a higher rate of water motion will
produce less signal than those in which there is a lower rate. For further insight into
diffusion MRI, the reader is referred to [1].

The acquired diffusion signal from a pulsed gradient technique depends on char-
acteristics other than the diffusion coefficient. Specifically, scanner and sequence-
specific variables such as the gyromagnetic ratio, applied gradient pulse strength,
time between pulses, and pulse duration are directly related to the signal. For sim-
plification, these variables are bundled into an abstract measure known as the “b
value”. The b value is linked to the acquired diffusion-weighted signal (S) and the
unweighted signal (S0) by Equation 1.1:

S(b) = S0e
�bADC (1.1)

The variable ADC in Equation 1.1 is the apparent diffusion coefficient, which is
included because diffusion in biological tissue is influenced by various factors (e.g.

3



4 Chapter 1. Diffusion-weighted imaging

cellular structure). Figure 1.1 shows brain images acquired with varying levels of
diffusion weighting.

Diffusion imaging acquisitions typically apply the pulsed gradient sequence de-
scribed above along many unique gradient directions [2]. In this manner the ac-
quired signal reflects the rate of diffusion of water molecules within each voxel
along the direction of the applied magnetic field. By mapping the diffusion profile in
each direction one can infer properties about the macro and microscopic structure of
the tissue being studied. For an extensive review of diffusion-weighted imaging, the
reader is referred to [3] and [4]. In practice, most neuroimaging researchers tend
to care about two things: (i) the applied b value, and (ii) the number of gradient
directions (or “b vectors”) the data was acquired with.

Figure 1.1: Example weighted and unweighted images. Three images of a patient
with multiple sclerosis. Images were acquired at b=0, b=1000 s/mm2, and b=2500
s/mm2. The two diffusion-weighted images are weighted along similar gradient
directions (approximately [-0.8, -0.40, 0.25]).

1.1 Modelling diffusion profiles

The analysis of diffusion-weighted images generally requires the selection of a model
to represent the diffusion profile in each voxel. There are alternative methods,
though, such as diffusion spectrum [5] and q-ball [6] imaging, which do not re-
quire the choice of a model. The typical choice is a tensor, and tensors can be fit to
the diffusion signal in each voxel using a variety of different methods [7, 8]. Briefly,
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the goal is to solve Equation 1.2 for D.

S(g, b) = S0e
�bgTDg (1.2)

Where D is a tensor defined by Equation 1.3, and g = [gx, gy, gz] is the gradient
direction defined as a vector.

D =

0

@
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

1

A (1.3)

It is important to note that this tensor is symmetric about the diagonal (D =

D

T ). Because the diffusion coefficient is a real and positive-valued function, the
eigenvalues of this matrix must also be positive and real values. The diffusion tensor
is often referred to as a symmetric positive definite matrix.

Studies commonly fit the diffusion tensor using an ordinary linear least squares
fit to the natural logarithm of the signal. In the presence of noise, though, this type
of fitting can produce negative eigenvalues. Weighted linear least squares fitting
[9] and non-linear least squares solutions [7] are preferable because they are more
robust. Non-linear least squares solutions also do not require log transformation of
the signal, which makes it easier to factor out errors in the signal [10]. Tensor fits can
be constrained through post-estimation methods for correcting negative eigenvalues,
such as taking their absolute value [7]. Iterative methods for outlier rejection, such
as RESTORE [8], also offer robust tensor fitting, but require a solid estimate of the
noise in the data. Estimating the noise in a DWI acquisition can be performed by
calculating the standard deviation of the background of an unweighted image or by
assessing the deviation between two or more repeated (un)weighted scans.

The diffusion signal intensity does not vary linearly with b value [11], though this
approximation is sufficient up to about b = 1000 s/mm2 (see Figure 1.2). Studies
with more than one b value are described as “multi-shell” acquisitions, and studies
wishing to perform more complex analyses usually include a separate high b value
acquisition (e.g. at b = 2500 s/mm2). One such analysis method, diffusion kurtosis
imaging (DKI), is used to quantify the non-Gaussianity of the diffusion within a
voxel. DKI fits require high b values and fit the data using a quadratic approach
[12].

There are various ways to generate gradient directions for a DWI experiment,
though the most common approach is based on an electrostatic repulsion model in a
sphere [13]. Researchers generally acquire volumes using at least 30 unique gradient
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0
0 5000

b value (s/mm2)

ln( S(g,b)
S0

)

-4

DTI fit

DKI fit

Figure 1.2: Diffusion signal dependence on b value. The diffusion-weighted imag-
ing signal drops at higher b values. At b values greater than 1000 s/mm2 the linear
fitting approach used for diffusion tensor imaging (DTI) no longer applies to the
data. High b value acquisitions are often analyzed using diffusion kurtosis imaging
(DKI), which fits the signal using a parabola. Adapted from [12].

directions so that tensors can be fit reliably [14]. Studies with large numbers of
directions (usually > 40) are referred to as high angular direction diffusion imaging
(HARDI) datasets [15].

1.1.1 Diffusion tensor imaging (DTI)

In neuroimaging studies, tensors are usually analyzed with metrics calculated from
their eigenvalues. The most common measures are fractional anisotropy (FA) and
mean diffusivity (MD), though others, such as radial diffusivity and tensor mode
[16, 17] have also proven useful. Mean diffusivity is calculated using Equation 1.4:

MD =
�1 + �2 + �3

3
(1.4)

Where �1, �2, and �3 represent the eigenvalues of the tensor. Fractional anisotropy,
which describes how directional a tensor is, can be calculated using Equation 1.5.

FA =

s
1

2

(�1 � �2)2 + (�1 � �3)2 + (�2 � �3)2

�1
2 + �2

2 + �3
2 (1.5)
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Tensor mode provides a method for quantifying the type of anisotropy (e.g. pla-
nar = two fiber populations, or linear = one fiber population) found in the voxel.
This can be useful in combination with FA, for example, to help identify the mecha-
nisms of pathological damage. Mode ranges between -1 (planar anisotropy) and +1
(linear anisotropy) with 0 representing orthotropy. To calculate the mode of a tensor
(D) we must first calculate the isotropic part (D̄) of the tensor using Equation 1.6.

D̄ =
1

2
(�1 + �2 + �3)I (1.6)

Where I is the identity matrix. The deviatoric part (eD) of the tensor is defined
in Equation 1.7.

e
D = D� D̄ (1.7)

Mode is then calculated with the following equation:

Mode = 3
p
6 ⇤ det(

e
D

||eD||
) (1.8)

Where det refers to the matrix determinant and ||x|| refers to the Euclidean (`2)
norm.

A set of tensor-derived measures for a set of real data can be found in Figure 1.3.
In this image, FA is highest in the largest fiber pathways, such as the corticospinal
tracts. Mean diffusivity is greatest in the ventricles and cerebrospinal fluid, as the
diffusion is unhindered in these regions. Tensor mode is highest in large single-tract
areas, reflecting the linearity of their diffusion profiles.

In order to convey anatomical qualities in tensor data, studies often colour each
voxel using a convention based on the principal direction of its tensor. For example,
in a voxel with the principal direction oriented left-to-right, the voxel may be given
a red-green-blue (RGB) value for red. The standard convention is that left-to-right
is red, anterior-to-posterior is green, and inferior-to-superior is blue. These colour
maps can also be modulated by the FA values in each voxel, leading to what is known
as an RGB-FA image [18]. For reference, a standard high-resolution T1-weighted
magnetic resonance image (T1) and an RGB-FA image are shown in Figure 1.4.
Tensors are also commonly portrayed as coloured directional ellipsoids.

One further quality of diffusion tensors is that their eigenvalues can be scaled to
approximate conductivity tensors [19, 20]. The scaling required was first assumed
to be linear, though this has been called into question by incongruities between
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Figure 1.3: Tensor-based diffusion measures. Fractional anisotropy (FA), mean
diffusivity (MD), and tensor mode maps for a severely brain-damaged patient. A red
arrow points to a set of calibration voxels for spherical deconvolution, which are
shown in blue.

Figure 1.4: Example RGB-FA and T1-weighted images. Left: a typical high-
resolution T1-weighted magnetic resonance image in a brain-damaged patient.
Right: A red-green-blue (RGB) fractional anisotropy image overlaid on the T1. The
RGB colours are calculated from the principal direction of the tensor in each voxel,
and their intensity is modulated by the fractional anisotropy (FA) in that voxel. The
colours follow the generally accepted convention: Red: Left-Right, Green: Anterior-
Posterior, Blue: Inferior-Superior
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phantom and in vitro studies of excised brain tissue [21–23]. Although direct map-
ping of eigenvalues has been used most often, a method for “volume normalized”
tensor remapping has been proposed. In volume normalized tensor remapping, the
directional information of the tensor is kept untouched, but the mean conductivity
of the tensor is forced to a pre-defined value. The value chosen is usually the mean
conductivity that is assumed in studies with isotropic conductivity profiles. This is
meant to prevent the inclusion of erroneously high conductivity values that can be
adopted during direct mapping [24].

In the human brain tensors cannot fully portray the real-world properties of the
voxels they represent, as most white matter voxels contain more than one unique
fiber population [25]. Their primary fault is their unidirectionality, and higher-order
diffusion models aim to address this issue. There have been several demonstrated al-
ternatives (e.g. multi-tensor models [15]) for representing diffusion profiles, though
we do not deal with them in this thesis. Instead, as we intend to perform fiber
tractography, we focus on estimating fiber orientation distribution functions (FODs,
or fODFs), which should not be confused with diffusion orientation distribution
functions (dODFs).

1.1.2 Fiber orientation distributions (FODs)

Fiber orientation distributions do not aim to represent the diffusion profile in a
voxel. Instead, they aim to represent the distribution of fiber tracts inside a voxel.
As such, their derivation is based on the idea that the diffusion profile in any single
voxel is the sum of the diffusion profile of all the fibers passing through the voxel.
FODs are commonly fit using spherical deconvolution [26], though other methods
are available. Before explaining spherical deconvolution it is prudent to introduce
spherical harmonics.

Spherical harmonics are easiest to explain by way of an analogy to the Fourier
series. The Fourier series is a method for approximating or deconstructing a signal
using a sum of several oscillatory functions. These oscillatory functions are essen-
tially modulated sinusoidal functions. As a simple example, the square wave shown
in Figure 1.5 is being approximated by a high-order combination of sine functions.
Using basis functions to approximate a signal is performed in exactly the same
manner using spherical harmonics.

The spherical harmonic basis functions are not sinusoidal functions but more
complex functions defined in a spherical coordinate system. In spherical coordinates
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0.0 0.5 1.0 1.5 2.0
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1.5 Fourier series approximation of a square wave

Ground truth signal
1st order approximation
3rd order approximation
20th order approximation

Figure 1.5: Fourier series approximation of a square wave. Decomposition of a
square wave into a sum of sine functions using the Fourier series. Spherical harmonic
basis functions are analogous to the Fourier series, but for functions defined on a
sphere, rather than periodic signals.

points are defined using their elevation angle (✓), azimuthal angle (�), and radius
(r), rather than x, y, and z values. Spherical harmonic basis functions are all defined
to have unit radii and are therefore only functions of ✓ and �. Spherical harmonics
are denoted by two numbers, their degree (m, sometimes called the phase factor)
and their harmonic order (l, or sometimes n). The first six real-valued spherical
harmonics (<(Y m

l (✓,�)) for l=[1-3], 0m<l) are plotted on spheres on the left
panel of Figure 1.6. In the right panel of Figure 1.6 they are plotted again, but with
their radius scaled by the function’s value.

As mentioned earlier, the key assumption behind spherical deconvolution ap-
proaches is that the measured signal in any voxel depends on the number of fibers
in the voxel, the amount of space they occupy, and the signal each fiber generates
[26]. Equation 1.9 relates the signal S(✓,�) with the volume fraction of the voxel
taken up by each fiber (fi). The signal (or response) for each fiber is assumed to be
equal and is represented as an axially symmetric function (R(✓)). One further term,
Âi, acts as a rotation operator to account each fiber’s orientation (✓i,�i) within the
voxel.

S(✓,�) =
X

i

fiÂiR(✓) (1.9)
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Figure 1.6: Real-valued spherical harmonic functions. A demonstration of the
first six real-valued spherical harmonics (<(Y m

l (✓,�)) for l=[1-3], 0m<l). These
functions are defined using spherical (polar) coordinates (i.e. using ✓, �, and r to
represent the azimuthal angle, polar angle, and the radius, rather than using the
Cartesian x, y, z coordinate system). Often the radius is modulated by the value of
the function, leading to the plots shown on the right.

In order to simplify Equation 1.9, we can reduce the problem and state that the
measured signal in any voxel is a convolution of the fiber orientation distribution
(F (✓,�)) in that voxel and the diffusion-weighted signal response for a single-fiber
population (R(✓)).

S(✓,�) = F (✓,�)⌦R(✓) (1.10)

The “single-fiber response” (R(✓)) is estimated from voxels expected a priori to
contain only fibers oriented in one direction. The response is then assumed to be
equal for every fiber throughout the white matter. This calibration has historically
been done by selecting fibers with high FA, though some iterative [27] and recursive
[28] methods have also been described. As an example a set of suitable calibration
voxels is overlaid on the FA image in Figure 1.3.

Since diffusion is a real function, the imaginary portions of the spherical har-
monics can be ignored, which reduces by half the number of parameters to estimate.
Because diffusion is symmetric about the origin, odd (i.e. l = 1, 3, ...) harmonic
orders can be discarded.
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The spherical harmonic representation of the signal (Sl) is first obtained by a
linear least squares fit [29]. The system described in Equation 1.11 is then solved
for the fiber orientation distribution (F l) at each voxel by inverting the response
function (Rl) and multiplying it by S

l.

S

l = F

l
R

l (1.11)

In these equations F l is a vector of length (2l + 1) that represents the spherical
harmonic decomposition of F (✓,�) up to a harmonic order l. The lth order rotational
harmonic decomposition of R(✓) is represented using a (2l + 1)(2l + 1) matrix (Rl).
Due to its axial symmetry, the response function collapses to a single real scalar
constant for each harmonic order. The spherical deconvolution approach is thus
reduced to a single matrix multiplication at each voxel. A constraint of non-negativity
can be imposed on the fiber orientation distribution to improve the fitting, and this
technique is known as constrained spherical deconvolution (CSD) [30, 31]. For a
detailed background of fiber orientation distribution (FOD) estimation by spherical
deconvolution, the reader is referred to [26].

The fiber orientation distributions are approximated by a linear combination of
spherical harmonic basis functions which are then truncated at a specified maximum
order harmonic. The number of parameters required for fitting the FOD depends on
the maximum order chosen, as shown in Table 1.1. In practice, this means that the
number of unique gradient directions acquired determines the maximum harmonic
order one can use for estimating FODs using spherical deconvolution.

Table 1.1: Number of parameters required for each maximum harmonic order

Maximum harmonic order Number of parameters required

2 6
4 15
6 28
8 45

10 66
l

1
2(l + 1)(l + 2)

There are various sources of error in this technique and they have yet to be fully
characterized. It is clear that the choice of calibration voxels is extremely important,
as is the choice of the harmonic order at which to truncate the function [27, 32]. In
general, taking higher harmonic orders into account will allow the FODs to more



1.1. Modelling diffusion profiles 13

faithfully represent the fiber distribution in each voxel. In practice, though, the
impact of maximum harmonic orders higher than 8 on the FOD fit is negligible for
the b values used in most studies (b < 3000 s/mm2) [27]. The use of lower harmonic
orders can reduce the effect of noise and errors due to miscalibration (e.g. when
the single-fiber voxels are poorly chosen) [32]. Selecting the maximum harmonic
order is therefore a difficult and controversial decision as the choice can affect the
results of the study. Alternative methods for calibration-free spherical deconvolution
have been proposed, including damped Richardson-Lucy deconvolution [33] and
voxel-by-voxel response estimation [34].

It has been estimated that as much as 90% of the white matter contains multiple
intersecting fiber populations [25]. While FOD estimation approaches may have
issues that voxel-by-voxel tensor estimation does not, they offer multi-direction intra-
voxel fiber modelling which is imperative for accurate tractography. Figure 1.7 shows
a side-by-side comparison of tensors and fiber orientation distributions in an axial
slice of the frontal lobe in a healthy subject.

Figure 1.7: Tensors and fiber orientation distributions. A single axial slice show-
ing the anterior forceps. Crossing fiber regions are represented more accurately using
orientation distribution functions. FODs are overlaid on the fractional anisotropy
image. Stanford HARDI dataset courtesy of Dipy. Colours follow the standard con-
vention: Red: Left-Right, Green: Anterior-Posterior, Blue: Inferior-Superior.
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1.2 Fiber tractography

Streamline tractography algorithms can be used to create wiring models of the
brain. Generally, the idea of tractography is that an algorithm individually estimates
multiple streamline pathways from one part of the brain to another based on the
diffusion or fiber orientation model calculated at each voxel. Fiber tracks are seeded
in white matter regions and progressive tracking steps are taken until the streamline
is terminated. There are multiple approaches for choosing a direction to step in,
as well as for evaluating the probability that two voxels are connected by a track.
For an extensive review and quantitative comparison of tracking algorithms using
a DWI phantom, the reader is referred to the “Fiber Cup” results [35]. When re-
ferring to the results of fiber tractography, we will use the terms “fibers”, “tracks”,
and “streamlines” interchangeably, and these should not be confused with actual
biological tracts [36]. When discussing a set of modelled tracks in a subject we will
use the term “tractogram”.

Tractography has recently evolved from deterministic to probabilistic. In deter-
ministic tracking a single path is estimated by choosing the best available direction
at each progressive step. Probabilistic tracking, on the other hand, tests numerous
paths for each fiber track before choosing the most likely. In the tracking implementa-
tion used in Paper I and II, the direction of each step is chosen by randomly sampling
the FOD function [37]. Rejection sampling is used to sample the FOD on the fly and
choose the trajectory of the track. The tracking step is taken if the amplitude of the
FOD peak is greater than a user-defined threshold1, and the curvature of the tracks
is less than the maximum allowable turning angle. This FOD amplitude threshold
can help prevent implausible streamlines. Anatomically defined masks (e.g. of grey
matter and cerebrospinal fluid) can be used to terminate or otherwise prevent “false
positive” streamlines from being considered in the final tractogram [38]. Tracks
are commonly seeded from random voxels within a masked region2. In Figure 1.8,
white matter (WM) and termination masks are shown for a severely brain-damaged
patient.

Track seeding is usually performed until a user-defined maximum number of
tracks is reached. Alternatively, a specific number of tracks can be seeded from every
voxel in the mask. The tracks can later be filtered to remove pathways through

1tensor-based tracking methods use a minimum FA threshold
2for whole brain tracking, this is the white matter mask
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Figure 1.8: Example white matter and termination masks. Top: White matter
and cerebrum masks (blue) overlaid on the T1 of a severely brain-damaged patient.
Bottom: fluid attenuated inversion recovery (FLAIR) image and lesion masks for a
patient with multiple sclerosis (MS) and clear white matter lesions. Streamlines are
seeded in voxels of the white matter mask. Fiber tracks are terminated when they
extend out of the termination mask or into the lesion mask.
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unlikely areas, for example by comparing the streamline distribution with the am-
plitude of the FOD peaks [39]. A cortical tractogram for a healthy subject is shown
in Figure 1.9.

Figure 1.9: An example tractogram. Probabilistic CSD tractography performed in
the cerebrum of a healthy control subject. Colour is determined by principal direction
and follows the convention: Red: Left-Right, Green: Anterior-Posterior, Blue: Inferior-
Superior.

In recent years the variety and performance of fiber tractography approaches
has increased dramatically. In a tractography competition known as the Fiber Cup,
global tractography [40] performed best overall, followed by constrained spherical
deconvolution. The ground truth phantom used in the Fiber Cup is shown in Figure
1.10 alongside the results from the top-performing global and CSD tracking algo-
rithms. More recent (and ongoing) tracking competitions such as the Tractometer
[41] and Fiberfox [42] both report3 that CSD approaches are the top performers.

When working with patients that present with local lesions, for example in MS
or traumatic brain injury (TBI), an open question is how to proceed in regions
of pathologically damaged white matter. The issue is that diffusion models fit to
damaged tissue (e.g. in a region afflicted by gliosis) may be woefully inaccurate,
and tracks suggested to pass through these voxels may not reflect the underlying
biological structure. Furthermore, when using calibration-based methods (like CSD),
the single-fiber response values may not apply to damaged regions, leading to further
errors when resolving fiber orientation distributions.

3As of April 23rd, 2014
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Ground truth CSD Tracking Global Tracking

Figure 1.10: Tractography algorithm comparison in a phantom. The Fiber Cup
[35] phantom ground truth fibers were reconstructed using various tractography
algorithms. The two best performers were global tracking [40] and constrained
spherical deconvolution.

One recent study of patients with multiple sclerosis (MS) took special measures
to track through both the normal-appearing white matter [43] and the lesioned
areas, citing the need to reduce “false negatives” in the tractogram. The study in
question used deterministic tensor tractography and therefore did not have to deal
with CSD calibration issues. Nevertheless, it is still inadvisable to perform fiber
tractography through lesioned areas. Studies should prevent tracks from entering
hypointense WM areas in T1-weighted MR images, as well as areas demarcated by
subject-specific lesion masks. An example of subject-specific lesion masking in MS
using FLAIR images is shown in Figure 1.8.

Once tractography is complete the subsequent analysis steps depend on the
goal of the study. Many types of analysis, such as evaluating structural connectivity,
require the tracks to be aligned to another scan. This can be performed by obtaining
a rigid, affine, or non-linear transformation between diffusion space and that of the
target image. This is commonly done by registering the FA image to the target (e.g.
T1)4. The transformation can then be applied to each point of every streamline in
order to register the tractogram to the target image.

4In my experience the best coregistration results come from rigidly registering a thresholded
binarized FA image to a binarized T1-derived white matter mask.
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1.3 The Connectome

Representing the brain as a network, or connectome [44], allows researchers to
quantitatively explore brain connectivity. In human neuroimaging, this approach
began with diffusion-weighted imaging and is now prevalent in functional magnetic
resonance imaging (fMRI) as well as EEG. Briefly, the approach defines regions of
the brain as nodes in a network and uses measures of structural (or functional)
connectivity to populate the edges. An example of a simple four-node network
is shown in Figure 1.11. Network edges are commonly represented as diagonally
symmetric square matrices. Diagonal elements can represent within-node measures
of connectivity, though in structural connectivity analyses these are usually ignored.

Node 1

Node 2

Node 3
Node 4

Edge 2,4

Edge 2,3

Edge 1,3

Edge 1,2

Network Diagram Connection Matrix

Node 1

Node 2

Node 3

Node 4

Node 1 Node 2 Node 3 Node 4

Edge 4,4

Figure 1.11: An example network. Networks are defined by their nodes and the
edges connecting them. They can also be represented as diagonally symmetric square
matrices, where the value at index x,y (and y,x) of the matrix corresponds to the
edge weight.

The connectome concept is widespread in other areas of neurobiology; in the
Caenorhabditis elegans worm, the network of its entire nervous system has been
mapped, neuron by neuron5. More recently, the connectome of a standard lab mouse
was fully traced at the cellular level [45].

1.3.1 Parcellation schemes

There are a multitude of approaches for defining the nodes of a connectome [46],
but in general, nodes are defined structurally by segmenting the brain into re-

5An interactive version is available at http://www.openworm.org/

http://www.openworm.org/
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gions. This can be done, for example, through automated anatomical segmenta-
tion methods [47]. Freesurfer, which labels regions using borders on the gyri,
is the current standard for this, though Klein & Tourville’s Mindboggle package
(http://mindboggle.info/) is an excellent new addition to the field [48]. Alterna-
tively, it is possible to create connectomes in which each and every grey matter (GM)
voxel is considered a distinct node, but this is much more computationally expensive.
Regional parcellation schemes are the most common, but they have some caveats.

First, for the connectomes to be comparable across subjects in a study, the nodes
must be anatomically and functionally equivalent. Second, for a weighted network
to be studied using graph theory summary statistics, the regions must have ap-
proximately the same spatial dimensions. Without similar dimensions, or a subse-
quent edge-weight correction scheme, the network is implicitly biased toward large
nodes. One commonly used parcellation scheme, shown in Figure 1.12, involves
sub-dividing the anatomically defined regions of Freesurfer [47] into small, approx-
imately equal-sized parcels[49, 50].

Another parcellation option is to randomly place equally sized parcels throughout
the grey matter, and then interpret the results anatomically as with a voxelwise map.
There are various drawbacks and benefits from each of type of parcellation scheme,
but the general rule is that the parcellation must be adapted to the study population
and research question. The parcellation schemes must also be sensible to use with
the edge definition. For example, it would be odd to build an fMRI correlation
matrix using large regions that are composed of unique functional areas. Likewise,
it’s inadvisable to build structural connectomes with regions made up of only a
handful of voxels, since so few tracks will reach each region that edge values will be
too unreliable.

Building the connectome itself can be done in either subject space or in a common
template space. Subject space is preferable because regions can be more accurately
defined using the subject’s own anatomical image. Constructing connectomes by
warping an atlas to the subject’s T1, or alternatively, by warping the tracks to the
space of an atlas has the downside that errors can be introduced during warping.
The thickness of the grey matter in a human brain generally ranges from 1 to
4.5 millimetres [51]. Since network connections are typically defined by tracks
crossing or terminating in grey matter regions, this means that the (usually non-
linear) subject-to-template transformations must be very accurate6.

6See [52] for an evaluation of various non-linear deformation algorithms

http://mindboggle.info/
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Figure 1.12: Example of structural parcellation schemes. Example showing the
Desikan-Kiliany automatic segmentation applied to the Freesurfer average brain.
Finer parcellated regions of the Lausanne 2008 atlas are shown on the right [49, 50].

The number of nodes has a substantial effect on the properties of the connectome,
which further complicates interpretation of network-level neuroimaging studies [46].
A recent and interesting development is the introduction of functionally defined (e.g.
by fMRI) parcellation schemes for connectome construction [53].

1.3.2 Edge weights

The next question when building a connectome is how to define the edges. The
classic measure is a simple sum of the number of fiber tracks beginning in one
region and terminating in another. It is common to normalize the number of fiber
tracks between regions in order to remove confounding factors such as brain volume
or region size. The fiber counts can be normalized by the total number of fiber tracks
in the subject’s tractogram, for example, and/or by the sum of the volumes of the
regions that the edge connects. Many recent studies have opted to calculate “along
tract statistics” in order to avoid normalization issues7 [54]. These studies calculate
the FA or MD for all voxels that each track passes through, and sums these values

7There is a nice open-source MATLAB library for this at https://github.com/johncolby/

along-tract-stats

https://github.com/johncolby/along-tract-stats
https://github.com/johncolby/along-tract-stats
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to calculate the edge weight. The main issue with this method is that edges within
each network are no longer directly comparable, since some brain regions naturally
show larger FA than others. A number of studies have binarized their connection
matrices prior to analysis, whereas others have opted to analyze the network using
multiple edge weight thresholds. There is currently no consensus regarding the most
appropriate edge-weighting method. An example connectome for a single healthy
subject is shown in Figure 1.13.

AP

A

P

I

S

Figure 1.13: An example connectome. The figure shows axial and sagittal views of
an example connectome. In the axial view, the grey matter surface is also shown for
reference. The connectome was built using CSD, probabilistic tractography, and the
1015-region Lausanne 2008 atlas. Nodes are shown in blue and edges in greyscale,
with darker edges representing stronger connections. Edges are weighted by the
number of fibers connecting each node. A = Anterior, P = Posterior, S = Superior, I
= Inferior.

1.4 Network analysis

Network analysis with fine-grained connectomes is complex. Direct comparison of
edge weights is inadvisable due to the enormous number of comparisons required.
As an example, consider that a connectome with 1000 regions will have 499,500
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unique connections to assess8. Statistical correction schemes for multiple compar-
isons (e.g. Bonferroni correction) are overly conservative in this scenario.

For this reason researchers turn to network summary statistics. These summarize
networks using measures from graph theory that describe the topological qualities
of their connective structure. Several common network measures, such as nodal
degree and centrality measures are explained in Figures 1.14 and 1.15. Network
efficiency, shown in Figure 1.16, describes the ease of communication within a
network, and reflects the “cost” for each node to communicate with all others. Many
graph measures are computed on the nodal level, whereas others are computed
for the network as a whole (i.e. globally). One of the most comprehensive graph
analysis libraries is NetworkX [55], which we have used in Paper I.

Global network measures, however, can be insensitive to large changes to brain
structure. A recent functional connectivity study reported that patients with severe
brain damage showed global network measures that did not significantly differ
from healthy controls [56]. Local network measures are therefore preferable for
neuroimaging studies. Connectomes are, in general, not comparable between studies
due to the various processing options chosen during network construction. For an
evaluation of the influence of tractography algorithms on structural connectome
reconstruction, the reader is referred to [57].

There are alternative methods for identifying between-group differences in con-
nectivity matrices that do not involve graph theoretical measures. One such non-
parametric method is the network-based statistic (NBS) [58], which operates simi-
larly to statistical parametric mapping (SPM), and was used in Paper I (Appendix A).
The NBS aims to control the family-wise error-rate (FWE) by assessing the statistical
significance of clusters of supra-threshold edges. First, two-sample t-tests are per-
formed between edge weights at every link for the two groups being compared. Next,
these t-statistics are thresholded and a breadth-first search is performed to identify
supra-threshold “components”, which are the network equivalent of connected voxel
clusters. The number of edges (or “size”) of each component is stored for later. This
procedure is repeated numerous times while permuting the group to which each
subject belongs. The set of permutations are used to construct a distribution of
maximum component sizes and estimate p-values for each link. The user-defined
t-statistic threshold has a substantial influence on the extent of the identified results,
and it is therefore common to evaluate various thresholds.

8(n ⇤ (n� 1))/2 = (1000 ⇤ 999)/2 = 499, 500
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Figure 1.14: Nodal degree & centrality, cliques, and graph density.
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Figure 1.15: Node strength and clustering.
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Figure 1.16: Characteristic path length.

SPM voxel cluster Graph component Spatial Pairwise Cluster

Figure 1.17: Statistical network comparison methods. Graph components iden-
tified by the Network-Based Statistic (NBS) are analogous to Statistical Parametric
Mapping (SPM) voxel clusters. An alternative method for statistical testing is to
assess pairwise clusters of nodes. Connections that would be identified by spatial
pairwise clustering (SPC) are shown in red.
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Another method, known as spatial pairwise clustering [59, 60], can also be used
to identify region-to-region connective structures that the NBS may inadvertently
aggregate into a single component. Figure 1.17 shows an example of an SPM voxel
cluster, an NBS graph component, and a set of nodes involved in a spatial pairwise
cluster.

1.5 Track quantification

Fiber track quantification is a logical extension upon high-resolution tractography
methods. Put simply, if the fibers produced by the tractography model accurately rep-
resent white matter pathways, then sampling their properties on a grid can provide
a volumetric image worthy of analysis. Using this premise the researcher is open to
develop novel track-weighting methods.

The most basic track quantification method is known as track density imaging
(TDI), in which the modelled fibers are counted within voxels of a newly imposed
grid [61]. Intriguingly, the borders of the white matter can be accurately represented
by this method down to sub-millimetre levels using standard DWI acquisitions [62].
The resolution obtained by track density imaging can be higher than that of the
original acquisition (i.e. super-resolution imaging). The super-resolution quality of
track-weighted imaging comes from the added information obtained by tracking
the neural pathways. In another track-weighted imaging method, known as average
pathlength mapping (APM), the signal represents the mean length of the tracks
that pass through each voxel [63, 64]. A schematic illustrating the track-weighted
imaging method is shown in Figure 1.18.

Several whole-brain maps are shown in Figure 1.19 to compare the resolution
obtained by typical tensor-derived measures and that of track-weighted imaging. It
is important to note that although the TDI and the FA maps look similar, they offer
different contrasts and cannot be interpreted equivalently. As shown in Figure 1.19,
colour mapping by directional encoding of track direction in each voxel also allows
TDI maps to be created with false colour, similar to RGB-FA maps.

The track-weighted imaging framework has been extended to produce a number
of interesting image contrasts [63, 65–67]. In these methods, a scalar map (e.g. the
FA map, or a scalar map of functional connectivity) is first sampled at each point
of each streamline. The method of sampling the scalar map for each streamline is
user-definable (e.g. a sum across all track points, mean value for the entire track, or
a more complex operation). The tracks are then regularized, as before, by imposing
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Figure 1.18: Schematic of track-weighted imaging. In track-weighted imaging,
the fiber tractogram is quantified on a user-defined grid. The left panel shows an
example tractogram with three fibers of varying length (L). The track density values
in each newly created voxel are shown in the center. Average track length (often
referred to as pathlength [64]) values are shown on the right. Given a sufficient
quantity of realistic streamlines, the imposed track density grid can provide higher
resolution than the original scan (i.e. super-resolution imaging).

a grid. Finally, a second within-voxel mathematical operation is performed over all
the tracks passing through the voxel. Distance-weighted track quantification images,
in which the fiber distance from a marked point (e.g. a tumour) modulates the signal
during track quantification, have also been demonstrated [67]. Since track-weighted
imaging is inherently non-local, the values at each voxel can be hugely biased by
local changes. Results are smoothed across the entire path of all the tracks that
pass through these voxels. It is especially important, then, that potential artifacts
are removed and that poor quality scans are not used because modelling errors
propagate throughout the brain, unlike in other methods9.

It is clear that using this framework an enormous amount of novel image con-
trasts can be developed. It is unclear, though, if they can be made to reflect biological
properties that are interpretable to neuroscientists or clinicians. At the very least,
these contrasts will be interesting for the visualization and localization of abnormal
white matter pathways.

1.6 Diffusion imaging artifacts

Because of the complexity of DWI acquisitions there are a number of artifacts that
are commonly encountered.

9e.g. in voxel-based analysis of fractional anisotropy, errors remain local
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Figure 1.19: Examples of track-weighted imaging. A track density image (TDI) is
shown next to a fractional anisotropy image in order to demonstrate the improved
resolution possible with TDI. Contrast is also improved in the directionally encoded
TDI (DEC-TDI) compared to the RGB-FA image. The average pathlength map (APM)
shows that the longest tracks in this subject’s brain are in projections to the occipital
cortex. TDI images were created with 1 million tracks and 1 mm3 isotropic voxels,
whereas FA images had the original scan resolution (1.8 x 1.8 x 3.3 mm3). Data
from CHU Liège.
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Artifacts from subject movement between acquired volumes are common and
usually alleviated by rigid realignment to an unweighted (b = 0) volume [4]. When
this is performed, the associated b-vectors must be rotated using the applied trans-
formation matrices [68]. A recent study has demonstrated the effect of motion in
DWI and recommends that an index of subject motion is kept as a nuisance covariate
for later analyses [69].

The cycling of strong gradient pulses frequently induces eddy currents in vari-
ous parts of the MR scanner [4]. These eddy currents create magnetic fields which
distort the acquired images. These shear-like distortions can be alleviated by per-
forming affine transformations between the weighted volumes and an unweighted
volume. It has been suggested that the DWI signal must be modulated after affine
transformation to correct for the volumetric changes [70], though software pack-
ages largely ignore this step. Eddy current-induced distortions can also be avoided
by using specially designed DWI sequences. In Paper II, we used a sequence which
included a second refocusing pulse and adjusted gradient timing in order to nullify
eddy currents [71].

A further nefarious artifact can be induced by table vibration in certain scanners
(e.g. Siemens TIM Trio) and manifests as augmented diffusion along a specific direc-
tion (usually the x-direction; left-to-right within the head)[72, 73]. These artifacts
are practically impossible to remove post-acquisition unless a distinct dataset was
acquired with phase encoding reversed [73]. Researchers are forced to either manu-
ally mask the artifact and attempt to regress out its effect during tensor fitting [72],
or to remove volumes acquired with a large x-component in the gradient direction.
The former is unreliable and ineffective and has not yet been extended to models
of higher order than tensors. The latter has dramatic effects on the signal-to-noise
ratio of the data, and appears to only slightly reduce the effect of the artifact.

Compounding on these issues, DWI is also affected by routine MRI artifacts, such
as spatial bias in the strength of the magnetic field and slice or volume drop-out [4].
Plotting a map of the residual values obtained during tensor fitting is an easy way to
quickly identify artifacts in DWI datasets [3]. At higher b values (b > 2000 s/mm2)
there is a lower signal-to-noise ratio making both motion and eddy currents more
difficult to correct. For this reason, specialized post-processing techniques [74] have
been developed to correct high b value DWI acquisitions.

For more information, the reader is directed towards a seminal review of the
diffusion field, which describes in detail the best approaches for identifying and
dealing with these artifacts [3].
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1.7 The future of diffusion imaging

The DWI methods described here represent only one portion of the research into
diffusion MR imaging and there are a wide variety of alternative analysis methods
under development. For example, studies are beginning to incorporate improved reg-
istration schemes, in which tensors or FODs are used directly for registration and/or
normalization [75]. Direct voxelwise comparison of FOD functions has recently been
demonstrated [76] and significant regional and orientation-specific differences were
identified in patients with motor neuron disease. Tensor registration methods in
which anisotropy is conserved [77] may also be useful in multimodal studies, such
as in the forward modelling study described in Chapter 5.

Another interesting method is DKI, in which the kurtosis (i.e. non-Gaussianity)
is estimated from the diffusion probability distribution. This is only possible at high
b values, where the tensor model of diffusion is no longer valid. Kurtosis-derived
measures are considered to be sensitive to cellular microstructure, which may make
this an interesting clinical imaging method. Although some promising results have
been obtained (e.g. in Parkinson’s disease [78]), DKI is still in its early stages, and
is still plagued by artifacts [79].

A further class of methods is focused on axon diameter and density estimation.
Methods like AxCaliber [80, 81] and ActiveAx [82] use novel acquisition sequences
and complex models of intra-voxel diffusion [83] to approximate axon diameter
distributions within each voxel. These methods have been validated ex vivo through
comparison with histology and have enormous potential. Unfortunately, their use is
hampered by long acquisition times (e.g. ActiveAx takes 1 hour of acquisition [82]).

Although many researchers wish to study specific biological tracts, it is quite
difficult to objectively identify which streamlines belong to these tracts. Solving this
problem is a goal of several recent packages for streamline clustering (or “bundling”)
using atlas-based [84, 85] and atlas-free [86] algorithms. These approaches may
help simplify the visualization of large track datasets and clarify the biological rele-
vance of network analysis results.

The move towards high-field MR imaging (e.g. at 7 Tesla or above) will bring
great advances in structural mapping of the brain. A recent DWI acquisition at 7 T
was carried out with using 60 gradient directions, 7 unweighted images, and 800
µm isotropic voxels, though it took a full hour [87]. An even more powerful study
of the brainstem at 11.7 T produced outstanding images detailing fiber pathways
unresolvable on typical clinical scanners [88] (see Figure 1.20).
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Figure 1.20: High-field diffusion imaging. Data for the image on the left comes
from CHU Liège. Data for the image on the right comes from [88].
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One development which appeared to be imminent in the past was diffusion-
weighted functional magnetic resonance imaging (DfMRI) [89]. This acquisition
strategy has revealed that there is an earlier response than the hemodynamic flow
of blood to areas of neural activation [90]. This response is observed in DfMRI as
a decrease in water mobility and is thought to reflect the biological mechanisms of
cell swelling and membrane expansion that accompany neuronal activation. While
DfMRI has not gained wide acceptance (or even name recognition) yet, it is a tech-
nique worth watching.



C H A P T E R 2

Electroencephalography

Electroencephalography (EEG) is a technique for the direct recording of electrical
activity in the brain through a set of electrodes placed on the scalp. A basic problem
that is addressed in Paper III is linking neuronal source activity in the brain to
the acquired scalp recordings. This chapter provides an introduction for readers
unfamiliar with EEG and/or the forward and inverse problems of source localization.

2.1 Signal & analysis

Electrical activity was first recorded on the human scalp nearly a century ago [91].
The biological origin of the EEG signal is complex and has multiple components.
For an in-depth review into neuronal polarization and EEG in general, the reader is
referred to [92].

Excitatory and inhibitory post-synaptic potentials at pyramidal neurons in the
cortex are thought to be the primary contributors to the EEG signal. The human
cerebral cortex is organized in a six-layered structure with specific cell types and
connections in each sheet. Layer IV houses substantial amounts of pyramidal neu-
rons with multiple dendrites extending from the cell body (or soma). Dendrites (or
branches) extending from the apex of the soma are known as apical dendrites. These
are particularly interesting features because of their orientation; they are generally
perpendicular to the cortical surface. This directly influences the signals detectable
from neural source imaging methods such as EEG and its magnetic counterpart,
magnetoencephalography (MEG). MEG records magnetic fields in the brain and
offers complementary information to EEG. It is a more complex, expensive, and rare
technique because it relies on extraordinarily sensitive magnetometers.

A compartmental modelling study attempting to estimate the contribution of
four types of cortical neurons concluded that the magnitude of the intracellular
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current in a single pyramidal neuron is on the order of 0.29-0.90 picoamperes
(pA) [93]. The current field detectable by MEG in the human cortex is roughly 10
nanoamperes (nA). This implies that there are tens of thousands of synchronously
active neurons contributing to this signal [94]. Similarly, the EEG signal is thought
to reflect thousands of neurons’ synchronous activity.

In practice, EEG provides enormous quantities of data. The recording frequency
is generally in the thousands of Hertz, and there are usually at least 32 electrodes
on the scalp in research environments. For readers unfamiliar with the technique, a
schematic of an EEG experiment is shown in Figure 2.1.
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Figure 2.1: Schematic of electroencephalography (EEG). In EEG, electrical po-
tentials are recorded over time through sensors placed on the scalp. Each sensor is
treated as a distinct recording channel. The sensor potentials are generally recorded
relative to a reference electrode or set of averaged sensors. The choice of reference
type is known as a montage. The number of sensors placed on the scalp is gener-
ally below 256. Typical recording frequencies in EEG are on the order of 2000 Hz.
Signals are usually on the order of microvolts (µV).

Once the signal is acquired the voltage values at each channel can be re-referenced
to another sensor or a combination of sensors. The next steps involve cleaning ar-
tifacts such as eye blinks and eye movement from the signal, bandpass filtering to
remove high-frequency noise and low-frequency drifts, and bandstop filtering to
remove 50 Hz line noise.

There are a wide variety of approaches to analyze EEG data. Depending on
the design and the goal of the study, signals may be averaged across numerous
trials so that event-related potential spikes and troughs can be analyzed. Time-
frequency analysis can be used to study event-related (de)synchronization. Blind
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source separation is also frequently used to decompose the signal. Causal analysis
and modelling methods (e.g. Granger causality, dynamic causal modelling) can be
applied as well.

A common goal, known as source localization, is to identify the origin of signals
within the head. There are a variety of software packages used for EEG/MEG analy-
sis, such as FieldTrip [95], EEGLAB [96, 97], SPM [98], MNE [99, 100], and FASST
[101]. These toolboxes do not all implement their own source localization tools, but
tend to rely on those implemented in SPM, MNE, NFT [102], and OpenMEEG [103].

2.2 Source localization

Reconstructing the source of neural activity requires a number of key assumptions.
The first, which is well established, is that a neural source can be approximated as an
equivalent current dipole [104]. Next, a model must be chosen to approximate the
geometry of the subject’s head as well as the position of the electrodes. EEG electrode
placement follows standard systems which makes them easy to approximate1 given
the position of the nasion, inion, and both pre-auricular points. Head models can
be generated in various ways from structural (e.g. T1) MRI scans. Optimally, the
electrode positions are marked using a digitization system2 [105]. Once the head
model is built, the next step is to construct a leadfield matrix to relate voltage values
on the scalp with current sources in the brain. Constructing the leadfield is known
as the forward problem.

2.2.1 The forward problem

The standard (or “direct”) method for creating the leadfield matrix is to place a
large number of test dipoles inside the grey matter, oriented outwards, in order to
approximate neural populations. This constraint is imposed because the primary
source of recorded EEG signals, as mentioned above, is thought to be pyramidal
neurons [106]. Each column of the leadfield matrix then represents the potential
calculated on the scalp from each dipole individually. An example of a set of leadfield
dipoles (calculated using MNE) is shown in Figure 2.2. The number of dipoles (or
“source positions”) calculated influences the usability of the leadfield matrix. This
leadfield mapping procedure is shown schematically in Figure 2.3.

1e.g. using a sphere
2e.g. using electromagnetic receivers, ultrasound transmitters, or digital cameras
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Figure 2.2: Example dipoles for the direct method of leadfield creation.
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Figure 2.3: Schematic of the direct method of leadfield creation.

Naturally, accurate leadfield matrices are required to reliably localize source
activity. This means that large numbers of dipoles must be simulated. This approach
is commonly used in boundary element modelling (BEM), where the head is defined
by a set of (usually concentric) two-dimensional meshes, and each compartment’s
conductivity is uniform and isotropic. It is more difficult in finite element modelling
(FEM), where the head is defined with a three-dimensional volumetric mesh. The
main benefits of using FEM over BEM are the ability to include additional element-
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wise information3, and the relative ease involved in modelling complex geometries4.
In Figure 2.4, we demonstrate an alternative method for constructing the lead-

field matrix. Instead of simulating current sources at numerous potential source
locations, the leadfield is built row-by-row by applying current at each sensor and
computing the electric field induced in each element of the FEM mesh. This is known
as the reciprocal approach, as it is derived from Helmholtz’s principle of reciprocity
[107, 108].
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Figure 2.4: Schematic of the reciprocity method of leadfield creation.

Next, using the leadfield, algorithms are used to estimate the most likely con-
figuration of sources that could produce the known scalp voltage profile. Creative
strategies for performing this optimization are said to solve the inverse problem
[107].

2.2.2 The inverse problem

Because EEG depends on volume conduction there is always a degree of crosstalk
between electrodes, and each measurement cannot be considered independent. Fur-
thermore, due to the characteristic folding for the cortex, signals detected at any
single electrode cannot be assumed to originate from nearby patches of cortex. In-
verse approaches must therefore be capable of efficiently searching the entire grey
matter.

3e.g. conductivity tensors derived from diffusion-weighted imaging
4e.g. a skull with a hole in it
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The inverse problem is analytically ill-posed, meaning that there is no unique
correct solution. Algorithms must attempt to find the best possible solution given
the data and adopted model. In inverse approaches, the model refers to the number
and type (e.g. varying orientation and/or amplitude and/or position) of dipoles
that the algorithm will try to fit. Briefly, inverse solutions can be divided into two
categories: parametric, in which the locations of one or more dipoles are estimated,
and non-parametric, in which dipole locations are fixed and their amplitude and
orientation are estimated.

Parametric approaches, often called equivalent current dipole methods, may test
systems of single and/or multiple spatially distinct current dipoles [109]. These
approaches are overdetermined (p < M), as the number of sources (p) is less than
the number of electrodes (M). In these approaches, an optimization procedure
repeatedly tests head locations to identify the most likely coordinates, orientation,
and strength of sources.

Non-parametric methods for inverse localization are often called distributed
inverse solutions. These are linear problems in which the goal is to estimate the
dipole magnitude matrix which best explains the signal. Since they aim to adequately
model the entire brain (or grey matter), there are typically far more sources than
scalp electrodes (p >> M), making the problem underdetermined.

Several basic anatomical assumptions can be used to reduce the solution space
to simplify this problem. First, source dipoles are expected to originate in the grey
matter, a mask of which is normally segmented from a T1-weighted MR image. Next,
it is assumed that all dipoles have perpendicular orientations to the cortical sheet.
Finally, constraints can be placed on the spatial coherence of the dipoles; some
groups of regions may act in concert with one another, and these groups should be
assumed to be nearby and oriented similarly. As an example, a group of dipoles lo-
cated on a single gyrus would be considered spatially coherent, whereas two dipoles
placed on opposite sides of a sulcus would not [110]. Bayesian inference can be
used to estimate the conditional expectation of source configurations, and can take
multimodal or user-defined constraints into account [111, 112]. A further common
approach is to estimate spatial priors for source reconstruction from fMRI studies of
the same task [113, 114]. One study used fMRI networks derived from independent
component analysis as the covariance priors for the Parametric Empirical Bayesian
approach to source reconstruction [115]. These ongoing temporally coherent blood
flow patterns are usually studied using resting-state functional MRI scans and are
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constantly present in the brain. The coupling between hemodynamic and electro-
magnetic signals in the brain is unclear though and priors derived from functional
neuroimaging must be considered probabilistic. Furthermore, the effect of spatial
priors is dependent on the data in question. Strong accurate spatial priors may
not improve recovery of the sources, but rather reduce the number of spuriously
identified sources [110].

Unlike forward models, which can be constructed without knowledge of the
study design, the inverse approach must be chosen carefully by the researcher. For
a review of a vast array of inverse modelling approaches, the reader is referred to
[116].
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C H A P T E R 3

Connectomes and genetics

Genetic control over the human connectome is present at both the structural and
functional level [117, 118]. Researchers aim to disentangle variance in biological
traits into their additive genetic, shared environmental, and/or unique environmen-
tal components. One method for doing this is studying monozygotic and diyzgotic
twins, for example, using structural equation modelling [119–121]. When twins
are not available, genetically associated traits can be identified by studying highly
similar population cohorts with known genetic variations. In Paper I (see Appendix
A) we examined the structural connectivity of two groups with single nucleotide
polymorphisms in two genes: BDNF and ADA. The study was composed of 36 healthy
subjects aged 18-26. These subjects were selected based on a variety of sleep quality,
chronotype, and lifestyle characteristics, as they were part of a rigorously controlled
multimodal study of the genetic influences on sleep.

3.1 Background

3.1.1 Brain-derived neurotrophic factor (BDNF)

Brain-derived neurotrophic factor (BDNF) is a widely abundant neurotrophin whose
activity-dependent release is essential for healthy development of the central ner-
vous system. Outside of the brain it is also remarkably distributed in other organs,
such as the skin, bladder, lung, and colon, which may signal an involvement with
sensory and motor neurons [122]. BDNF is stored in axon terminals [123], pro-
motes dendritic growth [124], and regulates long-term potentiation at excitatory
glutamatergic synapses [125]. Because of its widespread distribution in the brain
there are a vast amount of studies of the BDNF gene and its link to cognitive function
and disease susceptibility, as well as both in vivo and in vitro studies of the protein’s
effects.
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Animal and cell culture studies have identified that a common single-nucleotide
polymorphism in the BDNF gene (G > A at nucleotide 196), known as Val66Met
(dbSNP: rs6265), reduces the activity-dependent release of the BDNF protein, ham-
pering axonal pruning and maintenance [126, 127]. Although most polymorphisms
have small overall effect sizes [118], the effects of this specific polymorphism have
been detected in macroscale analyses several times [128].

In one such study, the reduced secretion of BDNF in subjects with the Val66Met
polymorphism was linked to alterations in experience-dependent plasticity in the
motor cortex [129]. The Val66Met polymorphism has been suggested to confer
susceptibility to both major depressive disorder and Alzheimer’s disease. For a com-
prehensive review, see [128]. Its presence in the human population varies from
0.55% in Sub- Saharan Africa, to 19.9% in Europe, and 43.6% in Asia [130].

A subset of the cohort in Paper I was recently used to examine the effect of long-
term potentiation on sleep-dependent memory consolidation mechanisms [131].
Overnight memory consolidation was found to be worse in the Val66Met group.
As in previous studies [129], this is expected because subjects with the Val66Met
polymorphism release less BDNF during memory encoding tasks.

3.1.2 Adenosine deaminase (ADA)

Slow oscillatory (< 5 Hz) activity is prominent in the recorded EEG during human
non-rapid eye-movement (non-REM) sleep. These slow waves are thought to reflect
synaptic plasticity at work. Their duration and intensity are driven by sleep need
(i.e. homeostatically regulated) and modulated by subjects’ circadian rhythms [132].
Furthermore, the quality of slow-wave sleep is considered a heritable trait. The neu-
rotransmitter interactions that influence slow wave activity are not well understood,
though the neuromodulatory agent adenosine may contribute to maintaining sleep
homeostasis.

One important metabolic enzyme for adenosine is known as adenosine deam-
inase (ADA). A non-synonymous polymorphism (G > A at nucleotide 22, dbSNP:
rs73598374) in its associated gene (ADA) has been reported to increase sleep pres-
sure, subsequently lengthening non-REM sleep [133, 134].

http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=rs6265
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=73598374
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=73598374
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3.2 Overview

Of the 36 subjects, 15 (9 male) were identified as carrying the Met allele at codon
66 of the BDNF gene. Of these 15, 12 had the rs6265 (Val66Met) single-nucleotide
polymorphism, whereas the other 3 were homozygotic for the Met allele. The re-
maining 21 (9 male) were homozygotic for the Val allele, and are referred to as the
ValVal group. Structural connectomes were created and used to compute a variety
of (mostly edge-weighted) network summary metrics. Non-parametric statistical
testing using the NBS [58] revealed one large and significantly different component
between the connectomes of ValVal subjects and Met allele carriers.

Structural connectivity in Met allele carriers was found to be higher throughout
the forebrain. Increases in edge weights were found in connections corresponding
to the anterior and superior corona radiata. Inter-hemispheric connectivity was in-
creased via the corpus callosum and anterior commissure. Inferior medial frontal
polar regions in Met carriers showed very strong connections via the anterior forceps.
We attributed this increase in edge weight to the known effect of BDNF on axonal
pruning and suggest that in Met carriers there are more redundant and / or unnec-
essary connections in the brain. No structural changes were expected or identified
between subjects with the tested ADA polymorphism. High classification accuracy
between BDNF genotypes was demonstrated with a connectome-based classification
scheme. We utilized a Gaussian Process classifier [135] through PRoNTo, a machine
learning toolbox developed in MATLAB [136].

Interestingly, although the NBS revealed a large connected component of in-
creased edge weight in the Met carriers, and their connectomes were accurately
classifiable, the change in white matter architecture did not seem to affect cal-
culated global network measures with any significance. Student’s t-test revealed
no significant differences between BDNF genotypes for any of the twelve tested
network metrics. To delve further into the results, we used the “two one-sample
test” (TOST) approach to evaluate equivalence between the groups [137, 138].
Figure 2 demonstrates, for the networks’ global efficiency, the method through
which differences and equivalence were evaluated. A set of R and ggplot2 [139]
functions for performing the tests and plotting relevant figures can be found at
https://github.com/CyclotronResearchCentre/NetStats. Our results, described
in Table A.1, show that nearly all of the tested global network measures - except
clustering and percentage of connected fibers - are indistinguishable between allelic

https://github.com/CyclotronResearchCentre/NetStats
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groups in our sample. Since it is unclear how best to correct for multiple compar-
isons when testing highly interdependent network metrics, and especially ambiguous
when the tests are of statistical equivalence [140, 141], these values have not been
corrected for multiple comparisons.

No significant linear correlations (after Bonferroni correction) were identified
between any of the psychological assessments and the network measures studied.
This is not particularly surprising since our subjects were only chosen if they fit
within a narrow range of scores on each of the psychological tests.
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Figure 3.1: Equivalence testing of global network efficiency. A demonstration of
the statistical testing for equivalence, using global efficiency, shows that there is not
only no significant difference, there is no statistical distinguishability between BDNF
allelic groups for network efficiency. C.I = Confidence Interval, Eq. = Equivalence,
TOST = two one-sample test.

3.3 Discussion

Although we now know that connectivity patterns in brain networks are heritable
traits, it is still extremely difficult to untangle the effects of specific genes and their
alleles. The study described in Paper I appears to provide an intuitive link between
the biological basis of BDNF actions and the neuroimaging literature. It is unlikely,
though, that the link between axonal growth patterns and macroscopic tractography
models is indeed this straightforward.
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Genome-wide association studies (GWAS) provide a method for testing hundreds
of thousands of single-nucleotide polymorphisms at once for their influence on neu-
roimaging biomarkers. A number of research groups have performed GWAS on FA
maps [142–145], and more recently, structural connectome matrices [146]. Results
from these and other studies show that single-nucleotide polymorphism effect sizes
are generally very small, and most studies showing large effects are irreproducible
[118]. An accurate criticism of this study is that it reported a seemingly large ef-
fect using a relatively small sample. Our findings, though, are coherent with those
already demonstrated in several independent samples [147, 148].
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C H A P T E R 4

Track density imaging
in Parkinson’s disease

The cardinal symptom of Parkinson’s disease is dyskinesia. This is generally consid-
ered a consequence of the substantive loss of dopaminergic neurons in the substantia
nigra and their projections to the striatum. Presynaptic dopaminergic terminal func-
tion in the striatum is easily imaged with 18F-DOPA positron emission tomography
(PET) [149]. Striatal dopamine storage capacity and transporter availability can
also be imaged with other radiotracers. Although PET remains the gold standard for
diagnosis, it is not universally available and therefore in vivo MRI-based biomarkers
are highly sought after. Unfortunately, the substantia nigra of Parkinson’s patients
appears normal with conventional MRI contrasts.

A large number of DWI studies have been performed using patients with Parkin-
son’s disease (PD) and the most common result is decreased FA in the substantia
nigra [150]. In Paper II, we studied Parkinson’s disease using advanced diffusion
analysis techniques. The manuscript is the result of a long process of trial and error,
beginning with an alternate dataset and another analysis method.

4.1 First attempts

This study began as an application of the connectome construction and network
analysis methods created for Paper I. In our first two attempts, we used a low b
value diffusion acquisition and a smaller number of subjects.

We began with a dataset in which seven unweighted (b = 0) volumes were
acquired followed by a set of diffusion-weighted (b = 1000 s/mm2) images using 61
non-collinear directional gradients. The field of view was 220.8 x 220.8 x 138 mm3

(96 x 96 x 60 voxels), with isotropic voxels of 2.3 mm3. We studied 21 (9 male, age:
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67±14) patients clinically diagnosed with Parkinson’s disease and 21 (13 male, age:
64±10) healthy control subjects.

First, connectomes were constructed (as in Paper I) using the 1015-region par-
cellation scheme of the Lausanne 2008 atlas, constrained spherical deconvolution
with Lmax = 8, and probabilistic tracking of 300,000 streamlines. We evaluated
various network metrics and tested the networks using the NBS. No significant re-
sults were obtained for any measures. Next, we evaluated track density images by
seeding 5 million tracks and registering the images to the FMRIB58 FA template
using consecutive linear and non-linear transformations (using the FMRIB Software
Library). Between-group statistics were performed using SPM8 and cluster-level
FWE corrected p-values. Non-stationarity correction was used to account for local
smoothness of the search volume [151]. We also tested a method for evaluating
track density in each direction, using non-stationarity correction for the F-test [152].
These analyses were not totally fruitless; small areas of statistically significant in-
creases in TDI were found in the pedunculopontine nucleus (PPN). The PPN is
important for gait and is frequently a target for deep brain stimulation (DBS) in
PD. We decided to move on and test this approach using the high b value dataset
described in Paper II. These were useful failures, though, as they helped refine the
pipelines for future analyses.

4.2 Overview

A number of studies have identified nigral atrophy using DWI, but none so far have
been able to identify nigrostriatal denervation. We suspected that track quantifica-
tion methods, which have validated super-resolution qualities [61, 62], could be
capable of identifying damage in this pathway. The final study population (n = 53)
contained 27 patients (14 male, age: 66±8) clinically diagnosed with Parkinson’s
disease and 26 healthy control subjects (14 male, age: 64±8) matched for age, gen-
der, and education level. None of the subjects showed signs of dementia. PD patients
had a mean disease duration of 5 years and mean score on the Hoehn & Yahr scale
of 1.5, making this an early-stage population for a diffusion study [150].

Briefly, we performed CSD on a high b value (b = 2500 s/mm2) HARDI dataset
(120 directions) and seeded 5 million streamlines in the white matter. Track den-
sity imaging was performed with 1 mm3 isotropic voxels. Average pathlength maps
were used to create a study-specific template using iterative symmetric diffeomor-
phic normalization [64, 153–155]. According to a recent evaluation of non-linear
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deformation algorithms, this approach is among the most accurate available [52].
Non-parametric statistical analysis was applied with estimated subject movement
indices as nuisance covariates [69]. A distinct low b value (b = 1000 s/mm2) ac-
quisition, also with 120 gradient directions, was analyzed using tract-based spatial
statistics (TBSS) [156] after tensor fitting with non-linear least squares.

Although the TBSS analysis revealed no statistically significant results, the TDI
analysis identified both nigrostriatal and extra-nigral structural abnormalities in
the patients with Parkinson’s disease. This manifested as large clusters of signifi-
cantly increased streamline density in clusters extending from the substantia nigra
to the ventromedial putamen, as well as in limbic and cognitive networks. The extra-
nigral abnormalities encompassed parts of the superior parietal lobule, dorsomedial
thalamus, cingulum, orbitofrontal cortex, and occipital lobe bilaterally, and were
remarkably symmetric.

4.3 Discussion

While our results are topologically quite expectable from what is known about PD,
they signalled an increase in track density, rather than a more easily explainable
decrease. This may be due to unforeseen sources of error in the method redirecting
the tracking algorithm toward pathological signal variations in these regions. The
track-weighted imaging method at present may not be mature enough to be applied
to clinical populations.

Converging evidence is mounting that dopaminergic terminal loss and the de-
generation of axons, rather than the loss of neuronal somata in the substantia ni-
gra, is the earliest and most dominant feature of Parkinson’s disease [157]. In the
leucine-rich repeat kinase 2 (LRRK2) transgenic mouse model of genetic Parkinson’s
disease, pathological features are found in dopaminergic axons before any loss of
mesencephalic dopamine neurons [158]. Similarly, in the acute phase after MPTP
administration in monkeys, degeneration can be observed in the dopaminergic stri-
atal axon terminals before any cell body loss occurs in the substantia nigra [159].
Furthermore, there is evidence that ↵-synuclein aggregates initially form in axons
and only later culminate in the death of the somata [160]. These studies suggest
that the degeneration of axons in Parkinson’s disease occurs through a “dying-back”
mechanism which starts distally in the axon and continues in a retrograde fash-
ion [161, 162]. Degeneration of projections to the striatum, however, may not be
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visible until DWI approaches are used with high-field scanners. It may also be pos-
sible to identify DWI markers of early axonal degeneration in murine models and
subsequently apply these to humans.

The use of techniques that provide complementary information is essential in
neurology. While track quantification may yet play this role, it seems unlikely that it
will become a primary diagnostic imaging technique, solely due to the mountain of
assumptions performed prior to analysis. Fiber track bundling and directionally en-
coded colour TDI maps, though, may allow clinicians to use qualitative judgements
for diagnosis. Track quantification approaches provide high-resolution imaging of
the white matter, but their quantitative interpretability still remains to be seen. Dif-
ferential diagnosis among Parkinsonian syndromes1 is already possible with DWI
[163] and may help prevent mismedication in difficult cases.

4.4 Voxel-based quantification

In addition to examining white matter using TBSS [156] and track density imaging,
we also attempted to quantify variations in other neurobiological parameters. To
do this, we used a fast acquisition protocol for producing proton density (PDw),
magnetization transfer (MTw), longitudinal relaxation rate (R1), and transverse
relaxation rate (R2*) maps [164]. These maps reveal complementary information
about the micro and macromolecular structure of the tissue studied.

Specifically, PDw maps reflect the water content of tissue. The MTw signal is
thought to reflect the macromolecular content of the voxel and is particularly depen-
dent on the quantity of myelin in brain tissue [165, 166]. Here the MTw map is only
semi-quantitative and reflects the percentage signal loss of magnetization induced
by a single MT pulse [167]. The R1 and R2* maps are the rates of longitudinal and
transverse spin relaxation for water protons. The former relates to the mobility of
water and water content within the tissue [168], whereas the latter is a marker of
GM iron content [169] and WM structure [170].

The MTw map was used for (GM/WM/cerebrospinal fluid (CSF)) segmentation
because it gives better contrast in the basal ganglia [171, 172]. R2* was notably
suggested as a biomarker of Parkinson’s disease [173]. Indeed, in a recent longitu-
dinal study, iron content in the substantia nigra of PD patients increased over time
and correlated with the worsening of motor symptoms [174]. An example of the

1i.e. disorders of multiple system degeneration, such as multiple system atrophy, progressive
supranuclear palsy, and corticobasal degeneration
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voxel-based quantification (VBQ) maps is shown in Figure 4.1 for a patient from
another study. These multiparameter maps have shown reliable acquisitions across
multiple scanning sites [175] and may soon become widespread.

Figure 4.1: Example voxel-based quantification maps. Voxel-based quantification
maps for a patient with multiple sclerosis. R1: longitudinal relaxation rate, MTw:
magnetization transfer, PDw: proton density, R2*: transverse relaxation rate. Bright
spots signalling high iron content are noticeable in the R2* map near the pallidum
and putamen.

We created a study-specific MTw template using the Diffeomorphic Anatomical
Registration Through Exponentiated Lie algebra (DARTEL) approach implemented
in SPM8 [176]. Standard mass-univariate two-sample t-tests were performed for
voxelwise comparison of quantitative maps (MTw, PDw, R1, and R2*) between
controls and patients. No significant results were obtained. This may, in part, be due
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to the “in-development” aspect of the VBQ SPM toolbox at the time. Aliasing artifacts
were notable in some of the maps and it may be prudent to rerun the analysis once
the toolbox can reliably produce these maps from the acquired scans.

Further analysis of this type of multiparameter data could be performed using
multivariate classification. Each unique quantitative map could be included as a sin-
gle feature set to help classify between healthy subjects and patients. The resulting
weight maps would help determine which physiological parameters contribute most
to the classification. This may provide insights into the macrostructural biological
presentation of complex pathologies.
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Realistic head modelling for EEG

In Paper III, a finite element reciprocity approach was used to solve the forward
problem for electroencephalography.

For multi-shell spherical models there are demonstrated analytical solutions for
obtaining the potential distribution on the surface of an ellipsoid given an arbitrarily
located current dipole [177–179]. To evaluate our approach we constructed a four-
shell (skin, skull, cerebrospinal fluid, grey matter) spherical model and contrasted
the simulated leadfield against that of the analytical solution. We tested dipoles of
varying depth in the spherical model and calculated relative difference and magni-
tude measures demonstrating the deviation from the exact solution. These metrics
were also computed using two alternative state-of-the-art toolboxes, OpenMEEG’s
for BEM modelling, and NeuroFEM for FEM modelling. Our implementation showed
superior accuracy and stability near tissue boundaries when compared to OpenMEEG
[103, 180] and showed similar accuracy to NeuroFEM [181].

Next, an unstructured whole-head tetrahedral volumetric mesh was built from
the T1 of a single healthy subject. Five tissue types were included: skin, skull, cere-
brospinal fluid, grey matter, and white matter. Diffusion tensors were derived from
DWI data with 120 gradient directions, b = 1000 s/mm2, and 2.4 mm3 isotropic
voxels. Tensor eigenvalues were scaled to produce conductivity tensors and subse-
quently incorporated into the white matter elements of the volumetric mesh [20].
Two leadfield matrices were calculated; one in which isotropic conductivity was
assumed within the white matter, and another in which conductivity tensors were
included. These are referred to as the “isotropic” and “anisotropic” leadfields, re-
spectively.

Root mean square deviation (RMSD) was calculated between the leadfield ma-
trices, treating the x, y, and z components separately. RMSD was highest in each
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direction in areas with projections from large fiber bundles. For example, in the x di-
rection (left to right), grey matter regions connected by the corpus callosum showed
the highest RMSD. Similarly, the RMSD in the y direction highlighted the anterior
and posterior cingulate. In the z direction, grey matter regions near the corticospinal
tracts were affected in both the superior parietal cortex and subcortical regions. This
comparison indicates that these regions are misrepresented when isotropic conduc-
tivity is assumed during forward modelling. Single-dipole cost function mapping
also demonstrated increased specificity toward the actual dipole location using the
anisotropic leadfield matrix.

Finite element volumetric models have been repeatedly demonstrated in M/EEG
source localization [182, 183] as well as simulations of transcranial magnetic stim-
ulation (TMS) [24], transcranial direct current stimulation (tDCS) [184, 185], and
transcranial alternating current stimulation (tACS) [186]. Furthermore, FEM ap-
proaches are taken when modelling mechanical deformations (e.g. for tumour
growth and traumatic injury) [187, 188]. At the moment, though, these models
are all built and tested using unique (and often proprietary) software and there
is no open-source toolkit in use that is capable of performing all of these tasks.
Conductivity tensor information is rarely incorporated.

The EEG forward modelling approach developed here is an evolution of this work
in the SimNIBS package [24]. The implementation proposed uses Nipype [189] for
provenance tracking and GetDP [190] for discrete problem solving. The source code
is completely free and available under the GNU GPLv2 software license.

See https://cyclotronresearchcentre.github.io/forward/.

5.1 Future work

There are several possible avenues for extending this work:

Evaluate the reliability of the forward model

The head modelling approach here relies on an initial segmentation and tessellation
of each tissue compartment and a large number of subsequent local mesh defor-
mation and cleaning procedures. Since it relies on Freesurfer, it can be considered
non-deterministic, and small variations in subject anatomy may be present if the
procedure is performed repeatedly [191] or on different computers [192]. A com-
prehensive review and evaluation of FEM meshing strategies would be extremely

https://cyclotronresearchcentre.github.io/forward/
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beneficial for the field (similar to [52] for non-linear deformation algorithms or the
Fiber Cup [35] for tractography algorithms).

Interface the forward model with inverse solvers

Providing a bridge so that inverse approaches that are already implemented could be
used with this forward model would be extremely beneficial. It is unlikely that this
will be easy; solvers like FieldTrip [95], SPM [98], and MNE [100] are not written
to deal with FEM-generated leadfield matrices. The inverse techniques involved are
still generally applicable to these leadfield matrices [116], though, so it may be
possible to adapt an available implementation.

Add support for MEG leadfields

Calculating the MEG leadfield using the reciprocity principle in a finite element (FE)
mesh is non-trivial [193, 194]. The EEG reciprocity leadfield describes the electric
field components in every grey matter element resulting from a unit current source
at predefined scalp electrodes. The MEG reciprocity leadfield differs from the EEG
leadfield in that it relates the magnetic field at each grey matter element to unit
current sources placed at the MEG sensor sites small distances from the scalp, each
defined with specific sensor orientations and geometries [195]. By calculating the
magnetic vector potential at each element of the head model using the quasi-static
approximation it is possible to create an MEG leadfield using reciprocity [194]. Im-
plementation of the MEG leadfield should therefore be possible using the framework
developed thus far.

Simulate brain stimulation

Patient-specific simulation of brain stimulation methods will help us understand
their effects and tune their parameters. One such method, tDCS, has recently shown
promise in the treatment of patients with disorders of consciousness [196], though
the underlying basis for this improvement is unknown. Automated techniques for
choosing the best placement of the electrodes, in order to maximize current to a spec-
ified region, may be useful. Simulation of tDCS and another non-invasive method,
TMS, have already been demonstrated using SimNIBS; we have now removed the
costly MATLAB requirement, simplifying installation and use. The FE model and sim-
ulation approach used here could also be used to simulate other techniques, such as
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DBS. The pipelines that have been developed may be useful for multimodal brain
simulation projects like The Virtual Brain1 [197, 198].

Improve skull modelling

The skull is composed of three distinct layers, conducts preferentially in the radial
direction, and varies in thickness throughout the head. Its geometric approximation
and conductivity profile have a substantial influence on EEG source localization
[199]. This issue is compounded because skull segmentation is difficult using only
T1 images. In SimNIBS both T1 and T2-weighted magnetic resonance image (T2)
images were used to model the skull, scalp, and CSF. Accurate skull segmentation
may be possible with novel MRI techniques such as “black bone” imaging [200].

Computed tomography (CT) scans can provide excellent skull segmentation but
are not typically done in healthy subjects because they expose the subject to ionizing
radiation. In clinical cases, though, multimodal segmentation and meshing could
provide increased accuracy for the leadfield (or whichever other simulation is being
performed). Automated co-registration between the two modalities is quite difficult
since CT contrast is so poor in the soft tissue, and this issue is exacerbated in subjects
with complex anatomical features (e.g. implants). It may be possible to improve
this co-registration by masking and co-registering the air or liquid cavities in both
modalities in order to obtain the transformation matrix.

In some real-world testing I have encountered issues with meshes from T1 and
CT images intersecting. Figure 5.1 shows a real-world example of meshes created
from co-registered T1 and CT images. Potential explanations for the discrepancy
in GM / skull boundary between the T1 and CT images are coregistration errors,
segmentation / meshing errors, MRI distortion, and brain swelling.

Facilitate leadfield templates

Optimally it is best to calculate subject-specific leadfield matrices, but for very large
studies it may be acceptable and substantially easier to use (or create) a template
leadfield. This idea is not without a precedent [203]. The general concept is that
a high-resolution leadfield is created for an average subject (i.e. the “template”)
and then warped to each subject’s space and used to localize signals. Templates
can also be created (as in Paper II) using iterative high-dimensional deformations
[52, 153–155].

1This also applies to the automated connectome mapping pipelines developed for Paper I
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The central choice pre-empting this strategy is how to warp the leadfield matrix.
Intuitively, it seems possible to sample the leadfield regularly at each element and
construct a regular hexahedral volumetric image of the matrix, similar to the dimen-
sions of the MRI. A non-linear transformation between the template T1 and subject
T1 could then be applied to the leadfield “image”. The leadfield is currently of size
3N x M , where N is the number of mesh elements and M is the number of EEG
sensors. The data could be sampled and stored as a 4D image of size (X x Y x Z x 3
x M), where X, Y , and Z would represent the dimensions of the original T1 image.
The T1 could be upsampled prior to registration to allow for higher-resolution lead-
field images. Subsequent source reconstruction techniques would have to be able to
operate on this image, rather than the FE mesh.

The main benefit of this would be that relatively accurate EEG source reconstruc-
tions could be performed extremely quickly, as the forward modelling pipeline would
only require a single step of non-linear registration. A further option could be to
create study-specific leadfield templates for studies with similar but “non-standard”
anatomical features2. It is unclear if this technique would perform better than fast
BEM approaches.

2e.g. infants, or the elderly
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Figure 5.1: Conflicts between multimodal meshes. Volume rendering of CT data
and tessellated meshes from T1 and CT. This patient is a 13 year-old male that
has had a left parietal craniectomy following a traumatic injury. A porous polymer
implant has been put in place below the skin. The skin mesh has been hidden for
clarity. Visualized in Slicer (http://www.slicer.org) [201] and Gmsh [202].
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Discussion

This work has demonstrated several methods for in vivo modelling and analysis of
brain properties.

Diffusion-weighted MR imaging is still maturing. As shown in Figure 6.1, it is
roughly the fourth most published neuroimaging method, behind fMRI, PET, and
EEG. Much like with other techniques (e.g fMRI), studies will become more focused
as the tools are better understood. Network analysis methods are improving, but
the majority of studies still apply the methods indiscriminately and fish for results.
One notable issue is that parameters often have no justification, other than their
occurrence in previous papers. Small incorrect assumptions can have drastic effects
on the results of this type of advanced modelling, and each parameter should be
justified in the particular population under investigation.

Electroencephalography as a tool is extremely mature, but the field has left mod-
elling behind. EEG studies could be reporting results with millimetre precision, but
don’t because of their poor choices of forward models. There are huge strides to
be made in the EEG field by simplifying the construction and use of accurate head
models with state-of-the-art inverse solvers. The excuse of computationally intensive
calculations no longer has merit. Modern computers are quite capable of construct-
ing and visualizing enormously complex (> 10 million elements) models. Scalable
on-demand cloud servers are an economic solution for researchers with limited on-
site hardware. Finite element models should enjoy a larger role in neuroimaging
studies.

6.1 Reproducibility in neuroimaging

The current state of reproducibility in neuroscience is worrying. To illustrate my
point, I will take the literature related to the study of Parkinson’s disease with DWI
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as an example. A recent meta-analysis has found that the published studies on this
topic are inconsistent and unreliable [204]. A slightly less recent meta-analysis in a
more well-renowned journal, did not share this conclusion [150].

Many poor practices are behind this confusion. One is the reporting of large effect
sizes in very small samples (often less than ten subjects). Another is publication
bias, in which unexpected results (or those not equivalent to the first, potentially
unreliable dataset) are not given sufficient consideration. One suggested approach to
avoiding these issues is to pre-review the study design prior to acquiring the data. In
this manner the analysis methods are qualified and cemented prior to obtaining the
results so there is a lower chance of publishing irreproducible results and drawing
false conclusions.

To further avoid these issues the minimum number of acceptable subjects per
study should be increased to improve the signal-to-noise ratio in the literature. Prin-
cipal investigators and grant committees should start performing and/or requiring
statistical power calculations (e.g. for fMRI [205]) so that studies are not irreversibly
flawed from their conception. Editors and reviewers should reject studies with an un-
reliably low number of subjects. Researchers worried about computational time and
cost should consider cloud server-based processing methods. Recently, the NITRC
Computational Environment was released as a publicly available machine image.
The study detailed in Paper II was performed almost entirely using on-demand on-
line servers. This approach has the benefit of dramatically reducing processing time.

Another issue more specific to neuroimaging is that studies tend to use wildly dif-
ferent methods. This is compounded by the fact that they also use different scanners,
sequences, and image dimensions. To an outsider it appears that the only standard
methods in neuroimaging are the statistical tests. An analysis with Neurotrends, a
package for parsing PubMed (an article repository) metadata revealed that, at least
in fMRI studies, there are nearly as many unique methods as there are published
studies [206]. These unique methods are also known to give varying, and often
completely different, results [207]. It has become difficult to claim that results in
a new study confirm those of previous studies when the methods are so different.
Developers of neuroimaging methods should focus their time to collaboratively build
standard analysis pipelines to reduce the methodological variation between studies.

There is a massive amount of research time wasted spent re-implementing code
that already exists. As an example, there are at least 23 different packages capable
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of fitting a diffusion tensor, most of them using the same approach1. Furthermore,
many of these packages only operate on program-specific data formats making
interoperability difficult, and leading to other researchers building tools2 solely for
conversion. Researchers should use standard formats when developing new tools
and release their software to the public early and often so that the level of repetition
is minimized.

Journals and reviewers should mandate source code be released alongside every
published paper3. It is currently appallingly difficult to reproduce4 the vast majority
of published papers. What makes this worse is that reviewers can suggest the use
of published, but not publicly available, methods. Implementing another author’s
published algorithm can often result in erroneous results, since comprehensive algo-
rithmic details are rarely provided [208].

Collaborative open-source software libraries for research are the inevitable future.
Many versions may exist as users have their individual language preferences, but
highly-used algorithms (e.g. for segmentation and registration) should be standard-
ized and optimized. The cost in research time (and money) of processing, modelling,
and testing data should not be ignored. The neuroimaging field will benefit from
efficient and well-written neuroimaging pipelines. To promote replication, all of
the source code involved in this work has been provided online for free (as part of
Nipype or other repositories).

It’s important to understand the barriers to the changes I list above. By far
the largest is the entrenched publisher-researcher dynamic present in academia.
Governments and universities are funnelling money into privately held publishers
that provide very little value to academics. Specifically, publishers facilitate peer re-
view, automate typesetting, and provide distribution for the resulting manuscripts5.
Institution-run preprint hosting databases, such as http://arxiv.org/, have demon-
strated that hosting and distributing academic manuscripts is reasonably easy to
provide. Typesetting is a simple procedure provided by open-source packages (usu-
ally LATEX, which this thesis is written in). Peer review remains opaque at present and
could be improved by community-driven publication practices (e.g. [209]). Double-
blind peer review followed by transparent publication (i.e. reviewer’s names are

1Camino, MRtrix, FSL, FreeSurfer, Dipy, Diffusion Toolkit, DTIStudio, ExploreDTI, AFNI, VistaSoft,
SPM’s Diffusion Toolbox, Slicer, DTIPrep, DTI-TK, TORTOISE, DSI Studio, dtiBrainScope, medInria,
R’s dti package, BioImage Suite, DoDTI, JIST, SATURN, found using NITRC and [4]

2e.g. Camino-TrackVis (http://www.nitrc.org/projects/camino-trackvis/)
3Sadly, publishers have no incentive to encourage this
4Not to mention, access
5Some publishers provide proofreading, though this is hardly an expensive service

arXiv.org
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published) would help prevent corruption and favouritism as well as facilitate the
equal treatment of women. A precedent already exists: double-blind review practices
in the field of ecology have lead to a significant increase in the share of female first-
authored papers [210]. The transition to open-access journals with “unorthodox”
approaches to peer review cannot come from young researchers. In the early stages
of an academic career it is still mandatory to publish in “high impact” journals (practi-
cally all of which are provided by large publishers) in order to secure a post-doctoral
position. The driving force must come from established principal investigators.
Campaigns such as The Cost of Knowledge (http://thecostofknowledge.com/)
should be backed by funding organizations. In 2010, Elsevier, Springer, John Wiley
& Sons, and Informa all made over 32% profits on combined revenues of AC3.2 bil-
lion [211, 212]. This level of profit-taking greatly reduces the breadth of scientific
research that can be performed, and academics must stick to their convictions to
change the status quo. Only when top journals are run for-science and not for-profit
will it be possible to raise the bar of reproducibility required for publication.

The second major barrier is the lack of proper interdisciplinary training for re-
searchers. Neuroscience especially is split between technical and non-technical re-
searchers, neither of which generally makes a concerted effort to understand the
labour of the other. Technical staff need to grasp more thoroughly the biological as-
pects and practical goals of the problem they’re trying to solve. This could help pro-
mote the development of more robust tools that can be used more widely. Technical
staff should also consider following best practices of computer science, rather than
creating one-off in-house scripts to solve their problems. Developing as a team leads
to more reliable tools that are easier to use and share. Non-technical researchers
should spend more time trying to understand the techniques they are applying. It’s
irresponsible to draw conclusions that may affect future patient care based on a
poor understanding of complex techniques. Neuroscientists should stop ignoring
statistical best practices - even with a well thought-out a priori hypothesis you are
not immune to false positives. All researchers should be careful interpreting their
results when they are unexpected. It’s best to remain skeptical, as it’s far more likely
that any given result is an artifact than a real effect.

http://thecostofknowledge.com/
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Concluding remarks

In this thesis I have developed and applied various multimodal neuroimaging mod-
elling and analysis techniques. To summarize:

1. BDNF genotype influences the architecture of white matter pathways in
the human brain. Brain network mapping pipelines were developed and ap-
plied to 36 subjects. Network analysis revealed that healthy adult carriers of
the Met allele at codon 66 have increased structural connectivity bilaterally in
frontal and parietal regions. Machine learning was successfully used to classify
subjects’ BDNF genotypes given only their connectomes.

2. Patients with Parkinson’s disease show extra-nigral white matter abnor-
malities in limbic and cognitive networks, as well as in the nigrostriatal
pathway. Super-resolution track-weighted imaging workflows were developed
and applied to 27 Parkinson’s patients and 26 elderly controls. Streamline
quantification identified changes in disease-relevant areas in these early-stage
PD patients. Classical tensor-based analysis methods were unable to identify
any variation between the two groups.

3. Finite element modelling for EEG source localization is efficient enough
for wide adoption. Modelling conductivity profiles in vivo from diffusion-
weighted imaging is beneficial and has a negligible computational cost. The
forward model developed was shown to be more accurate than the current
state-of-the-art alternative. This framework could also be used to simulate
various types of brain stimulation techniques.
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Abstract

Brain-derived neurotrophic factor (BDNF) modulates the pruning of synaptically silent axonal arbors. The Met allele of the
BDNF gene is associated with a reduction in the neurotrophin’s activity-dependent release. We used diffusion-weighted
imaging to construct structural brain networks for 36 healthy subjects with known BDNF genotypes. Through permutation
testing we discovered clear differences in connection strength between subjects carrying the Met allele and those
homozygotic for the Val allele. We trained a Gaussian process classifier capable of identifying the subjects’ allelic group with
86% accuracy and high predictive value. In Met carriers structural connectivity was greatly increased throughout the
forebrain, particularly in connections corresponding to the anterior and superior corona radiata as well as corticothalamic
and corticospinal projections from the sensorimotor, premotor, and prefrontal portions of the internal capsule.
Interhemispheric connectivity was also increased via the corpus callosum and anterior commissure, and extremely high
connectivity values were found between inferior medial frontal polar regions via the anterior forceps. We propose that the
decreased availability of BDNF leads to deficits in axonal maintenance in carriers of the Met allele, and that this produces
mesoscale changes in white matter architecture.
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Received February 19, 2013; Accepted June 7, 2013; Published July 31, 2013

Copyright: ! 2013 Ziegler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Belgian National Fund for Scientific Research, the University of Liège, the Queen Elisabeth Medical Foundation, the
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Introduction

Secretion of brain-derived neurotrophic factor is essential for
synaptic plasticity in the central nervous system during neuro-
development [1], as well as in mature brains, in which it
promotes long-term potentiation and the formation of long-term
memory [2,3]. A common human non-synonymous single-
nucleotide polymorphism in the BDNF gene (Val66Met,
rs6265) decreases activity-dependent BDNF release in neurons
transfected with the human A allele (Met-BDNF) [4]. It is also
associated with variation in human memory [5,6], and with
several neurological and psychiatric disorders [7]. We reasoned
that the persistent differential activity-dependent BDNF release
implied by this polymorphism should also be associated with
differences in adult brain structure. Accordingly, the polymor-
phism affects the anatomy of the hippocampus and prefrontal
cortex [8]. In this study we examine structural connectivity in the
brains of normal human participants stratified according to
BDNF genotypic group.

Indeed, for any equivalent set of connections, there is substantial
variability in the density of cortical fibers between individuals of
the same species [9]. This variability is in part genetically
determined. Functional MRI in monozygotic and dizygotic twins
has shown that 60% or more of the inter-subject variance in
transmission efficiency of cortical networks can be attributed to
genetic effects [10]. However, the mechanisms by which this

genetic influence impacts human brain connectivity are not yet
determined. Comparison of groups by BDNF genotype may be
useful for assessing the impact of activity-dependent processes on
brain connectivity.

Here, we originally hypothesized that there would be decreased
structural connectivity in Met carriers corresponding to the
reduced availability of the neurotrophin. We examined a healthy
young population with diffusion-weighted MR imaging, recon-
structed their white matter tracts with probabilistic tractography,
and examined the effect of carrying the BDNF Met allele at the
connectome level. Contrary to our hypothesis, we found a marked
increase in connectivity strength as well as altered track topology
for Met carriers.

Results

Population
In our cohort (n = 134), the studied non-synonymous coding

single-nucleotide polymorphism (rs6265) was in Hardy-Weinberg

equilibrium (x2 = 3.25, p = 0.07) with genotypic frequency of 0.6
(G/G), 0.31 (G/A) and 0.09 (A/A). The final study population
comprised 36 healthy subjects aged 18–25. Fifteen (9 male) were
identified as carrying the Met allele. The remaining 21 (9 male)
were homozygotes for the Val allele and were referred to as the
Val/Val group. The groups did not vary significantly in IQ or age,
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nor did their scores differ for a battery of psychological tests
(Table S1 in File S1).

Network-based statistics
In our networks, with 1015 nodes and an average of 66,456

edges, we identified 387 connections in which the number of
connecting tracks was significantly greater in carriers of the Met
allele than in the Val homozygotes (p = 0.0122, permutation
testing). The relative connection strengths for these edges are
shown in Fig. 1a.

For Met carriers the strength at these edges was found to range
between 1.75 and 48 times their strength in Val/Val. Of these
edges, 41 (11%) were found to have between 75% and 200% more
tracks in Met carriers than in Val homozygotes. Met carriers had
200% to 400% more tracks in 123 (32%) of the edges, 400% to
900% more tracks in 104 edges (27%), and even greater factors in
the remaining 23 edges (6%). The affected edges were largely
central connections and were not short or uncommon fiber pathways.

Roughly one quarter (96) of the edges that were identified were
not present in any of the Val/Val subjects (i.e. the mean value in
Met carriers was significantly greater than the value of zero, found
in Val homozygotes). Fig. 1b shows the mean number of tracks
for the 96 edges that were only present in the Met carriers. The
connections unique to Met carriers appeared consistently across
the group. We did not find any edges with significantly lower
strength in Met carriers. The identified connectivity changes are
unlikely to represent false positives because of the stringent non-
parametric statistical method [11]. Moreover, the reported
differences were specific to the BDNF polymorphism; subjects
were also divided by gender (18 F, 18M), and by their adenosine

deaminase (ADA) genotype (17 GA, 19 GG), and no significant
results were obtained.

Global network metrics (graph density, number of connected
components, transitivity) showed no variation between groups.
Local nodal metrics (degree, clustering coefficient, number of
triangles, [closeness, betweenness, degree] centrality, highest k-
core number) were averaged for each participant and also did not
vary. Wiring cost and network efficiency, compared both for the
whole network as well as for only corticocortical connections, were
unaffected by BDNF genotype. The total number of tracks per
connectome, out of the generated 300,000 per subject, did not
differ. The lack of significant variation in any of the network
metrics is understandable because the total number of altered
edges (387) is less than 1% of the mean number of edges (66,456)
per network.

Classifier performance
The classifier was able to discriminate between Val homozy-

gotes and Met carriers with 86.1% global accuracy. The predictive
value for the Val/Val and Met carrier groups were 94.4%
(p = 0.001) and 77.8% (p = 0.003), respectively. In Figure 2 the
weights obtained by the classifier are visualized as edges in the
brain network. For the classifier trained to identify gender, the
global accuracy reached 63.9% (n.s.). Identifying the subjects’
adenosine deaminase (ADA) genotype was only possible with an
accuracy of 58.3% (n.s.).

Tractographic basis
Structural connectivity in Met allele carriers was found to be

higher throughout the forebrain (Figure 3). Large increases were

Figure 1. Significantly increased regional connectivity and topological changes in Met carriers. (a) Track count increase for each
connected edge in Met carriers (n = 15) versus Val/Val subjects (n = 21). (b) Region-to-region track pathways that are present only in the Met carriers.
doi:10.1371/journal.pone.0069290.g001
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found in connections corresponding to the anterior and superior
corona radiata, including the corticothalamic and corticospinal
projections from the sensorimotor, premotor, and prefrontal
portions of the internal capsule. General interhemispheric
connectivity was increased via the corpus callosum and anterior
commissure. Extremely high connectivity values were found
between inferior medial frontal polar regions via the anterior
forceps. The Met carriers also presented novel connections within
the cingulum, corpus callosum, and anterior forceps, which were
not found in the Val homozygotes.

Discussion

Using high-resolution connectome mapping, we observe
significant differences in structural brain connectivity between
samples of normal young healthy human volunteers recruited
based on the Met allele of the BDNF gene. These differences
appear to involve specific fiber tracts; although widespread, they
do not modify connectome parameters computed over the whole
brain. They also appear specific to this allele; no such difference
could be found for the polymorphism in the adenosine
deaminase gene, or even for gender. We further demonstrate
that this structural information can be used, with a reasonably
high accuracy, to identify the BDNF genotype of an individual
from his structural brain wiring.

In many regions the number of connecting tracks in Met
carriers is increased by a factor of 3 or more. These are substantial
changes at a mesoscopic anatomical level that are in line with
previous findings by other groups. One large study examined
fractional anisotropy (FA) – a measure of the restrictedness of
random motion in water molecules – in 455 subjects and reported
higher values, in some areas by up to 15%, in Met carriers [12]. A
larger number of fibers oriented in the same direction would
necessarily increase local anisotropy. Our findings confirm and
extend their findings by specifying the nature and topology of these
differences. It is not white matter integrity that is altered between
Met carriers and Val homozygotes, but rather the strength and

architecture of their white matter tracts. The connections with
increased strength in Met carriers predominantly involve the
thalamus and brainstem, the sensorimotor areas of parietal and
frontal cortex, and the ventral medial prefrontal cortex. The
occipital, posterior parietal, and temporal areas also appear to
differ between allelic groups to a lesser extent.

It must be stated that the results obtained here are dependent on
the regional parcellation of the structural brain images. Previous
studies have shown that the choice of region size and number
greatly impacts the resulting network metrics [13,14]. In this work
we chose to use a previously published and open-source
parcellation scheme that depends on automated atlas-based
segmentation [14–17].

Intriguingly, these anatomical changes do not translate into
improved performance in either of our populations. Indeed, by
design, our samples were matched for various demographic
variables including IQ, age, and education level. One possible
explanation for this phenomenon is that the increased connection
strengths are due to redundant connections that are not essential
to sustain the speed or efficiency of information processing.

The mechanisms causing these alterations cannot be derived
from the current data. However, in addition to its involvement in
long-term potentiation and synaptic plasticity [2], BDNF has also
been implicated in axonal pruning and maintenance. BDNF is
released from stimulated ‘‘winning’’ neurites and binds to the
p75NTR receptor on nearby ‘‘losing’’ terminals, triggering the
elimination of synaptically silent axonal terminal arbors [18,19]. It
is tempting to suggest that the reduction in activity-dependent
BDNF secretion accounts for the observed changes in white matter
architecture. If indeed silent axons are relatively less likely to be
pruned due to reduced BDNF secretion in Met carriers, brain
connectivity might eventually be less profoundly shaped by
experience than in homozygous Val individuals, without any
conspicuous behavioral consequences.

In keeping with this hypothesis, brain maturation from
childhood to adolescence is a nonlinear regionally selective
process [20]. Gray matter loss is abundant, as is axonal
myelination, and both continue until early adulthood. Consistent
with our findings, grey matter volume in adults was shown to be
lower in Met carriers in both the lateral frontal cortices and
hippocampi [8]. Moreover, these differences were deemed
independent of age (18 to 60) and gender, which suggests that
the morphological changes are occurring prior to adulthood. It is
possible that the increase we identify in connecting tracks is a
result of deficits in axonal maintenance during adolescence, a key
period of synaptic revision. When tested at age 11, children in a
longitudinal study showed no differences in verbal reasoning that
could be associated with their BDNF genotype. When the same
cohort was tested again, the elderly Met homozygotes outper-
formed heterozygotes as well as their homozygous Val counter-
parts in both verbal and non-verbal reasoning [21]. It has also
been reported that Met carriers show enhanced task-switching
abilities during old age [22]. These convergent findings support
the idea that the Met allele protects against age-related
detriments in brain function, possibly by providing redundant
or degenerate connectivity.

Finally, although we matched our population samples with great
care and conducted conservative statistical analyses, our study is
not immune from random sampling biases. The absence of
significant results concerning ADA polymorphism and gender
indicate that the reported effects are specific to BDNF polymor-
phism. However, contradictory results have been reported about
the effect of BDNF polymorphism on cognitive performance and
disease susceptibility [23], potentially caused by genetic interac-

Figure 2. Classifier weight distribution. The weights obtained by
the classifier have been plotted as network edges in order to show their
spatial distribution. The thresholding procedure removed 99.75% of the
edges for clarity. The remaining connections represent 21.69% of the
absolute weight.
doi:10.1371/journal.pone.0069290.g002
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tions and global haplotypic diversity [24]. It is important to note
that the Val66Met polymorphism has a wide variation in
prevalence worldwide. Its frequency ranges from 0.55% in Sub-
Saharan Africa, to 19.9% in Europe, and 43.6% in Asia [24].
Studies including subjects from different populations should take
care to consider their genetic backgrounds.

Future research should confirm these findings in healthy popu-
lations of both young and old subjects, as well as during the deve-
lopment period from childhood to adolescence. Longitudinal
neuroimaging data would clarify BDNF’s effect on brain develop-
ment and connectivity, and larger populations may help identify
whether these changes can be fully attributed to the Met allele. It also
remains to be seen if these alterations are more or less profound in
Met homozygotes or in subjects with the Val66Met polymorphism.
The prevalence of the Met allele [24,25] suggests that it confers some
evolutionary advantages. It may be that these advantages, developed
during preadolescence, are only manifested in old age.

Methods

Ethics Statement
Volunteers were recruited through advertisement on the

University intranet. They gave their written informed consent
to participate in the study, which was approved by the Ethics
Committee of the Faculty of Medicine at the University of Liège.

Population
Participants were young (18–25 years old), healthy, and lean

(Body Mass Index v26). They were all right-handed, as
determined by the Edinburgh Inventory [26]. None complained
about sleep disturbances, and this was reflected by the Pittsburgh
Sleep Quality Index (PSQI score v6) [27]. Extreme chronotypes,
according to the Horne and Ostberg morningness-eveningness
questionnaire, were excluded (scores v31 or w69) [28]. Their
sleep midpoint on free days was required to be between 3 and 5.99
as indicated by the Munich Chronotype Questionnaire [29]. They
all scored in the normal range (0–9) on the Epworth Sleepiness
Scale [30]. The absence of medical, traumatic, psychiatric, and
sleep disorders was established through a semi-structured interview.

All participants had normal scores on the 21-item Beck Anxiety
Inventory (score v11) and the 21-item Beck Depression
Inventory-II (score v14) [31,32]. They were non-smokers and
moderate caffeine and alcohol consumers. None were on
medication other than oral contraceptives. No caffeine was
allowed during the experiment.

Volunteers complying with these criteria were invited to
perform Raven’s Progressive Matrices and a blood sample was
obtained for BDNF genotyping [33]. Participants were eventually
selected based on their BDNF genotype. Allelic groups were
formed with participants that were matched according to gender,
age, education level, chronotype, PSQI score and IQ (Table S1
in File S1). Subjects received financial compensation for their
blood test and participation in the study.

Genotyping
Genomic DNA was extracted from blood samples using a

MagNA Pure LC Instrument. The DNA sequence of interest was
amplified by Polymerase Chain Reaction in a final volume of
50 ml containing 0.6 mM of each primer (Thermo Scientific,

Germany), 0.5 ml Faststart Taq DNA Polymerase (Roche
Diagnostics, Germany), 0.8 mM of each deoxynucleotide tri-
phosphate (Roche Diagnostics Germany) and 20 ng of genomic
DNA. After 10 min of denaturation at 95uC, samples underwent
35 cycles consisting of denaturation (95uC, 30 sec), annealing
(60uC, 40 sec), and extension (72uC, 30 sec), followed by a final
extension of 7 min at 72uC. The amplified DNA product was
then subjected to pyrosequencing (Pyromark Q96 Vacuum
Workstation, PSQ 96MA, Pyromark Gold Q96 Reagents,
Qiagen, Germany). The sequences of the primers are available
upon request.

Data Acquisition
Data was acquired on a 3 T head-only scanner (Magnetom

Allegra, Siemens Medical Solutions, Erlangen, Germany) operated
with the standard transmit-receive quadrature head coil. A high-
resolution T1-weighted image was acquired for each subject (3D
modified driven equilibrium Fourier transform, repetition time
= 7.92 ms, echo time = 2.4 ms, inversion time = 910 ms, flip

angle = 15u, field of view = 25662246176 mm3, 1 mm isotropic
spatial resolution). Seven unweighted (b = 0) volumes were
acquired followed by a set of diffusion-weighted (b = 1000) images
using 61 non-collinear directional gradients.

Processing & Analysis
The processing workflow was developed in Python and

imports modules from the Nipype project [34]. The pipelines
used for both single subjects and groups have been detailed as
part of the online Nipype documentation in order to improve
transparency and promote reproducibility. Every piece of
software (CMTK, ConnectomeViewer, Dipy, Freesurfer, FSL,
Nipype, Nibabel, MRtrix) used to process data in this paper is
currently operating under an open-source license. The process
began by segmenting the structural MR images using the
automated labeling of Freesurfer [15]. Segmented structural
images were then further parcellated using the Lausanne2008
atlas for a total of 1015 regions of interest (ROIs) [14]. Diffusion-
weighted images were corrected for image distortions arising
from eddy currents using linear coregistration functions from the
FMRIB Software Library (FSL) [35]. Fractional anisotropy maps
were generated, and a small number of single-fiber (high FA)
voxels were used to estimate the spherical harmonic coefficients
of the response function from the diffusion-weighted images
[36,37]. Using non-negativity constrained spherical deconvolu-
tion, fiber orientation distribution (FOD) functions were obtained
at each voxel. For our dataset with 61 directions, we used the
maximum allowable harmonic order of 8 for both the response
estimation and spherical deconvolution steps. Probabilistic
tractography was performed throughout the whole brain using
seeds from subject-specific white-matter masks and a predefined
number of tracts. Fiber tracking settings were as follows: number
of tracks = 300,000, FA/FOD amplitude cutoff for terminating
tracks = 0.1, minimum track length = 10 mm, maximum track
length = 200 mm, minimum radius of curvature = 1 mm,
tracking algorithm step size = 0.2 mm. Using tools from Dipy
(Diffusion in Python, http://nipy.sourceforge.net/dipy/), the
tracks were affine-transformed into the subject’s structural space.
This procedure circumvents the common problem of having to
downsample ROI image files – defined in structural space – so

Figure 3. Connecting tracks in Met carriers. The average number of tracks connecting two regions (i.e. the edge weight) in Met carriers was
found to range from 1.75 to 48x the value found in the Val/Val group. The range was so broad that it had to be analyzed in separate stages. Fibers
shown are filtered from a single Met carrier.
doi:10.1371/journal.pone.0069290.g003
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that they can be used in diffusion space for connectivity
mapping, and therefore leads to more accurate connectomes.
Connectome mapping was performed by considering every
contact point between each tract and the outlined regions of
interest. Unlike in some past papers (e.g. [14,16]) which
considered only fiber start and endpoints, we incremented our
connectivity matrix every time a single fiber traversed between
any two regions. This leads to a far denser network than we have
seen before, presumably with more accurate network properties.
The number of tracked fibers which remained in each subject’s
connectome was also recorded.

This method of connection mapping may need further
optimisation, however, as it can potentially be linking gray matter
cortical regions through unreliably tracked fibers. This is something
that may be avoidable by placing limits on the propagation
parameters, or with anatomically or otherwise constrained tracto-
graphy approaches [38,39]. The benefits and drawbacks of different
mapping techniques should be explored by future studies.

Numerous network metrics were obtained for each connectome
and compared at the group level. At the nodal level we calculated
the degree, clustering coefficient, and number of triangles, as well
as three measures of centrality (closeness, betweenness, degree),
and the highest k (i.e. degree) value for each k-core the node is
encompassed by. For the network as a whole we computed the
average shortest path length (i.e. the inverse of efficiency), the
wiring cost (using Euclidean distance between nodes), the graph
density, the number of connected components, and the graph’s
transitivity [40]. For a complete description of all of these metrics,
the reader is referred to the Python package NetworkX [41]. Tract
and network visualization were performed in TrackVis (Ruopeng
Wang, Van J. Wedeen, TrackVis.org, Martinos Center for
Biomedical Imaging, Massachusetts General Hospital), MRtrix,
and ConnectomeViewer [42]. Figure S2 provides, for visualiza-
tion, the orientation distribution functions and generated fiber
tracts for a midbrain coronal slice of a single subject. In
Figure S3, the structural connectome and T1-weighted image
are shown for the same subject, and thresholded across two distinct
fiber-count ranges, so that both the core and the density of the
network can be seen.

Statistical Analysis
The Network-based Statistic (NBS) was used to identify

differences between BDNF allelic groups (Fig. S1a) [11]. For
each permutation the t-values at each edge were thresholded
above a value of 3. The supra-threshold components were then
compared against the generated null distribution. The null
distribution for each test was produced by permuting members
of each population 5000 times and estimating the maximal
component size.

A table describing a representative subject’s connection matrix
and edge weights is given in Table S2 in File S1. Since the
networks in this study have a high number of regions, and we have
performed whole-brain connectome mapping with a relatively low
number of fibers, a large proportion of our network’s edges have
low fiber counts. This may be problematic for statistical testing
with the NBS because these small-integer populations do not
provide wide ranges for edge weights and can result in inaccurate
t-values. In future, it may be prudent to generate a larger number
of streamlines, reduce the number of nodes in the network, or
restrict analysis to specific parts of the brain. Practically, it can be
computationally intensive to deal with large streamline datasets
and networks with high numbers of nodes. The trade-off between
resolution and resources is something that must be decided by the
researcher with the focus of the study in mind.

In Fig. S1b we projected the observed NBS component onto
the tractography of a single subject. This projection is, in effect, a
type of reverse connectome-mapping. Given the connectivity
network, we filtered the set of tracts to show only those that
traverse between regions with edges in the network. Global graph
metrics, psychological metrics, and the total number of fibers per
connectome, were compared directly between allelic groups via
Student’s t-test. Nodal measures were averaged for each subject
and analyzed in the same manner. All distributions were plotted as
combined histogram/kernel-density maps to evaluate gaussianity
prior to statistical analysis. Apart from the results given by the
network-based statistic, no significant differences were identified
between the two genotypic groups for any of the graph-level
measures. No significant differences were observed between allelic
groups in any of the psychological metrics.

Classification
The multivariate statistical properties of our data were studied

with a linear Gaussian Process Classification method [43] as
interfaced by PRoNTo (Pattern Recognition for Neuroimaging
Toolbox, http://www.mlnl.cs.ucl.ac.uk/pronto) [44]. The classi-
fier was given the fiber-count connection matrices for each subject
and their true classes (e.g. Met carrier, Female). No network
metrics, topology, or spatial information was provided to the
classifier. The accuracy and generalisability of the classification
were assessed with a leave-one-out cross-validation procedure: one
subject is left out at a time, the classifier is trained on the
remaining data, and the true and predicted (by the trained
classifier) classes of the left-out subject are compared. With this
linear kernel method weights were also obtained indicating the
contribution to the classification output (in favor of either
genotypic group) of each edge in the network. The same method
was employed to discriminate features related to the subjects’
gender and genotype for the ADA gene. For the purposes of
visualization, we thresholded the edges in Figure 2. The removed
portion of the classification weights can be found in Fig. S4.
Example calculations for the percent classification weight
represented by the remaining edges can be found in the
Supplementary Information in File S1.

Supporting Information

Figure S1 Edge weights are stronger in Met carriers. (a)
In the structural component pictured each inter-regional connec-
tion has a significantly higher number of tracks for Met carriers.
(b) The tracks shown are produced by filtering a single subject’s
tracts using the connections from the network shown in (a).
(TIF)

Figure S2 Tracks and Orientation Distribution Func-
tions for a single subject. Combined figure for visualizing the
results of the spherical deconvolution and probabilistic fiber
tractography steps in the processing pipeline.
(TIF)

Figure S3 Structural connectome for a single subject.
Structural connectivity network built from the Lausanne 2008
regional atlas – with each region displayed as a node – and a set of
300,000 fiber tracks. Colored edge weights represent the number
of tracks that provide any connection between any pair of regions.
The figure is divided into ranges of edge weights for optimal
visualization of the (a) high-valued structural core and the (b) low-
valued associative connections.
(TIF)
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Figure S4 Detailed dissection of the classification
weights. (a) The complement of Figure 2 from the main text.
This network details the edges that were filtered in the main text
figure, and shows 99.75% of the edges, which represent only 78%
of the total weight. (b) A set of very low contribution edges
between genotypic groups. These very low-valued edges are
difficult to interpret. (c) The highest valued edges that were
thresholded out of Figure 2 in the main text. A pattern of posterior
parietal and medial frontal connectivity can be inferred in the Met
carriers, but the abundance of edges is still complex to visualize.
(TIF)

File S1 Table S1– Psychological questionnaire results.
Values reflect mean 6 standard deviation. Table S2– Con-
nectome edge weights. This table details a single random (Val)

subject’s network edges. The vast majority of the edges had
weights below a fiber count of 100.
(PDF)
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2 Department of Human Genetics, CHU Sart Tilman, Liège, Belgium
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4 Department of Electrical Engineering and Computer Science, University of Liège,
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The following equations and figures are supplementary material.
The networks in our study have 1015 anatomically defined nodes. This leads to:
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The total of all the classifier weights was obtained by summing the absolute value of all the weights:

W

total

=
N

nodesX

i=0,j=0

|W
i,j

| (2)

= 2077.6096558590079

For each of the thresholding windows we calculated the percent of total weight represented. For
example, in Figure 2 of the main text, we calculated the weight and amount of edges using the following
method. First, we defined a binarizing threshold function to obtain the number of edges:

f(x) =

⇢
1 x if -0.1  n  0.1
0 x if n > 0.1 or n < -0.1

(3)

Next, we used this to obtain the total number of thresholded edges, and their percent of the total
edges.
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The percent of edges that remain are simply:
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The total weight of the edges that are within the threshold regions can be obtained similarly:
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The percent of the total classifier weight contained within the thresholded edges is therefore:
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thresh

weight

= 21%

For future studies it may be simpler to only consider edges that exist in at least one structural network.
This will speed classification and make visualization easier. That is to say, the classification should be
given a mask that contains only edges that exist in the union of all all subject’s networks. This can be
expressed mathematically with set theory as:

Mask

inclusive

= Subj1 [ Subj2 [ · · ·Subj
n

(8)

Figure Legends

Results from Network-Based Statistic on BDNF Genotypic Groups Met carriers > Val/Val, 5000 iterations, p = 0.0122

B

A

XYZ = RGBNetwork-filtered tracts from a single subject

Figure 1. Edge weights are stronger in Met carriers. (a) In the structural component pictured each
inter-regional connection has a significantly higher number of tracks for Met carriers. (b) The tracks
shown are produced by filtering a single subject’s tracts using the connections from the network shown
in (a).
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Figure 2. Tracks and Orientation Distribution Functions for a single subject. Combined figure for
visualizing the results of the spherical deconvolution and probabilistic fiber tractography steps in the
processing pipeline.

Figure 3. Structural connectome for a single subject. Structural connectivity network built from the
Lausanne2008 regional atlas - with each region displayed as a node - and a set of 300,000 fiber tracks.
Colored edge weights represent the number of tracks that provide any connection between any pair of
regions. The figure is divided into ranges of edge weights for optimal visualization of the (a)
high-valued structural core and the (b) low-valued associative connections.

Tables
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Figure 4. Detailed dissection of the classification weights. (a) The complement of Figure 2 from the
main text. This network details the edges that were filtered in the main text figure, and shows 99.75%
of the edges, which represent only 78% of the total weight. (b) A set of very low contribution edges
between genotypic groups. These very low-valued edges are di�cult to interpret. (c) The highest valued
edges that were thresholded out of Figure 2 in the main text. A pattern of posterior parietal and medial
frontal connectivity can be inferred in the Met carriers, but the abundance of edges is still complex to
visualize.
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Table 1. Psychological questionnaire results

Measure Val/Val Met carriers t-Test p-Value Meaning

Age 21.4 ± 1.7 20.4 ± 1.3 0.07

IQ 55.6 ± 2.5 56.6 ± 2.6 0.26

Timed IQ 25.2 ± 5.9 27.1 ± 9.6 0.51

Body Mass Index (BMI) 22.3 ± 1.9 21.4 ± 2.1 0.21

Beck Anxiety Inventory (BAI) 4.1 ± 2.7 3.9 ± 2.7 0.82 Normal

Beck Depression Inventory (BDI-II) 3.5 ± 4 1.8 ± 2.3 0.14 Normal

Pittsburgh Sleep Quality Index (PSQI) 2.9 ± 1.3 2.9 ± 1.1 0.98 Good Sleep

Horne-Osberg Chronotype (HO) 53.4 ± 6.5 56.1 ± 7.6 0.27 Neutral Chronotype

Munich Chronotype 4.3 ± 0.7 4.1 ± 0.4 0.58 Normal

Epworth Sleepiness Scale 5.2 ± 2.3 5.8 ± 3.4 0.59 Normal

Values reflect mean ± standard deviation

Table 2. Connectome edge weights

Measure Value

Number of Edges 65,785

Graph density 12.78%

Minimum Edge Weight 1

Maximum Edge Weight 4737

Total Edge Weight 802,470

Mean Edge Weight 12.2

Standard Deviation in Edge Weight 55.8

Percent of Edges with Weight = 1 41.2%

Percent of Edges with Weight = 2 14.6%

Percent of Edges with Weight = 3 8.1%

Percent of Edges with Weight <= 5 72.9%

Percent of Edges with Weight < 100 97.6%

Percent of Edges with Weight >= 100 2.4%

This table details a single random (Val) subject’s network edges. The vast majority of the edges had
weights below a fiber count of 100.
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Table A.1: Results from Difference (t-test) and Equivalence (TOST) Analysis

Global measures Different p
(Met > ValVal)

Equivalent p
(Met ⇠ ValVal)

Connected Components 0.7869 0.0028**
Density 0.9636 0.0036**
Efficiency 0.8634 0.0074**
Transitivity 0.8567 0.0043**
Connected Fibers (%) 0.1559 0.0507

Averaged nodal measures

Betweenness Centrality 0.9493 0.0043**
Closeness Centrality 0.9064 0.0161*
Load Centrality 0.9492 0.0033**
Clustering 0.0639 0.3280
Core Number 0.6294 0.0091**
Degree 0.7027 0.0061**
Triangles 0.9015 0.0018**

Measures above the double line were computed globally, while measures below
were computed at the node level and averaged across all nodes for each subject.
The majority of network metrics are statistically equivalent, except those that
reflect an increase in fiber count between regions. *: p < 0.05, **: p < 0.01. TOST
= two one-sample test.
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In Parkinson's disease (PD) the demonstration of neuropathological disturbances in nigrostriatal and extranigral
brain pathways using magnetic resonance imaging remains a challenge. Here, we applied a novel diffusion-
weighted imaging approach—track density imaging (TDI).
Twenty-seven non-demented Parkinson's patients (mean disease duration: 5 years, mean score on the Hoehn &
Yahr scale = 1.5) were compared with 26 elderly controls matched for age, sex, and education level. Track den-
sity images were created by sampling each subject's spatially normalized fiber tracks in 1 mm isotropic intervals
and counting the fibers that passed through each voxel. Whole-brain voxel-based analysis was performed and
significance was assessed with permutation testing.
Statistically significant increases in track densitywere found in the Parkinson's patients, relative to controls. Clus-
ters were distributed in disease-relevant areas including motor, cognitive, and limbic networks. From the lower
medulla to the diencephalon and striatum, clusters encompassed the known location of the locus coeruleus and
pedunculopontine nucleus in the pons, and from the substantia nigra up to medial aspects of the posterior puta-
men, bilaterally.
The results identified in brainstem and nigrostriatal pathways show a large overlap with the known distribution
of neuropathological changes in non-demented PD patients. Our results also support an early involvement of lim-
bic and cognitive networks in Parkinson's disease.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Parkinsonism is clinically defined by the presence ofmotor slowness
with muscle rigidity, and/or tremor, and/or postural instability (Gibb,

1988). The most common cause of degenerative Parkinsonism in adults
is Parkinson's disease. The main motor features of Parkinson's disease
stem from the death of pigmented neurons in the substantia nigra
(SN). Neuronal loss begins in the ventrolateral SN and this remains
the most severely affected region throughout the illness (Damier et al.,
1999a; Fearnley and Lees, 1991). As the disease progresses, pathology
extends into the dorsal tier of the nigra and ventral tegmental area
(Fearnley and Lees, 1994). Post-mortem studies have shown that the
loss of cells in these regions results in profound dopamine (DA) deple-
tion in the motor region of the striatum (Kish et al., 1988), with nigral
projections to the dorsal and caudal putamen being most affected. A
post-mortem diagnosis of Parkinson's disease requires evidence of cell
loss in the SN, as well as the presence of Lewy pathology—a term that
describes variously shaped insoluble intraneuronal deposits that con-
tain misfolded α-synuclein. These aggregated α-synuclein deposits ac-
cumulate in neurites (Lewy neurites) and in neuronal somata (Lewy
bodies). Furthermore, neuropathological abnormalities can be observed
in other brainstem nuclei such as the pedunculopontine nucleus, locus
coeruleus, and raphe nucleus (Gesi et al., 2000; Halliday et al., 1990;
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Jellinger, 1991; Zweig et al., 1993), andmay extend up to the basal fore-
brain and cerebral cortex, possibly according to a predictable spatiotem-
poral pattern (Braak et al., 2003a, 2003b).

In vivo nigral and extranigral imaging biomarkers of Parkinson's
disease are highly sought after for many reasons. Candidate biomarkers
may aid premotor diagnosis and help differentiate Parkinson's disease
from look-alike conditions such as essential tremor and atypical
Parkinsonian syndromes. Perhaps more importantly, reliable imaging
biomarkers may aid the development of disease-modifying therapies,
as they can be used to monitor disease progression.

To date, no in vivo brain imaging modality has adequately captured
the widespread spatial spectrum of brain abnormalities in non-
demented patients with Parkinson's disease. Because a biochemical
hallmark of Parkinson's disease is a deficiency of striatal DA,many imag-
ing studies have focused on studying the problem directly. Measure-
ment of striatal [18F]-L-dihydroxyphenylalanine (18F-DOPA) uptake
with positron emission tomography (PET) is regarded by many as the
“gold standard” for diagnosis of Parkinson's disease. However, while
decreased 18F-DOPA uptake may also be observed in other brainstem
regions and cortical areas (Pavese et al., 2012), it is generally acknowl-
edged that it does not reveal thewhole range of extranigral pathological
abnormalities.

Despite recent advances in brain imaging, extranigral abnormalities
remain difficult to capture in vivo in non-demented Parkinson's pa-
tients. As routine MRI is typically unremarkable in Parkinson's disease,
the use of more advanced techniques is warranted. In this paper, we
used track density imaging, an advanced diffusion-weighted imaging
(DWI) method that allows the mapping of cerebral fiber pathways at
a spatial resolution smaller than the voxel size of the original MRI
(Calamante et al., 2010).

Diffusion-weighted imaging allows for the quantification of water
mobility within tissue. In DWI analysis the movement of water within
each voxel ismodeled (e.g. using a tensor) and used for further analysis.
To date, most studies have relied on scalar measures derived from the
diffusion tensormodel, such as fractional anisotropy (FA) andmean dif-
fusivity (MD), which quantify the degree of anisotropy and average
magnitude of local water diffusion, respectively. Most previous DWI
studies in Parkinson's disease used FA andMD on focused regions of in-
terest defined a priori, usually in the substantia nigra (Chan et al., 2007;
Vaillancourt et al., 2009; Yoshikawa et al., 2004; Zhan et al., 2011). In
general, results show decreased FA in Parkinson's patients compared
to controls. Studies in rat (Soria et al., 2011) and mouse (Boska et al.,
2007) models of Parkinson's disease have also reported similar de-
creases. Other studies using methods like tract-based spatial statistics,
voxel-based FA analysis, and ROIs outside the substantia nigra, have
resulted in less consistent reports. Changes in tensor-derived measures
have been reported in the gyrus rectus (Ibarretxe-Bilbao et al., 2010),
the genu of the corpus callosum, the superior longitudinal fasciculus
(Gattellaro et al., 2009), as well as motor and frontal cortices (Zhan
et al., 2011). As these past studies have relied on DWI sequences
with relatively low numbers of unique gradient directions [6 to 64,
(Cochrane and Ebmeier, 2013)], they may have lacked the sensitivity
to show disturbances using unbiased voxel-based analyses.

Here we acquired data in 27 non-demented Parkinson's disease pa-
tients and 26 matched controls using an advanced DWI sequence, in
which 120 diffusion gradients were applied, allowing for the fitting of
higher order models of the signal in each voxel. We reconstructed
white matter streamlines from DWI images with constrained spherical
deconvolution, which generally provides far greater accuracy than alter-
natives like single ormulti-tensormodels (Tournier et al., 2004, 2008). In
this paper,when referring to the results of fiber tractography,wewill use
the terms “fibers,” “tracks,” and “streamlines” interchangeably, and these
should not be confused with actual biological tracts (Jones et al., 2013).

The added value of track-weighted imaging comes from the infor-
mation obtained by tracking the neural pathways (Calamante et al.,
2012b). Track density imaging in essence is just the resampling of the

fiber track data into user-specified volumetric data (Calamante et al.,
2010). Sampling the tractography dataset with a voxel size smaller
than the original diffusion-weighted scan is known as “super-resolu-
tion” track-weighted imaging. In the approach presented here – track
density imaging (TDI) – the manufactured signal is simply the number
of streamlines passing through each voxel (Calamante et al., 2010). A
similar approach, average pathlength mapping, has shown promise for
evaluating traumatic brain injuries (Pannek et al., 2011). Streamline
density imaging has been validated histologically for its ability to re-
solve white matter boundaries (Calamante et al., 2012a).

The present study also differed from most previous DWI studies by
using a whole-brain voxel-based approach, rather than regions-of-
interest for data analysis. This allowed us to explore and test for changes
in both nigral and extranigral areas in the patients as comparedwith the
control groups. Based on the spatial distribution of neuropathological
abnormalities reported in non-demented Parkinson disease patients,
we hypothesized that differences in track density would appear pre-
dominantly in the brainstem and nigrostriatal pathways.

Materials and methods

Participants

We studied 27 (14 males) patients clinically diagnosed with
Parkinson's disease and 26 (14 males) healthy control subjects from a
larger data sample after excluding those with poor quality imaging
data. The groupswerematched by age, sex, and highest achieved educa-
tion level. Disease stage within the patient population was assessed in
the “on” state using the Hoehn & Yahr scale (Hoehn and Yahr, 1967).
Disease severity was evaluated using the Unified Parkinson's Disease
Rating Scale (UPDRS) (FahnandElton, 1987). Quality of lifewas estimat-
ed using the Parkinson's Disease Questionnaire (PDQ39) (Jenkinson
et al., 1997). Subjects were also administered several psychological
tests: global cognitive function [Mattis Dementia Rating Scale (Mattis,
1988), MMSE (Folstein et al., 1975), Symbol Digit Modalities test, verbal
fluency test], inhibition [Stroop test, random number generation
(Jahanshahi et al., 2006)], episodic memory [Rey auditory verbal learn-
ing test (Rey, 1958)], updating of working memory [letter running
span memory task], cognitive flexibility [Modified Wisconsin Card
Sorting Test], visuospatial judgment [Judgment of Line Orientation
(Benton et al., 1983)], and anxiety [Hospital Anxiety and Depression
Scale (Zigmond and Snaith, 1983)].

Twenty-four of the 27 patients were taking a combination of several
classes of drugs: levodopa (immediate and controlled release),
nonergot-derived dopamine receptor agonists (Pramipexole, Ropinirole),
and a monoamine oxidase B inhibitor (Rasagiline). The remaining 3 pa-
tients were not taking any anti-Parkinsonian medications at the time of
scanning. Levodopa and dopamine agonist dosages were pooled and
summarized as the levodopa equivalent daily dose [LEDD, (Hobson
et al., 2002)]. Total daily L-DOPA equivalent dosages ranged from 0 to
900 mg. Demographic and clinical data are summarized in Table 1. Writ-
ten informed consent was obtained from all participants in accordance
with the Declaration of Helsinki. The Ethics Committee of the University
of Liège approved the study.

Imaging data acquisition

Data were acquired on a 3 T head-only MR scanner (Magnetom
Allegra, Siemens Medical Solutions, Erlangen, Germany) operated with
an 8-channel head coil. Diffusion-weighted (DW) imageswere acquired
with a twice-refocused spin-echo sequencewith EPI readout at two dis-
tinct b-values (b = 1000, b = 2500 s/mm2) along 120 encoding gradi-
ents that were uniformly distributed in space by an electrostatic
repulsion approach (Jones et al., 1999). This sequence is designed spe-
cifically to reduce the distortions induced by eddy-currents in the
diffusion-weighted images (Reese et al., 2002). For the purposes of
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motion correction, 22 unweighted (b = 0) volumes, interleaved with
the DW images, were acquired. Volumes were acquired with a repeti-
tion time (TR) of 6800 ms, an echo time (TE) of 91 ms, and a field-of-
view (FOV) of 211 mm2. Maximum slew rate was 400 mT/(m/ms)
and maximum gradient amplitude was 40 mT/m. No parallel imaging
techniqueswere used. Themulti-channel head coil was used to increase
the signal-to-noise ratio, and not the speed of the acquisition. Volumes
were acquired with a 6/8 partial Fourier factor. Voxels were isotropic
with dimensions of 2.4 × 2.4 × 2.4 mm3 and volumes were acquired
in 54 transverse slices using an 88 × 88 voxel matrix. Total acquisition
timewas approximately 35min. MRI data were acquired while patients
were on their usual anti-Parkinsonianmedication so theywould remain
as still as possible in the scanner.

Structural and quantitativemaps of T1, T2*, proton density (PD) and
magnetization transfer (MT) at 1× 1× 1mm3 resolutionwere calculat-
ed from a multi-parameter protocol based on a 3D multi-echo fast low
angle shot (FLASH) sequence (Weiskopf and Helms, 2008). Three co-
localized 3D multi-echo FLASH datasets were acquired with predomi-
nantly proton density weighting (PDw: TR/α = 23.7 ms/6°), T1
weighting (T1w: 18.7 ms/20°), and MT weighting (MTw: 23.7 ms/6°;
excitation preceded by an off-resonance GaussianMT pulse of 4 ms du-
ration, 220° nominal flip angle, 2 kHz frequency offset). The PDw acqui-
sition used eight bipolar gradient echoes at equidistant TE between
2.2 ms and 19.7 ms, whereas the T1w and MTw acquisition used six
bipolar gradient echoes at equidistant TE between 2.2 ms and 14.7 ms.
All three had 425 Hz/pixel bandwidth to avoid susceptibility-
related distortions. Volumes were acquired in 176 sagittal slices using
a 256× 224 voxel matrix. The total acquisition timewas approximately
19 min.

A B1mapwas calculated using the actual-flip-angle imagingmethod
(Yarnykh, 2007) based on two interleaved 3D FLASH acquisitions (rep-
etition times TR1=33ms, TR2=165ms, TE1=TE2=3.05ms, nominal
flip angle = 60°, acquisition time = 5 min.). The B1 map was used to
correct the multiparameter maps for B1 field bias (Volz et al., 2010).

Visual inspection of the raw images was performed to ensure that
subject data had no (i) ghosting, (ii) signal dropout, (iii) major motion
distortions, or (iv) scanner-induced vibration artifacts (Tournier et al.,
2011).

Imaging data processing

Interleaved unweighted images from the diffusion sequence were
realigned to the first unweighted volumewith a rigid body transforma-
tion using SPM8 (Wellcome Trust Centre for Neuroimaging, UCL, UK).
Registration was performed (rigid, mutual information) between the
first unweighted volume and each of the interleaved unweighted vol-
umes (e.g. register b03 to b01). The translation and rotation values be-
tween b01 and b022 were linearly interpolated and applied to the
weighted volumes. The assumption behind this procedure is that the
subject's displacement was linearly continuous in between unweighted
volumes. This put all theweighted images in alignmentwith the first b0
volume without the contrast problems of co-registering weighted and
unweighted images. Diffusion gradient vectors were rotated according-
ly (Leemans and Jones, 2009). For each diffusion-weighted volume, a
non-local mean filter was applied (Maggioni et al., 2013) and noise
was corrected using power image correction adapted for multi-coil ac-
quisitions (André et al., 2014). No further corrections were applied to
correct for eddy current-induced distortions in the diffusion-weighted
volumes because the diffusion sequence did a sufficient job of suppress-
ing them.

We included motion as a nuisance regressor in our analysis by com-
puting a version of the totalmotion index (Yendiki et al., 2014) from the
rigid transformations between unweighted volumes. We calculated av-
erage volume-by-volume translation between unweighted images by
averaging the magnitude of the translation vectors between each suc-
cessive unweighted image. Similarly, average volume-by-volume rota-
tion was computed by averaging the sum of the absolute values of the
rotation values between successive unweighted images.

FA and MD maps

A brainmask was generated using the “median Otsu”method as im-
plemented in Dipy (version 0.7.1) (Garyfallidis et al., 2014). In this
method, a median filter is applied to smooth the unweighted volume,
and then an automated histogramapproach is used to separate the fore-
ground and background. Using the low b-value (b=1000 s/mm2) data,
tensors were fit at each voxel using non-linear least squares, and frac-
tional anisotropy and mean diffusivity maps were also generated from
the tensors.

TDI maps

The fiber response model was estimated for each subject from the
high b-value (b = 2500 s/mm2) diffusion-weighted images. A mask of
single fiber voxels was extracted from the thresholded and eroded FA
images. Only strongly anisotropic (FA N 0.7) voxels were used to esti-
mate the spherical-harmonic coefficients of the response function
(Tournier et al., 2004, 2008). Using non-negativity constrained spherical
deconvolution, fiber orientation distribution (FOD) functions were ob-
tained at each voxel.

For both the response estimation and spherical deconvolution steps
we chose a maximum harmonic order of 8. Seed masks were created
from white matter probability maps, estimated from signal variation
in the DWIs,2 thresholded above 0.4. This threshold was chosen by
trial and error, and is in general lower than what would be used on
young healthy subjects, possibly due to variations in levels of iron
(Graham et al., 2000). Probabilistic tractography was performed using
randomly placed seeds within subject-specific white matter masks.
Fiber tracking settings were as follows: number of tracks = 5,000,000,
FOD magnitude cutoff for terminating tracks = 0.1, minimum track
length = 10 mm, maximum track length = 200 mm, minimum radius
of curvature = 1 mm, tracking algorithm step size = 0.2 mm.

2 Performed with the “gen_WM_mask” command in MRtrix.

Table 1
Demographics for the study cohort.

Healthy controls
(n = 26)

Parkinson's patients
(n = 27)

t-Test,
p-value

Age 64 (8) 66 (8) 0.549
Sex (M:F) 14:12 14:13
Years of education 13 (3) 11 (3) 0.133
ICV (mm3) 1478 (152) 1516 (148) 0.360
BMI (kg/m2) 25 (3) 25 (3) 0.660
Hand dominance (L:R) 2:24 2:25
Hoehn & Yahr stage 1.5 (0.62)
Most affected side (L:R) 10:17
Disease duration (years) 5 (3)
LEDD (mg) 323 (255)
UPDRS Section 2 9 (6)
UPDRS Section 3 14 (7)
Mattis 139 (4) 136 (4) 0.004
MMSE 29 (1) 28 (1) 0.022
HADS total 10 (4) 13 (6) 0.066
PDQ39 mobility 20 (18)
PDQ39 total 189 (114)
Rey Auditory Verbal
Learning Test

53 (11) 44 (11) 0.006

SDMT 51 (10) 45 (12) 0.062
JOLO 27 (4) 25 (4) 0.055

Values reflect mean (st. dev.). Two-tail t-tests were performed with an assumption of
unequal variance in each group. ICV = intracranial volume, BMI = body mass index,
LEDD = L-DOPA equivalent daily dose (Hobson et al., 2002), UPDRS = Unified
Parkinson's Disease Rating Scale, MMSE = Mini Mental State Examination, HADS =
Hospital Anxiety and Depression Scale, PDQ = Parkinson's Disease Questionnaire,
SDMT = Symbol Digit Modalities Test, JOLO = Judgment of line orientation test.
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Streamlines were terminated when they (i) extended out of the white
matter mask, or (ii) could not progress along a direction with an FOD
magnitude or curvature radius higher than the minimum cutoffs.

Spatial normalization of the fiber tracks followed a procedure laid
out previously (Pannek et al., 2011). First, track density and total
pathlength maps (TPM) were generated with 1 × 1 × 1 mm3 isotropic
voxels, and used to create average pathlength maps (TPM/TDI =
APM) for each subject. The APMs were then rigidly aligned to the
MNI152 1 mm T1 template with mutual information and averaged to
create an initial template. The APMs were then used to build a template
through 4 iterations, beginning with an initial affine transformation
followed by greedy symmetric diffeomorphic normalization (SyN)
with cross-correlation (Avants et al., 2010, 2011). For each subject, the
transformations (rigid, affine, warp) were then individually inverted
and applied in inverse order to a unit warp field generated in the final
template space.3 This was then used to normalize the tracks into tem-
plate space with MRtrix, by warping each point along the fibers. Finally,
track density images were generated from the normalized tracks, again
with 1 × 1 × 1 mm3 isotropic voxels. Normalization steps were per-
formed using Advanced Normalization Tools (ANTS, http://www.picsl.
upenn.edu/ANTS/). No spatial smoothing was applied.

Motion-corrected DWIs were assessed to ensure that the correction
procedure performed adequately. Inspection of the scalar images, such
as FA, MD, seed masks, single-fiber response estimation masks, APM,
and pre- and post-normalization TDIwas also performed. Track datasets
were truncated to 100,000 tracks to assess registration with the tem-
plate using MRview (Tournier et al., 2012). Diffusion-weighted image
and fiber track processing was performed with the MRtrix package
version 0.2.12 (J-D Tournier, Brain Research Institute, Melbourne,
Australia, http://www.brain.org.au/software/) (Tournier et al., 2012).
The tractography and spatial normalization workflows were developed
in Python with the Nipype pipeline architecture and are freely available
online (Gorgolewski et al., 2011).

MT maps

For display purposes, semi-quantitative MT saturation maps were
calculated within SPM8. These MT maps show the percentage loss of
magnetization imposed by a single MT pulse (Draganski et al., 2011).
The contrast in these MT images, which is higher than in typical T1-
weighted images, enables more accurate distinction between gray and
white matter, especially for the basal ganglia and substantia nigra
(Helms et al., 2009). MT maps were processed using unified segmenta-
tion in order to create masks of gray matter, white matter, and cerebro-
spinal fluid (Ashburner and Friston, 2005). Diffeomorphic registration
(DARTEL) was used to normalize the MT maps to a common template
(Ashburner, 2007). Target images for the DARTEL registration were
modified tissue probability maps from previous MT segmentations
(Draganski et al., 2011), which included detailed segmentation of sub-
cortical regions.

Todisplay thefinal results, the studymeanMTmapwas coregistered
to the average TDI map with an initial rigid and secondary affine trans-
formation using mutual information. Greedy symmetric diffeomorphic
normalization with Mattes mutual information was used register the
mean TDI map with the MNI152 1 mm T1 template. The identified
transformation was applied to the mean MT image. Registration was
performed in ANTs and accuracy was assessed visually at each step.

Statistical analysis

FA and MD data
Voxelwise statistical analysis of the FA data was carried out using

tract-based spatial statistics (TBSS) (Smith et al., 2006), part of FSL 5.1

(Smith et al., 2004). TBSS projects all subjects' FA data onto a mean FA
tract skeleton, before applying voxelwise cross-subject statistics. TBSS
was also carried out on the mean diffusivity (MD) images. Non-
parametric statistics were performed using FSL's Randomise (5000 iter-
ations), and2D Threshold-Free Cluster Enhancement (TFCE) (Smith and
Nichols, 2009)with themean-centered totalmotion index as a nuisance
covariate.

TDI data
An optimal white matter mask was generated from all of the track

density images using the SPM8 Masking toolbox and the Luo-Nichols
anti-mode method of automatic thresholding (Luo and Nichols, 2003;
Ridgway et al., 2009). Permutation testing was performed using
Randomise (5000 iterations)with TFCE and themean-centered totalmo-
tion index as a nuisance covariate. Only clusters with p b 0.05 after
correcting for family-wise error rate were considered statistically signifi-
cant. Tentative anatomical labelswere estimated from a number of freely
available brain atlases. Brainstem regions were examined by comparison
with a high-resolution single subject DTI scan (Aggarwal et al., 2013).
Cortical clusters were localized with the JHU ICBM-DTI-81 white-
matter atlas (Oishi et al., 2010), the JHU white-matter tractography
atlas (Hua et al., 2008), and the Jülich Histological Atlas (Bürgel et al.,
2006).

Pearson correlation was used to explore interactions with numeric
clinical metrics (e.g. UPDRS III score). The Spearman rank-order correla-
tion coefficient was used for non-numeric variables (e.g. Hoehn and
Yahr stage). Bonferroni correction was used to account for the number
of independent statistical tests. Between-group differences in psycho-
logical metrics, as well as total motion index, were assessed with a
two-sample t-test with an assumption of unequal variance.

Data were processed using the NITRC Computational Environment
for Cluster Compute Instances using Amazon Elastic Compute Cloud
(EC2) servers. The virtual machine snapshot is available upon request.

Results

Behavioral data

In our cohort the Parkinson's disease patients scored significantly
lower than controls on theMattis scale, mini-mental state examination,
and the episodic memory test (Rey auditory verbal learning test), sug-
gesting mild cognitive disturbances. Apart from these, there were no
statistically significant differences between the patients and controls
on any of the psychological measures. Every patient's performance
was above the standard cutoff threshold for the Mattis dementia rating
scale (Llebaria et al., 2008), and none of them met standard criteria for
dementia associated with Parkinson's disease (Emre et al., 2007). The
group mean total motion index was larger in PD patients than controls,
but this did not reach statistical significance (p = 0.053).

Tract-based spatial statistics (TBSS) on FA and MD maps

No statistically significant results were obtained from the TBSS anal-
ysis for either FA or MD images.

Voxelwise analysis of TDI map

Statistically significant increases in track density in Parkinson's dis-
ease, relative to controls, were found in brainstem and extrapyramidal
motor networks, limbic, and cognitive circuits. Areas of increased TDI
were strikingly symmetric between hemispheres. Fig. 1 shows axial
slices of the populationmeanMT image,with the clusters containing sig-
nificantly increased TDI overlaid. There were no statistically significant
decreases in track density in the Parkinson's patients, compared to con-
trols. To clarify the widely distributed but significant results, we lowered
the statistical threshold to 0.01 (family-wise error rate corrected). The3 Performed with the “gen_unit_warp” command in MRtrix.
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percent signal change in PD for clusters significant at pFWE b 0.01 is doc-
umented in Table 2.

Brainstem and extrapyramidal motor networks

The brainstem and cerebellar peduncles showed widely increased
TDI in the patients. Results projected onto the brainstem portion of
the superior, middle, and inferior cerebellar peduncles, as well as the
pontine crossing tract and themedial lemnisci. Brainstem nuclei also af-
fectedwere the locus coeruleus, pedunculopontine nucleus, ventral teg-
mental area, and raphe nucleus.

Increased track density was found bilaterally in a pattern appearing
to connect the substantia nigra and striatum. The significant regions
encompassed the caudal ventral substantia nigra and extended dorsally
toward the medial aspects of the posterior putamen. A coronal slice
through the substantia nigra with the significantly (pFWE b 0.01) affect-
ed areas overlaid is shown in Fig. 2.

Limbic circuits

TDI increases were found in the ventral tegmental area and in white
matter regions surrounding the ventral striatum both medially and lat-
erally. The pallidum, as well as the anterior and dorsomedial nuclei of
the thalamus were also affected. At the cortical level, the entire cingu-
lum was affected heavily in the right hemisphere, but only in posterior
regions of the left hemisphere. Bilateral increases in TDI were also
found in the orbitofrontal cortex. Fig. 3 shows slices of affected areas
in the limbic system.

Cognitive circuits

Increased streamline density in Parkinson's patients was found in
many areas of the cerebral white matter. Major associative pathways
such as the superior and inferior longitudinal fasciculi (SLF, ILF) showed
sections of increased TDI.

In the frontal cortex, the genuof the corpus callosumand areas of the
anterior corona radiata were affected. The superior parietal lobule was
widely affected, ostensibly by changes to the superior longitudinal fas-
ciculi. Regions in the primary somatosensory cortices (BA2, BA3b)
were notably affected. The anterior temporal poles were clearly affected
by variations along the inferior longitudinal fasciculi. The occipital cor-
tex was also affected, specifically in regions of the inferior fronto-
occipital fasciculi, posterior thalamic radiations, optic radiations, and
the forceps major. Fig. 4 shows affected areas involved in cognition.

Discussion

This whole brain voxel-based advanced MRI study identified
brainstem and nigrostriatal pathways as significantly affected brain
areas in non-demented Parkinson's disease patients as compared with
controls. To the best of our knowledge, this is the first time a single
MRI method has identified abnormalities projecting onto these areas.
This is consistent with the known distribution of neuropathological ab-
normalities in early-stage Parkinson's disease (Braak et al., 2003b).

Our whole-brain voxel-based analysis also revealed significantly in-
creased streamline density in cognitive and limbic networks. Since pa-
tients enrolled in the present study were in the first years after the
diagnosis, dementia-free, and without major cognitive or behavioral
deficits at the time of scanning (Table 1), it would be valuable to test
if these imaging findings are predictive of further clinical deterioration.

Brainstem and extrapyramidal motor circuits

Dopaminergic denervation within the nigrostriatal pathway is the
most well described neuropathological feature of Parkinson's disease,
but to date, no MRI modality has been sensitive enough to clearly iden-
tify alterations to this pathway. The method used here was able to cap-
turemicrostructural abnormalitieswithin both the SN andfiber tracts to
the striatum. Track density abnormalities predominated in the ventro-
lateral portion of the substantia nigra. This is consistentwith neuropath-
ological observations in Parkinson's disease (Fearnley and Lees, 1991),
as the greatest dopaminergic cell loss occurs in nigrosome 1 of the
substantia nigra pars compacta, which is in the caudal and ventrolateral
region of the SN (Damier et al., 1999b).

Compared to controls, patients showed increased fiber density from
the SN to the posterior part of the putamen, which is predominantly in-
volved in motor circuits with the (pre)motor cortices. This finding is in
agreement with post-mortem studies in Parkinson's patients that typi-
cally showprofounddopamine depletion in themotor region of the stri-
atum (Kish et al., 1988), with nigral terminals in the dorsal and caudal
putamen being most affected.

We were unable to replicate findings of decreased FA at the level of
the substantia nigra (Chan et al., 2007; Peran et al., 2010; Vaillancourt
et al., 2009; Yoshikawa et al., 2004; Zhan et al., 2011). There are many
possible factors that could explain the lack of significant changes in
tensor-derived indices in our sample. First, DWI scanning parameters
differ enormously between studies, with many of the previously pub-
lished studies reporting data with 1.5 T scanners, using thick slices
(which can include peri-nigralfiber tracts), and applying very fewdiffu-
sion directions. Second, nearly all of these studies use ROIs drawn on
FA or T1-weighted images, neither of which clearly delineates the
substantia nigra. Third, the number of subjects is also quite low in
many studies, and patient disease stage varies bothwithin and between
studies. Furthermore, our patient population is fairly early stage (mean
Hoehn and Yahr stage: 1.5), and though pathological damage to the SN
occurs well before symptom onset, it also continues as the disease pro-
gresses. A recent meta-analysis of the literature concluded that there is
no significant disease effect on mean diffusivity (Schwarz et al., 2013),
and that there is extremely large variation in the results presented on
FA. They also reported that after excluding studies with unusually
high values of nigral FA in the control groups, therewasnodisease effect
on FA, either.

Increased TDIwas found in caudal brainstem areasmainly in its pos-
terior aspect. Wemust acknowledge that the spatial resolution of diffu-
sion weighted MRI might be insufficient for accurate labeling of results
given the anatomical complexity of the brainstem. Anatomical labeling
of the involved structures is tentative, rather than definitive, and should
be interpreted with caution. Significant clusters projected onto the
known location of the locus coeruleus and pedunculopontine nucleus,
ventral tegmental area, raphe nucleus, and pontine crossing tract.

The pedunculopontine area is heterogeneous in composition and
contains cholinergic, GABAergic, and glutamatergic neurons. The PPN
is heavily affected in Parkinson's disease, and the loss of roughly 50%
of its cholinergic neurons (Jellinger, 1988) has been correlatedwith dis-
ease stage (Rinne et al., 2008). Neuropathological abnormalities in the
pedunculopontine area and its connections with basal ganglia, cerebral
cortex, cerebellum, and spinal cord are considered to be pivotal, not
only for disturbances of gait and posture, but also for non-motor prob-
lems related to arousal and cognition (Benarroch, 2013; Stefani et al.,
2013).

These results are also consistent with the reduction in medium-sized
locus coeruleus neurons found in Parkinson's disease (Patt and Gerhard,
1993). In the post-mortem brain tissue of Parkinson's patients the

Fig. 1.Overview of the increases in track density. Group-level statisticalmap of increased streamline density throughout the brain. Clusters are overlaid on the group-meanmagnetization
transfer image. MNI coordinates in millimeters are displayed on top of each slice. Clusters shown in blue are significant at pFWE b 0.05 and those in red are significant below pFWE b 0.01,
estimated with threshold-free cluster enhancement.
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average loss of noradrenergic neurons compared to controls in this region
is around 70% (Bertrand et al., 1997; Zarow et al., 2003). Furthermore,
connections between the locus coeruleus and the cerebellum, thalamus,
and cerebral cortex are known to influence locomotion (Watson and
McElligott, 1984) and arousal. Detriments in both of these systems are
considered cardinal signs of Parkinson's disease (Lima, 2013).

In this study theproximal parts ofmiddle and superior cerebellar pe-
duncles were affected bilaterally. Previous ROI-based studies did not
identify any changes in these areas in Parkinson's disease (Nicoletti
et al., 2008; Paviour et al., 2007), although both relied on relatively
poor quality diffusion data. The superior cerebellar peduncles contain fi-
bers that connect the locus coeruleus and pedunculopontine nucleus
with deep cerebellar nuclei and the cortex (Hazrati and Parent, 1992;
Liu, 2012). Clinically relevant cerebellar involvement is uncommon in
Parkinson's disease, though, and methodological issues may contribute
collectively to the results identified in this region.

In the raphe nucleus, evidence for neuronal loss is less consistent.
Somepost-mortem studies of patientswith Parkinson's disease have re-
vealed a profound loss of 5-HT neurons (Jellinger, 1991) and their ter-
minals (Birkmayer and Birkmayer, 1987; Kish et al., 2008), although
other studies have not. This variability may contribute to the heteroge-
neity in mood disturbances found in Parkinson's patients.

Limbic network

Increased TDI was found bilaterally in limbic areas including the
ventral tegmental area, ventral striatum,medial thalamus, orbitofrontal
and anterior cingulate cortices.

The VTA loses considerable amounts of dopaminergic neurons in pa-
tients with Parkinson's disease (Uhl et al., 1985). The ventral tegmen-
tum is populated largely by dopaminergic neurons and is tightly
linked with the reward circuit of the nucleus accumbens (Sesack and
Grace, 2009). It projects to the forebrain and limbic system and a loss
of integrity in these pathways may influence patients' emotional state.
In this study the patients showed a trend toward increased anxiety
and depression, but scores on the HADS scale did not reach the thresh-
old for the diagnosis of depression (Table 1).

Regions corresponding to the anterior and dorsomedial thalamic nu-
clei were found to have increased TDI in PD. The anterior, dorsomedial,
and ventral anterior thalamic nuclei have previously been shown to
have reduced FA in Parkinson's disease (Planetta et al., 2013). Both

the anterior and dorsomedial nuclei are involved in the limbic system.
The anterior nucleus projects to the cingulate gyrus, whereas the
dorsomedial nucleus connects to the amygdala, anterior cingulate, and
prefrontal cortices.

Cognitive circuits

The patients in this study were in early stages of the disease and
showed no evidence of dementia. For this reason we did not expect to
find substantial abnormalities in the cerebral cortical areas. Neuropsy-
chological testing, however, did indicate very mild cognitive distur-
bances in the patients.

Clusters of significantly increased TDI in patients projected primarily
onto posterior areas of the cerebral white matter. The corresponding
cortical areas consistently show disturbed resting-state activity in
PD populations studied using functional imaging methods such as
18F-fluorodeoxyglucose PET and arterial spin labeling (Garraux et al.,
2011; Hu et al., 2000; Melzer et al., 2011; Tang et al., 2010). Our study
supports the hypothesis that altered activity in these areasmay be relat-
ed to damage within white matter pathways targeting these areas. This
may contribute to the mild cognitive disturbances found in PD patients
when compared with controls. Our transversal study design does not
allow us to test whether or not altered white matter tracts in posterior
areas are predictive of future cognitive deterioration.

Methodological considerations

Our analysis, unexpectedly, showed an increase in streamline densi-
ty in the PD patients. The reason for this increase is unclear, though, so
we are forced to speculate as to its cause.We have identified several po-
tential sources of error. The first relates to the calibration and use of
constrained spherical deconvolution to fit fiber orientation distribution
models to the DWI data.

The key assumption behind spherical deconvolution approaches is
that themeasured signal in any voxel is a convolution of the fiber orien-
tation distribution in that voxel and the diffusion-weighted signal re-
sponse for a single-fiber population. The single-fiber response in this
study is estimated on a subject-by-subject basis and assumed to be con-
stant throughout the brain. The fiber response functions are approxi-
mated by a linear combination of spherical harmonic basis functions,
which in this study, were truncated at the 8th order harmonic. The

Table 2
Cluster details.

Size
(mm3)

Mean number of tracks per voxel Location Side Centroid
(mm)

Peak
(mm)

Controls Parkinson's
disease

Percent signal
change in PD

3062 416.5 708.6 70% Brainstem, substantia nigra, superior cerebellar peduncle, nigrostriatal pathway Bilateral 0,−31, −26 −2,−40, −49
1267 511.3 733.0 43% Optic radiation Right 32, −72, 16 39,−70, 18
1030 674.5 981.7 46% Posterior inferior fronto-occipital fasciculus Right 41, −48, 9 38,−45, 11
814 685.6 959.6 40% Superior longitudinal fasciculus, parietal lobe Right 36, −18, 31 37,−24, 29
434 324.2 517.2 60% Middle cerebellar peduncle Bilateral −3,−23, −39 6,−17, −39
302 477.2 697.4 46% Anterior inferior longitudinal fasciculus Right 44, −23, −15 46,−14, −25
133 114.2 246.4 116% Lateral occipital cortex Right 55, −62, 1 59,−62, −1
109 935.9 1474.1 58% Superior longitudinal fasciculus, parietal lobe Left −33, −20, 27 −32,−18, 26
97 539.6 767.6 42% Superior longitudinal fasciculus, parietal lobe Right 42, −36, 34 45,−37, 35
85 816.3 1218.7 49% Superior longitudinal fasciculus, parietal lobe Left −29, −23, 37 −30,−21, 37
75 1112.5 1684.6 51% Superior longitudinal fasciculus, parietal lobe Right 35, −39, 23 36,−40, 23
38 231.9 433.8 87% Posterior cingulum Left −11, −36, 37 −11,−36, 36
34 713.7 1035.9 45% Corona radiata near somatosensory cortex Left −20, −44, 43 −20,−44, 44
25 370.6 544.7 47% Anterior superior longitudinal fasciculus Left −41, −13, 28 −41,−12, 27
20 657.9 1044.8 59% External capsule Left −32, −4,−12 −33,−4,−12
18 538.6 790.9 47% External capsule Right 30, −13, −9 30,−14, −9
17 982.3 1478.5 51% Posterior optic radiation Right 32, −56, 18 32,−55, 18
14 206.1 320.5 56% Occipital cortex Right 29, −79, 27 29,−78, 26
10 318.5 604.1 90% Precuneus Right 16, −42, 43 16,−42, 43

Information about significant (pFWE b 0.01) clusters identified in the study. Percent signal change in Parkinson's disease within each cluster was calculated using (TDIPD − TDIHC)/TDIHC.
Clusters were largely bilateral. The largest cluster encompassed the substantia nigra and extended upwards to the striatum, bilaterally.
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impact of higher harmonic orders (than 8) on the spherical harmonic fit
has recently been shown to be negligible for the b-value used in this
study (b=2500 s/mm2) (Tournier et al., 2013). In this study, highly an-
isotropic (FA N 0.7) voxels were assumed to contain a fiber population
oriented in a single direction, and used for fiber response calibration.
These were extracted from an eroded FA image so that voxels at the
edges of the brain, which are more prone to artifacts, were not consid-
ered. Future studies may consider adding a calculation of tensor mode
(Ennis and Kindlmann, 2006) to help select voxels for calibration. Itera-
tive (Tournier et al., 2013) and recursive (Tax et al., 2014) methods for
CSD calibration have also recently been demonstrated. In our study the
calibration valueswere not found to differ between groups (two sample
t-test, unequal variance, data not shown).

One possible source of error is potential incongruity between the ap-
proximated fiber response function and the actual fiber response func-
tion found in chronically damagedfiber tracts. It has been demonstrated
that poor estimates of fiber response function, (e.g. caused by calibrat-
ing the response function from voxels with multiple fiber populations)
can lead to spurious fiber orientations being resolved (Parker et al.,
2013). These artifactual fiber orientations may be especially apparent
in regions with complexmicro- andmacro-structural properties, multi-
ple fiber populations, or partial volume effects.We applied the standard
threshold of FOD magnitude N 0.1, which substantially reduces the
number of spurious peaks capable of disrupting the tractography algo-
rithm (Parker et al., 2013).

It remains unclear how researchers should proceed when
performing spherical deconvolution within pathological populations
containing local changes in microstructural properties. Image-wide

fiber response calibration may not be the best solution for pathological
brains. Lowering the maximum harmonic order allowed in constrained
spherical harmonic deconvolution (CSD) can reduce its sensitivity to
miscalibration (Parker et al., 2013). Other alternatives to CSD that may
reduce spurious fiber orientations are damped Richardson–Lucy
deconvolution (Dell'Acqua et al., 2010) and voxel-by-voxel response es-
timation (Anderson, 2005).

The second concern involves the white matter masking and
tractography seeding used in this study. We estimated white matter
masks from the signal variation in the DWIs, and because this technique
was used, they may have differed in spatial extent between subjects.
White matter masks should be segmented carefully from high-
resolution structural images and subsequently co-registered todiffusion
space. It may also be beneficial to seed a specific number of tracks from
every white matter voxel, rather than a large number from randomly
chosen masked voxels.

One notable subjective choice in this study was the resolution of the
TDI and APMmaps.We chose 1mm3 isotropic voxels based on our own
testing and because track quantification studies at this resolution have
been previously published (Besseling et al., 2012; Pannek et al., 2011).
The primary requirement for the TDI and APM resolution is that it
should provide reliable maps with small variability across subjects, so
that template building and normalization are performed accurately.
The choice of spatial resolution for track quantification studies is highly
dependent on the amount of tracks the image is being sampled from. In
our study, each subject was seeded with 5 million tracks, and we found
that this led to reliable TDI maps with 1 mm3 isotropic voxels. Smaller
voxel sizes led to maps with distributed empty voxels and greatly
increased the computational cost during both TDI generation and nor-
malization. Optimal settings for track quantification need to be stan-
dardized for it to become widely adopted.

This study was performed carefully and differences between groups
were assessed conservatively. Our results demonstrate that TDI is
affected in Parkinson's disease in specific areas of the brain, many of
which have been previously linked to known dysfunctions. If these
changes were global or randomly located they would not have been
identified as significant by group-wise statistical tests.

Track-weighted imaging is inherently a non-local analysis tech-
nique. That is, biological changes or artifacts that are present in one re-
gion will impact the track-weighted measures sampled in other voxels
traversed by the same tracks. This quality of track density imaging
also likely contributed to our widely spatially distributed results. Even
if the above issues are resolved, TWI may be more appropriate (and in-
terpretable) in pathologies where there are only a small number of af-
fected tracts.

The clinical relevance of neuroimaging findings when patient and
control groups are compared is usually appreciated by testing for a sim-
ple relationship between clinical and imaging data. Our analysis did not
identify any significant linear correlation between streamline density
and individual performance in motor and cognitive tests: individuals

Fig. 3. Limbic system clusters. Limbic involvement was widespread, involving the cingulum, orbitofrontal cortex, anterior and dorsomedial thalamus. Clusters are overlaid on the study
mean TDI map. Clusters in blue are significant below pFWE b 0.05 and clusters in red are significant at pFWE b 0.01.

Fig. 2. Substantia nigra cluster. Single coronal slice showing the cluster that encompasses
the substantia nigra (pFWE b 0.01). The cluster is overlaid on the study mean MT map, so
that the SN is more visible. This cluster extends upward through the cerebral peduncles
and terminates at the posterior medial putamen.
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with poorer performance did not show more severe imaging distur-
bances. This may suggest that the streamline density imaging method
used in the present study is a biomarker of disease traits but may not
be appropriate to monitor disease severity. Several other effects also
need to be considered including compensatory mechanisms by
exogeneous factors, such as anti-Parkinsonian medications at the time
of clinical testing, endogeneous processes (i.e., neural network compen-
satory mechanisms), or a combination of both.

Potential future track quantification studies may want to consider
using (i) outlier rejection methods like HOMOR (Pannek et al., 2012),
(ii) lower maximum harmonic orders for CSD, or damped Richardson-
Lucy deconvolution (Parker et al., 2013), (iii) templates created from
subjects' FOD (Raffelt et al., 2011), (iv) anatomically constrained
tractography (Smith et al., 2012) and filtering of tractograms given
information from spherical-deconvolution (Smith et al., 2013), and
(v) more reliable track-weighted imaging approaches (Besseling et al.,
2012; Willats et al., 2014). Another method to consider may be direct
comparison of FOD functions using apparent fiber density, which has
proven successful in motor neuron disease (Raffelt et al., 2012). Global
tractography approaches are also becoming feasible for widespread
use (Reisert et al., 2010) and can provide more biologically plausible
tractograms.

Conclusion

We have performed track density imagingwithin a large population
of early-stage patients with Parkinson's disease and a group of matched
healthy controls. Our cross-sectional analysis revealed increased
streamline counts in Parkinson's disease within various white matter
pathways traditionally involved in brainstem and extrapyramidal func-
tions, limbic, and cognitive processes. Themost remarkable result is the
involvement of the nigrostriatal pathways extending dorsally from the
ventrolateral part of the SN and terminating at themedial posterior pu-
tamen bilaterally.

Various sources of error and/or processing steps taken may have
contributed to the increase in track density we observed in our patient
population. At this point this confounds a biological interpretation of
our results. What is clear is that track quantification can provide com-
plementary information to standard diffusion analysis methods, and
that it can be used to map both nigral and extranigral abnormalities in
Parkinson's disease.
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We present a finite element modeling (FEM) implementation for solving the forward problem in electroenceph-
alography (EEG). The solution is based on Helmholtz's principle of reciprocity which allows for dramatically re-
duced computational time when constructing the leadfield matrix. The approach was validated using a 4-shell
spherical model and shown to perform comparably with two current state-of-the-art alternatives (OpenMEEG
for boundary element modeling and SimBio for finite element modeling).
We applied the method to real human brain MRI data and created a model with five tissue types: white matter,
graymatter, cerebrospinal fluid, skull, and scalp. By calculating conductivity tensors fromdiffusion-weightedMR
images, we also demonstrate one of the main benefits of FEM: the ability to include anisotropic conductivities
within the head model. Root-mean square deviation between the standard leadfield and the leadfield including
white-matter anisotropy showed that ignoring the directional conductivity of white matter fiber tracts leads to
orientation-specific errors in the forward model.
Realistic head models are necessary for precise source localization in individuals. Our approach is fast, accurate,
open-source and freely available online.

© 2014 Published by Elsevier Inc.

Introduction

Identifying the sources of neuronal activity is a key step in many
studies using electroencephalography (EEG) or magnetoencephalogra-
phy (MEG). The problem itself is ill-posed as there can be an infinite
number of solutions describing the origin of the neural activity that
has been recorded (Helmholtz, 1853). There are two problems to
solve if one wants to identify the location of neuronal activity from a
set of electrode recordings. The first is known as the forward problem,
and its basis is building an electromagnetic model of the subject's
head. Once this is created, one can attempt to identify neural sources
by solving the inverse problem. The inverse problem is essentially an
optimization problem, where the procedure is to work backwards
from the scalp recordings in order to identify one or more current di-
poles which best explain the acquired data. In this paper we focus on
the forward problem,which has not been given a great deal of attention
in neuroimaging. Despite many published studies demonstrating high-

quality head models and forward modeling approaches (Güllmar
et al., 2010; Hallez et al., 2005; Rullmann et al., 2009; Shirvany et al.,
2013; Vanrumste et al., 2001; Vorwerk et al., 2014; Wolters et al.,
2006), most functional neuroimaging studies still rely on relatively
poor quality electromagnetic head models when performing source
localization.

There are generally three types of head modeling methods. The
first and easiest is the simplification of the head to a spherical
model. The second, and most common, is boundary element modeling
(BEM), in which distinct shells of the head are meshed as two-
dimensional surfaces and the volume in between them is treated as dis-
tinct tissue types (e.g. BEM meshes may represent the inner and outer
borders of the skull). The third is finite element modeling (FEM),
which operates similarly to boundary element modeling with the ex-
ception that meshes are constructed in three dimensions (e.g. using
tetrahedra).

Researchers have learned to avoid oversimplified spherical head
models, andmost nowuse boundary element solutions built-in to pack-
ages like SPM (Litvak et al., 2011), NFT (Acar and Makeig, 2010), MNE
(Gramfort et al., 2013, 2014), and OpenMEEG (Gramfort et al., 2010).
Boundary element models are known to perform quickly and with
high accuracy, though they suffer some drawbacks due to their
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geometric limitations. Simply put, these methods fail in situations with
complex geometries. Their largest fault is that they assume isotropic
conductivity within all regions of each tissue type, an assumption that
is well known to be incorrect (Gramfort et al., 2010). Although efforts
have been made to include anisotropic conductivity into BEMmethods
(Olivi et al., 2011), it is technically very challenging.

Approaches for solving the forward problem aim to create what is
known as a leadfield matrix. The leadfield matrix allows for the compu-
tation of the potential distribution on the sensors from a current source
(e.g. synchronously firing neurons) placed inside the brain. The rela-
tionship between the leadfield matrix (L) and the remainder of the sys-
tem can be written as:

Φ ¼ L " jþ n ð1Þ

where Φ is the recorded sensor potential, j is the neural source repre-
sented as a current dipole, and n represents the noise in the system.
An analytical solution has been derived for obtaining the potential
distribution on the surface of an ellipsoid given an arbitrarily located
current dipole (Kariotou, 2004; Munck and Peters, 1993; Sarvas,
1987). The analytical approach is used as the ground truth when testing
new methods.

The most common approach to computing the leadfield, known
as the direct method, is to place several thousand current dipoles
in the brain within the cortical ribbon, oriented tangentially to the
white matter surface. For each dipole, the scalp potential is obtained
by solving the forward problem. The leadfield matrix is then created
from the chosen dipole positions and the calculated sensor potentials.
Realistic finite element (FE) models of the human head require hun-
dreds of thousands of elements to provide accurate solutions. Due to
the high mesh complexity, the typical direct method for computing
the leadfield matrix becomes unreasonably slow for finite element
models. To overcome this, alternative methods for calculating the
leadfield matrix, such as the adjoint (Vallaghé et al., 2009), subtraction
(Schimpf et al., 2002; Wolters et al., 2007), and reciprocity (Rush and
Driscoll, 1969; Weinstein et al., 2000) approaches have been devised.
The approach taken herewas derived fromHelmholtz's principle of rec-
iprocity and first applied to EEG by Rush and Driscoll (Helmholtz, 1853;
Rush and Driscoll, 1969). Reciprocity explains that the roles of the di-
pole and sensor can be reversed, compared to the direct method. A
full leadfield matrix can be created by applying current between each
sensor and a ground electrode, and storing the electric field induced in
each element of the head model. In this framework only M − 1 itera-
tions of the forward problem are necessary to create a leadfield matrix,
where M is the number of sensors. The direct method, in contrast, re-
quires thousands of iterations to create a leadfield from a dense array
of sources. A number of previous studies have demonstrated the use
of reciprocity for FEM solutions (Hallez et al., 2005; Shirvany et al.,
2013; Vanrumste et al., 2001; Weinstein et al., 2000). This article
draws heavily on the work of Weinstein et al. for its basis (Weinstein
et al., 2000).

It is well known that white matter fiber structures in the human
brain are highly directional (i.e. anisotropic) in both their structure
and properties. Diffusion-weighted imaging (DWI) allows for the quan-
tification and modeling of water movement within tissues and can be
used to compute the anisotropy profile of brain structures (e.g. by fitting
a tensor at each voxel) (Le Bihan and Johansen-Berg, 2012). It has also
been established that through a remapping of the tensor's eigenvalues,
electrical conductivity can be approximated from the water diffusion
tensor (Tuch et al., 2001). This allows finite element models to include
local information about the conductivity of the tissues which boundary
element methods are incapable of integrating.

To our knowledge there is currently only one freely available solu-
tion for realistic FEM forward modeling — NeuroFEM, part of SimBio
(Fingberg et al., 2003). The developers of NeuroFEM have created a
number of forward solvers and efforts are underway to bring an easily

accessible wrapper to MATLAB through integration with Fieldtrip
(Oostenveld et al., 2011). The installation and use of NeuroFEM remain
complex, though, as it must be compiled directly by the user, and this is
often non-trivial on modern operating systems. SimBio also relies on
many outdated file formats which makes interoperability difficult.
There is also no standard or reproducible meshing procedure available
in SimBio; in recent publications skin and skull meshing has been per-
formed, at least in part, using commercial software (Vorwerk et al.,
2014; Wagner et al., 2014).

We therefore aimed to create an alternative toolbox for accurate and
fast subject-specific finite element modeling in EEG studies. The ap-
proach was evaluated using a four-shell spherical model and real data
from a human subject. We have developed our software in the open
under a free software license andwelcome contributions from the com-
munity (see Technical details).

Methods

We have split the Methods section into three parts. The first
describes our implementation and approach to calculating the lead-
field matrix. The second section describes our evaluation of the ap-
proach against the analytical solution using a four-shell spherical
model. The third section details our tests with real-world MRI and
DWI data.

Finite element reciprocity solution

In neuroscience patches of active cortex are often approximated as
dipolar current sources with extremely small distances between their
poles. These equivalent current dipoles have three-dimensional orienta-
tions and units of current times length (A ⋅m). The reciprocity principle
explains that in order to identify the voltage (ϕ) difference between any
two points resulting from a single current dipole (j), it is sufficient to
know the electric field (E) at the dipole location produced by injecting
a known current (I) through two points (A, B).

ϕA−ϕB ¼
E " j

I
: ð2Þ

This allows us to switch the role of the dipoles and sensors compared
to the typical directmethod.We place surface leads on the scalp and cal-
culate the electric field in each element of the gray matter. Given a di-
pole location and orientation, using Eq. (2) will provide us with each
sensor potential, relative to a ground electrode.

The forward problem is redefined for each source electrode and the
FEM calculations are performed using GetDP with the Galerkin ap-
proach. In-depth mathematical details can be found in the Supplemen-
tary material. The current density, electric field, and potential are
calculated at each element. The process of creating and comparing the
leadfield matrix, in practice, is as follows:

1. An arbitrary ground electrode is chosen by the user.
2. A unit current source is defined at one of the (non-ground) sensor

locations.
3. The induced electric field in each element of the 3Dmesh is calculat-

ed with GetDP.
4. Steps 2 and 3 are repeated for all non-ground sensors. The electric

field vector for each element is stored and these rows are later
stacked to create the leadfield matrix defined in Eq. (3).

5. To calculate the potential on the sensors from a dipole at any
given location, one must first identify the mesh element (N)
closest to the dipole location. The potential at each sensor caused
by a dipole in that element is the dot product of the dipole orienta-
tion vector (jN) and the leadfield vector (LN) for the element (see
Eq. (1)).
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Once the leadfield is pre-computed, it is trivial to calculate the sensor
potential produced by a dipole in any element.
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The benefits of reciprocity are clear, as the forward problem need
only be solved M − 1 times, where M is the number of EEG electrodes.
In comparison, the standard direct method requires a dense array
(usually thousands) of dipole sources (and independent calculations)
throughout the gray matter.

Validation in a spherical model

In this section we compare our implementation with two other
freely available solvers, OpenMEEG and SimBio. We calculate two
parameters: the relative difference and relative magnitude. These
parameters are used to describe the error between the numerically
calculated solution and the analytically derived solution. The relative
difference measure (RDM) is defined as:

RDM eΦ;Φa

! "
¼

eΦ
eΦ

###
###
−

Φa

Φak k

######

######
ð4Þ

where eΦ represents the potential on the electrodes computed numeri-
cally, andΦa is the analytically calculated potential. The relative magni-
tude (MAG) between these values is calculated using Eq. (5):

MAG eΦ;Φa

! "
¼

eΦ
###

###

Φak k
: ð5Þ

In these equations the norm (‖Φ‖) indicates the Euclidean (‘2) norm
over the recorded electrode measurements. Relative difference in mag-
nitude (RDM) is better the closer it is to zero, whereas relative magni-
tude (MAG) should as close as possible to 1.

Four spherical 2D meshes were created in Gmsh and volumetric
meshes were created between them. Volumes between the shells
were considered to represent, from inside outward, (i) brain, (ii) cere-
brospinal fluid, (iii) skull, and (iv) skin. The characteristic length of the
triangular and tetrahedral elements was 3 mm in the brain and 7 mm
in the cerebrospinal fluid, skull, and skin. In total the mesh contained
52,510 nodes and 336,000 elements. The same volumetric mesh was
used for simulations performed in SimBio.

Electrode locations were selected by creating a unit icosahedron,
scaling the vertex locations by the radius of the sphere (100 mm), and
selecting the closest tetrahedra of the spherical mesh. The number of
electrodes depends on the number of vertices in the icosahedron,
which in this case was 42. The spherical model is shown in Fig. 1 and
the conductivity values used can be found in Table 1. Amatching spher-
ical boundary element model was created in OpenMEEG (Gramfort
et al., 2010) and the leadfield was calculated. The boundary element
model had 42 nodes and 80 triangles per spherical shell, for a total of
168 nodes and 320 elements. To enable comparison with the analytical
solution, the leadfields fromOpenMEEG and SimBio were re-referenced
by subtracting the value at the user-selected ground electrode from all
other electrode potentials. Probe dipoles were placed at distances
4 mm apart from the center of the sphere up to the boundary between
brain and CSF, oriented outwards, for a total of 22 probe positions. The
RDM and MAG were calculated for OpenMEEG, SimBio, and our
implementation.

Application to real data

Participants
Written informed consent was obtained from our subject in accor-

dance with the Declaration of Helsinki. The Ethics Committee of the
University of Liège approved the study. Data used in the Supplementary
material was acquired at the University of Tübingen and is freely avail-
able online (Windhoff et al., 2013).

Images were acquired on a 3 T head-only MR scanner (Magnetom
Allegra, Siemens Medical Solutions, Erlangen, Germany) operated with
an 8-channel head coil. Diffusion-weighted (DW) imageswere acquired
with a twice-refocused spin-echo sequence with EPI readout at two
distinct b-values (b= 1000, b= 2500 s/mm2) along 120 encoding gra-
dients that were uniformly distributed in space by an electrostatic re-
pulsion approach (Jones et al., 1999). This sequence is designed
specifically to reduce the distortions induced by eddy currents in the
diffusion-weighted images (Reese et al., 2003). For the purposes of mo-
tion correction, 22 unweighted (b = 0) volumes, interleaved with the
DW images, were acquired. Volumes were acquired with a repetition
time (TR) of 6800 ms, an echo time (TE) of 91 ms, and a field-of-view
(FOV) of 211 mm2. Maximum slew rate was 400 mT/(m/ms) and
maximum gradient amplitude was 40 mT/m. No parallel imaging tech-
niques were used. Themulti-channel head coil was used to increase the
signal-to-noise ratio, and not the speed of the acquisition. Volumes
were acquired with a 6/8 partial Fourier factor. Voxels were isotropic
with dimensions of 2.4 × 2.4 × 2.4 mm3 and volumes were acquired
in 54 transverse slices using an 88 × 88 voxel matrix. A high-
resolution T1-weighted image was also acquired for each subject (3D
modified driven equilibrium Fourier transform, repetition time =
7.92 ms, echo time = 2.4 ms, inversion time = 910 ms, flip angle =
15°, field of view = 256 × 224 × 176 mm3, 1 mm isotropic spatial
resolution).

Interleaved unweighted images from the diffusion sequence were
realigned to the first unweighted volumewith a rigid body transforma-
tion using SPM8 (Wellcome Trust Centre for Neuroimaging, UCL, UK).
Registration was performed (rigid, mutual information) between the
first unweighted volume and each of the interleaved unweighted vol-
umes (e.g. register b03 to b01). The translation and rotation values
between b01 and b022 were linearly interpolated and applied to the
weighted volumes. This put all the weighted images in alignment with
the first b0 volume without the contrast problems of co-registering
weighted and unweighted images. Diffusion gradient vectors were
rotated accordingly (Leemans and Jones, 2009). For each diffusion-
weighted volume, a non-local mean filter was applied (Maggioni et al.,
2013) and noise was corrected using power image correction adapted
for multi-coil acquisitions (André et al., 2014). No further corrections
were applied to correct for eddy current-induced distortions in the
diffusion-weighted volumes because the diffusion sequence did a suffi-
cient job of suppressing them. Diffusion analysis in this study was per-
formed exclusively on the volumes acquired at b = 1000 s/mm2.

T1-weighted structural meshing
The structural meshing pipeline is an evolution of the “mri2mesh”

Unix shell script provided in the Simulation of Non-invasive Brain
Stimulation (SimNIBS, http://simnibs.org/) package (Windhoff et al.,
2013). Theworkflowbeginswith automatedwhole-brain segmentation
of Freesurfer (Desikan et al., 2006). It relies on MeshFix (Attene, 2010)
for repairing, dilating, merging, smoothing, remeshing, and otherwise
modifying surface meshes of the various sections of the brain. Broadly,
the segmented regions of the gray matter, white matter, cerebrospinal
fluid, skull, and skin are meshed in two dimensions and refined so
that there are no intersections between the meshes of each tissue
type. These 2D meshes are then processed using Gmsh (Geuzaine and
Remacle, 2009) and used to create distinct 3D volume meshes for
each tissue compartment. The FEM node closest to each of the EEG elec-
trodes was obtained by computing the Euclidean distance between the
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sensor location and the nodes of the scalp mesh. Electrodes were saved
in the Gmsh mesh file as new distinct physical volumes, so that they
could be assigned as current sources during the forward modeling.
Fig. 2 shows the surface and volumetric meshes created for our subject
alongside the original T1. The whole-head mesh contained 857,011
nodes and 5,916,850 tetrahedral elements.

Mapping conductivity tensors
Tensors were fit at each voxel using linear least squares as imple-

mented in the FMRIB Software Library (Smith et al., 2004) build 504.
A fractional anisotropy map was generated and linear registration was
performed to align the FA to the T1-weighted structural image. The ten-
sors were then registered to the structural image using the calculated

transformation matrix and rotated accordingly. Diffusion tensor eigen-
values were remapped to produce conductivity tensors (Opitz et al.,
2011) using functions from Dipy (Garyfallidis et al., 2014). The primary
eigenvectors and mean conductivity map were assessed to check that
the tensors had proper orientation and magnitude.

In order to include the diffusion tensors in the finite element struc-
tural model, the centroid of all tetrahedrons in the white matter 3D
mesh was computed, and their location in the volumetric conductivity
tensor data was obtained. If the centroid of the element was within a
voxel, and that voxel had a fractional anisotropy greater than or equal
to 0.1, then the tensor within that voxel was assigned to the element.
The fractional anisotropy threshold is used solely to prevent inconse-
quential tensors from being included, and not to create a white matter
mask. White matter elements whose centroids did not lie in a voxel
(e.g. due to differing fields-of-view between the T1 and the DWI)
were assigned isotropic conductivity values of 0.33 S/m. A coronal
slice of the head model including the primary eigenvectors of the con-
ductivity tensor can be found in Fig. 3. The full conductivity tensor is
taken into account within the finite element model calculations, not
just the anisotropy or principal direction.

In Table 4we recorded the clock time anddisk usage required topro-
cess the described subject (See Fig 4). These calculations were

Fig. 1. Spherical mesh example. A) Sphere mesh geometry: Four-shell mesh including the brain, CSF, skull, and scalp. B) Potential distribution across the sphere (V): Single solution of
the forward problem. Low potential is found at the sink electrode, and high potential is found at the current source. C) Current density distribution (A/m2). D) Electric field distribution
(volts/m). Colors in C and D are on a logarithmic scale.

Table 1

Conductivity values and radii of the 4-shell spherical model.

Shell Radius (mm) Conductivity (S/m)

Brain 85 0.33
Cerebrospinal fluid 88 1.79
Skull 92 0.0042
Skin 100 0.33
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performed on a quad-core Xeon 2.6 GHz with 16 GB of RAM. The pipe-
lines were run serially using a single CPU, and the total processing time
was roughly 24 h.

Isotropic vs. anisotropic conductivity
Two leadfields were created: one with isotropic conductivity (Liso)

within the white matter and another incorporating the conductivity
tensors described above (Laniso). These two leadfields were compared
by computing the root mean square deviation (RMSD) between the
leadfield components, for each sensor–sink pair, in every element (N)
of the gray matter. The RMSD was computed for each direction (i) of
the electric field, because we felt averaging would ignore clear direc-
tional effects induced by the brain's white matter structure. The reader
should recall that M is a list of EEG sensors.

RMSDN;i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
M

LN;iiso−LN;ianiso

! "2
r

LN;iiso

###
###

ð6Þ

This provides a method for visualizing the spatial distribution of the
effects of anisotropic white matter conductivity on the leadfield matrix.

Areas of high RMSD may be prone to source reconstruction errors in
studies where isotropic conductivity is assumed.

Residual function mapping
We further tested our forward model by calculating single-dipole

residual fields for both the isotropic and anisotropic leadfields. The re-
sidual function relays the misfit between the scalp potential obtained
from a pre-specified dipole and the potential that would be produced
if optimally oriented dipoles were placed in each element.

First, a current dipole is placed inside one element and the “mea-
sured” scalp potential is obtained (Φ). Within each element, any dipole
(j) will produce a scalp potential (Φ̂) that can be derived from the pre-
computed leadfield (L):

Lj ¼ Φ̂: ð7Þ

The optimal location of a single dipole can be found byminimization
of the residual function (R):

R ¼ Φ̂−Φ

! "T
Φ̂−Φ

! "
: ð8Þ

Fig. 2. Human head model. A) T1-weighted MRI image for our subject. B) Surface meshes: The head model output from the structural meshing pipeline consists of several 2D shells
representing the graymatter, whitematter, cerebellum, ventricles, CSF, scalp, and skin. C) 3D volumemeshes. Volumetricmeshes representing the scalp (light blue), skull (bright yellow),
ventricles (blue), cerebrospinal fluid (green), gray matter (orange), white matter (light green), and cerebellum (yellow) are created from the 2D shells.

Fig. 3. Coronal slice of head model. Primary eigenvectors of the conductivity tensor are
shown within the white matter. The 3D gray matter (orange), cerebrospinal fluid
(green), ventricles (blue), skull (yellow), and scalp (light blue) meshes are also shown.

Table 2

Summary statistics of RDM and MAG.

Method RDM MAG

GetDP 0.013 (0.003) 1.033 (0.060)
OpenMEEG 0.125 (0.408) 1.345 (2.400)
SimBio 0.008 (0.002) 1.018 (0.031)

Summary of RDM and MAG values across varying dipole depths in the spherical model.
Values represent mean (standard deviation). See Fig. 5.

Table 3

Summary statistics of RMSD between isotropic and anisotropic
leadfields.

Direction RMSD

Left–right (X) 0.378 (0.237)
Anterior–posterior (Y) 0.312 (0.188)
Inferior–superior (Z) 0.295 (0.191)
Average 0.328 (0.125)

Summary of root mean squared deviation between leadfields created
from meshes with isotropic white matter conductivity and anisotropic
white matter conductivity tensors. Values represent mean (standard
deviation). See Fig. 6.
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If Φ̂ is set to themeasured potential (Φ), the best moment of this di-
pole is given by Eq. (9).

j ¼ L
þ
Φ ð9Þ

where L+ represents the Moore–Penrose pseudo-inverse (L+ =
(LTL)−1LT) of the leadfield matrix. Since the optimal orientation can be
calculated in this manner, the residual can be calculated as:

R ¼ Φ̂
T
I−LL

þ
h i

Φ̂: ð10Þ

The location of the global minimum of the residual function reflects
the best guess for the position of the dipole within the mesh.

Results

The relative difference (RDM) and relative magnitude (MAG) be-
tween our method and the analytical solution across the 22 tested di-
pole positions can be found in Fig. 5. Summary statistics calculated
from these data points are available in Table 2.

We found that both our implementation and that of SimBio provide
more spatially stable and accurate solutions than the boundary element
approach available in OpenMEEG. At locations near the tissue bound-
aries (b15 mm) the OpenMEEG solution differed substantially
(RDM N 0.05) from the analytical solution, whereas both FEM ap-
proaches remained relatively accurate (RDM b 0.02). SimBio appears
to be the most accurate approach overall as it marginally outperforms
our implementation on both RDM and MAG.

Notable jaggedness is present in the RDM and MAG plots for the
GetDP solution. This is because probe dipoles are snapped into the
closest mesh elements (by Euclidean distance) in order to calculate
the potential at the sensors. SimBio and OpenMEEG, in contrast, provide
continuous solutions. This issue can be mitigated by reducing the char-
acteristic length of the mesh elements (i.e. increasing mesh resolution)

Table 4

Computational cost and storage required for each step.

Task Time (HH:MM:SS) Disk usage (GB)

Initial reconstruction 14:16:16 0.4
Structural meshing 04:05:11 2.4
Diffusion tensor processing 00:36:35 0.9
Electrode incorporation 00:01:00 0.6
Leadfield creation 04:21:17 19.5
Total 23:20:19 23.8

Initial reconstruction was performed with FreeSurfer 5.3 using the “recon-all” command
with the option “–autorecon-all”.

Fig. 4.Whole-head example. A) Head model geometry: Four-shell mesh including the brain, CSF, skull, and scalp. B) Potential distribution throughout the head (V). C) Current density
distribution (A/m2). D) Electric field distribution (V/m). Colors in C and D are on a logarithmic scale.
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or widening the probe dipole sampling distance to a value larger than
the characteristic length of the elements. In this case, we chose to
place dipoles every 4 mm because our tetrahedra were defined with
characteristic lengths of 3 mm.

In the human brain model, the incorporation of DWI-derived con-
ductivity tensors substantially influenced the leadfield matrices that
were created. The influence of incorporating anisotropic conductivity
information into the leadfield matrix was most pronounced in regions
connected by large fiber bundles. As shown in Fig. 6, we found that
the root mean squared deviation (RMSD) between the “isotropic” and
“anisotropic” leadfields followed the pattern of major fiber tracts in
the brain. Along the left–right axis (x direction), the largest RMSD
between isotropic and anisotropic leadfields was found in gray matter
regions connected by the corpus callosum. RMSD in the left–right axis
was also particularly high in the precuneus and occipital lobe. Along
the anterior–posterior axis (y direction), the largest RMSD was found

near the anterior and posterior cingulate. Along the inferior–superior
axis (z direction), the largest RMSD was found near the corticospinal
tracts at both the mesencephalic and cortical levels. The left–right
RMSD showed the highest mean (0.378) and widest deviation (0.237)
between the isotropic and anisotropic leadfields, likely due to the influ-
ence of the corpus callosum. The influence of anisotropy, measured as
themean degree of error between leadfields, was smallest along the in-
ferior–superior axis (0.295). Table 3 shows the influence of anisotropy
by direction.

In Fig. 7 the residual function fields for a dipole in the left superior
frontal lobe are shown. The residual function in the leadfield with iso-
tropic conductivity showed a wider distribution of low residual values
throughout the brain and across hemispheres compared to themore re-
alistic anisotropic head model. This lack of specificity in the isotropic
head model is likely to result in errors when attempting to localize
sources using an inverse solver.
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Fig. 5. Accuracy comparison between forward modeling methods. Comparison between the relative difference measure (RDM) and relative magnitude (MAG) for our FEM reciprocity
implementation (in blue), the FEM solution implemented in NeuroFEM/SimBio (in red), and the symmetric BEM solution implemented in OpenMEEG (Gramfort et al., 2010)
(in green). The horizontal pink dashed line shows the analytical solution. Vertical black dashed lines show the boundaries between tissue shells.

Fig. 6. Root mean square deviation between leadfields created with and without white matter conductivity tensors. Leadfield root mean square deviation maps show the influence of in-
cluding white matter conductivity tensors on the created leadfield matrices. Color is on a logarithmic scale.
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Discussion

Here we have demonstrated a solution for calculating the EEG
leadfield matrix using realistic, heterogeneous, and anisotropically
conducting headmodels. The accuracy of the current forwardmodeling
method was validated by its agreement with the analytical solution in
a four-shell spherical model. The approach was found to perform
better than the current state-of-the-art symmetric BEM approach
(OpenMEEG) and marginally worse than the only other available FEM
implementation (SimBio). The ability to take into account anisotropic
conductivity information was demonstrated with real humanMRI data.

Two recent simulation studies have extended simple three-
compartment head models to complex six-compartment models step-
by-step to study the effects of modeling various aspects of the human
head (Vorwerk et al., 2014; Wagner et al., 2014). Both studies also in-
cluded anisotropic conductivity information derived from diffusion ten-
sors. They found that anisotropic conductivity information has a strong
effect on the EEG/MEG forward model, second only to the effect of in-
cluding a separate CSF compartment and including distinct compart-
ments for both gray and white matter (Vorwerk et al., 2014).

It has now been established that current flows in the brain (e.g. fol-
lowing transcranial direct current stimulation) along trajectories paral-
lel to the primary direction of the fiber tracts (Wagner et al., 2014;
Wolters et al., 2006). Sources located deep in the brain, as well as
those bordering strongly anisotropic tissue, are misrepresented in EEG
localization when neglecting the effects of white matter anisotropy
(Wolters et al., 2006). One recent study that included an inverse analy-
sis found that sulcal sources localized in EEG studies may be mislocal-
ized outside of the sulci if white matter anisotropy is neglected
(Güllmar et al., 2010). The dipole shift for these sources tended to be
parallel to the principal direction of the nearby white matter. An earlier
study estimated that ignoring white matter anisotropy could lead to di-
pole localization errors greater than 10 mm on average (Hallez et al.,
2005). Our results show strong errors in the leadfield nearby large
white matter tracts. Deviation between leadfields in all directions was
more pronounced in sulci than gyri, reaffirming previously reported re-
sults (Güllmar et al., 2010). Anisotropic conductivity information should
not be ignored in neural source imaging studies.

While we have not yet integrated our approach with available in-
verse solvers, we have shown that our forward model is stable and ac-
curate. The meshing pipelines provided here may also prove useful for
other types of finite-element simulations, such as those evaluating
neurotraumamechanics (Kraft et al., 2012). The finite element solution
used during leadfield creation may also be adaptable for other types of

simulations, such as themodeling of transcranial direct current stimula-
tion. At present the toolbox is incapable of producing magnetoenceph-
alography (MEG) leadfield matrices. Reciprocity solutions for MEG
leadfields have been previously demonstrated (Schimpf, 2007), how-
ever, and this framework could be extended to allow for their creation.

Our approach contains many advantages over other competing
methods. Whereas boundary element methods are usually restricted
to nested shells (Kybic et al., 2006), finite element methods allow for
complex geometry in the head models. This means that an individual
headmodel could be created, for example, for a patientwith a hole, frac-
ture, or implant in their skull. Furthermore, our FE mesh is of higher
quality thanmany previous studies, as we use an unstructured tetrahe-
dral mesh, rather than structured hexahedral grids (used in e.g. Güllmar
et al., 2010; Wagner et al., 2014). This allows us to refine the mesh for
more realistic calculations within highly curved regions of the brain.
Itmay also be beneficial to implement anisotropy-adaptivemesh gener-
ation (Lee and Kim, 2012). The non-uniformly tessellated mesh also
sets the FEM approach apart from finite difference methods (FDM).
One suchfinite difference reciprocitymethod has recently been demon-
strated, though the publication only reports results in a head model
with four distinct tissue types, and does not include realistic directional
conductivity information (Strobbe et al., 2014).

There is onemajor electromagnetic property of the human head that
we have overlooked in this study: the conductivity profile of the skull.
Errors in skull segmentation are known to cause substantial issues in
source localization (Lanfer et al., 2012). The skull is actually composed
of three layers: one layer of spongy bone encased by two layers of
more compact bone, each with distinct conductivities (Akhtari et al.,
2002). Furthermore, it contains some air cavities (e.g. near the sinuses),
and varies in thickness around the head (Law, 1993). It is also well
known that the skull conducts faster radially than tangentially, leading
to a smearing effect on the recorded scalp EEG (Rush and Driscoll,
1968). It has recently been shown, however, that geometrical modeling
errors of the skull have a larger effect on electromagnetic source
localization than the conductivity model assigned to the skull
region(s) (Montes-Restrepo et al., 2014). At present our implementa-
tion uses a simple single-shell skull with an isotropic conductivity of
0.0042 S/m (roughly 1/80th that of the gray matter) (Rush and
Driscoll, 1968). Segmenting the skull into three compartments is diffi-
cult from T1-weighted MR images and additional sequences may be
necessary. Future avenues for reducing localization error by improving
the skull model are (i) including a three-layer model, and (ii) including
tensor-based anisotropy measures based on radial and tangential skull
conductivity measurements.

Fig. 7. Single-dipole residual fields. Residual field for A) the leadfield with isotropicWM conductivity, and B) the leadfield including realisticWM conductivity tensors. The residual field is
calculated by placing a single dipole within the mesh, and then obtaining the difference between the scalp potential produced by this dipole, and the potential produced by an optimal
dipole placed in each other element, individually. The minimum of this field represents the dipole position. As shown by the pink arrows, the residual minima bleed further into the op-
posite hemisphere within the isotropic leadfield, compared to the more realistic conductivity model.
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Skull and CSF segmentation guided by T1 and T2-weighted MRI is
available in the processing pipelines (using BET Jenkinson et al., 2005;
Smith, 2002), though they were not demonstrated specifically here. A
comparison of FE models generated from a single T1-weighted image
and an optimal set of four images (T1, T2, and fat-suppressed T1/T2 im-
ages) is available in the Supplementary information. Qualitatively, the
optimal set of images allows for more accurate segmentation, but the
mesh generated from a single T1 image does appear to be of sufficient
quality.

The primary disadvantage of our implementation versus those cur-
rently in use is the computational requirements and data storage cost.
It is clear from our study and others, though, that accuracy in the con-
ductivity model used for forward modeling is imperative for realistic
source localization. Data storage issues for the triangular surfacemeshes
may be mitigated in the future by incorporating entropy-reduction
techniques and entropy encoding. One such available option is the
OpenCTM format (Geelnard, 2010), which can losslessly encode trian-
gular meshes to 5–6% of their size in the commonly used Standard Tes-
sellation Language (STL) mesh format.

Thiswork is a suitable basis for futurefinite element electromagnetic
modeling studies of the human head. It performs quickly and with
better accuracy than the current state-of-the-art boundary element
modeling approach, and proves more stable near tissue boundaries. Its
accuracy was found to be comparable to that of SimBio, a mature pack-
age for electromagnetic finite element modeling. Future work should
interface this forward modeling approach with common EEG inverse
solvers so the FEM approach becomes more widely adopted.

Technical details

The source code behind this manuscript is available at the online re-
pository service Github (https://CyclotronResearchCentre.github.io/
forward/, GNU GPL v2 software license). Minimum recommended
system requirements are a quad-core 2.0 GHz processor and 4 GB of
RAM. Dependencies are Nipype (Gorgolewski et al., 2011), Dipy
(Garyfallidis et al., 2014), the FMRIB Software Library (Smith et al.,
2004), Gmsh (Geuzaine and Remacle, 2009), and GetDP (Dular et al.,
1998). TheMRI data for the example subject demonstrated in this man-
uscript is automatically downloadedwhen running any of the examples
in the software package.

Input data files for the software are high-quality T1-weighted mag-
netic resonance images. T1-weighted images should have previously
been segmented using FreeSurfer (Desikan et al., 2006), and the
subject's white matter surfaces, pial surfaces, bias-corrected T1-
weighted image, and segmented ROImap (using FreeSurferColorLUT la-
beling) should be available. If available, the pipelines will accept an ad-
ditional T2-weighted image, or a set of four images (T1, T2 and fat-
suppressed T1 and T2-weighted images), as in SimNIBS (Windhoff
et al., 2013). The tool will also accept diffusion-weighted images so
that conductivity tensors can be derived for the subject. Diffusion pre-
processing (e.g. correction for subject motion, eddy current-induced
distortions, and table vibrations) should be performed prior to using
the pipelines.

Primary output files are the leadfield matrix and volumetric head
mesh (Gmsh MSH). The leadfield, which can become several hundred
megabytes, depending on the mesh complexity, is stored as an HDF5
data file (The HDF Group. Hierarchical data format version 5, 2000–
2010. http://www.hdfgroup.org/HDF5). Other outputs are the surface
meshes of the skin, skull, cerebrospinal fluid, ventricles, gray matter,
and white matter. Volumetric masks of the segmented structures are
also provided in the NIfTI-1 data format. Part of this work included mi-
grating the SimNIBS meshing scripts to use Nipype (Gorgolewski et al.,
2011). The provenance tracking in Nipype allows users to easily stop
and restart the pipelines without any fear of lost data. This is enormous-
ly helpful for using and improving long-running, complex pipelines.
Furthermore, Nipype allows jobs to be executed on distributed systems,

such as cloud processing services, as well as locally on multi-core sys-
tems. The meshes created from the structural meshing pipeline can
also be easily re-used in SimNIBS, if desired. If multimodal meshes are
to be included in place of the T1-derivedmesh (e.g. the skull segmented
from a CT scan), they must be centered at the RAS center (i.e. right, an-
terior, and superior are the positive x, y, and z directions) of the T1
image used for segmentation. The source code contains Gmsh example
scripts for manually creating the 3D mesh file.
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Supplementary Material

Mathematical background

We start from Maxwell’s equations, and assume that all phenomena are time independent (quasi-static
approximation) [1,2]. By taking the divergence of Ampère’s law r⇥h = j (where h is the magnetic field
and j is the current density), we obtain the current conservation law:

r · j = 0. (1)

The current density j is also related to the local electric field e in the domain ⌦ (i.e., the subject’s head)
through the electric conductivity (tensor) � by Ohm’s law:

j = �e. (2)

Since all phenomena are time independent, Faraday’s law states that the curl of the electric field is zero:
r⇥ e = 0. This implies that the electric field e can be derived from a scalar potential �, such that:

e = �r�. (3)

Using (2) and (3), (1) becomes
�r · �r� = 0 in ⌦. (4)

Equation (4) is a linear Poisson equation, which describes the distribution of the electric potential
within the head, provided that appropriate boundary conditions are specified on the boundary @⌦ of the
domain ⌦. In the problem at hand

1. we impose the electric potential on the electrodes �
D

⇢ @⌦, i.e., we impose non-homogeneous
Dirichlet conditions on �

D

:
� = �

D

on �
D

; (5)

2. we impose a zero normal derivative of the electric potential elsewhere, i.e. a zero flux of the current
density on the rest of the scalp:

n · �r� = 0 on @⌦ \ �
D

. (6)

Physically, this last boundary condition means that no current can flow in or out of the scalp outside of
the electrodes.

We use the finite element method to solve a weak form of (4) together with boundary conditions (5)–
(6). In short, the aim of the method is to find the electric potential � satisfying the boundary conditions
and such that the following equation holds for all suitable test functions �0 in an appropriate function
space:
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Z

⌦

�r� ·r�0
d⌦ = 0 (7)

Symbolically, this is expressed in a GetDP formulation [3] as “Galerkin[sigma[] * Dof{Grad phi},
{Grad phi}]”.

The basis described allows us to solve the forward problem throughout the head model with no restric-
tions on the geometry of the meshes. We can easily solve these equations using GetDP, an environment
for discrete problem solving, and no tweaking of the solver is required. To further improve the e�ciency
of leadfield creation, we implemented the reciprocity method.

Meshing considerations

We investigated the benefit of including T2-weighted images during head tissue segmentation in a single
subject. Figure 2 shows volumetric meshes created using either a single fat-suppressed T1-weighted image
or a set of four images (T1-weighted, T2-weighted, and fat-suppressed T1 and T2-weighted MRI). While
there is some discernible benefit to the segmentation of skin and cerebrospinal fluid, there does not appear
to be any major segmentation errors in the meshes created solely from the T1. If possible, users should
include T2-weighted images when running the meshing pipelines. If they are not available, however, it
appears that a T1-weighted image is su�cient for accurate segmentation. MR images in Figure 2 are
from the SimNIBS Example Dataset (available at http://www.simnibs.de).

Supplementary Figures

Figure 1. Finite element mesh overlaid on T1-weighted image
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Figure 2. Finite element meshes from di↵erent MR origins

107



108 Appendix C. Paper III



A P P E N D I X D

RE S E A R C H E R S at Maastricht University are expected to discuss the social and
economic value of the knowledge developed during their doctoral studies. This
chapter addresses the present and potential impact of this thesis.

Social & economic relevance

In this work we first explored the influence of genetics on the macro-scale struc-
tural connectivity of the human brain. We targeted an important and widespread
neurotrophic growth factor (BDNF). Every human carries the BDNF gene in one
of three forms, and polymorphisms in BDNF are known to impact both behaviour
and disease susceptibility [128]. The study involved constructing brain networks
(connectomes) and using machine learning classification algorithms to identify them
by their BDNF allele. Alongside previously published studies, the results we obtained
in Paper I (Appendix A) suggest that individuals carrying a specific form of this gene
may show less pronounced cognitive decline during old age. Based on in vitro stud-
ies we hypothesize that this is due to impairments in axonal pruning during brain
development. This is especially socially important considering that over the next 20
years, the number of people aged 65 and over in the global population will climb
from 600 million to 1.1 billion [213].
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Cell signalling via the BDNF protein has long been known to be key step in
axonal development and branching, though it was only recently found that this
can also facilitate apoptosis [214]. Our results reinforce earlier findings of macro-
scopic changes related to genetic alterations in the BDNF gene and provide a link
between cellular-level and psychological studies. Understanding the mechanisms
behind cognitive impairment may help researchers develop drugs that can slow or
delay cognitive decline.

The second chapter of this thesis demonstrated an encouraging in vivo magnetic
resonance imaging method capable of detecting early-stage changes in patients with
Parkinson’s disease. In developed countries, PD affects roughly 1% of those over 60
years old and following Alzheimer’s disease it is the world’s second most prevalent
neurodegenerative disease [215]. In Western Europe’s 5 most and the world’s 10
most populous nations, it has been estimated that there will be nearly 9 million
people with Parkinson’s disease by 2030 [216]. These diseases also have biological
links, as they both involve tangling of tau proteins. Novel methods for identify-
ing disease onset and tracking severity are highly desired for preclinical testing of
disease-modifying therapies. The method we have used in Paper II (Appendix B)
can easily be adapted for animal imaging and could be a useful preclinical analysis
tool. This project was made possible in part by a generous personal research grant I
received from Amazon Web Services (AWS) in 2014.

Lastly, we produced a framework for EEG forward modelling using high-resolution
finite element meshes. Over the course of this project a substantial amount of soft-
ware was developed and open-sourced for the community. Although the software
used for meshing and electromagnetic simulation are not completely novel, their
integration and construction into workflows allows for easy and reproducible analy-
ses. The method developed can help improve the accuracy of source localization in
both research and clinical environments. These tools can also be used to simulate
brain stimulation and modulation paradigms using techniques such as TMS, tDCS,
tACS and DBS. These have wide-ranging social implications as they are commonly
used to treat illnesses ranging from depression to Parkinson’s disease.

The knowledge obtained here has led to the first (to our knowledge) successful
3D printed copy of a human white matter tractogram. Related developments in cre-
ating meshes from biological data have also led to a spin-off project. The spin-off
has won nearly AC20,000 in prizes and grants since its inception in the 3rd quarter
of 2012. The team which developed the prototype software won the 2012 Interna-
tional Create Challenge in Martigny, Switzerland. They have since been awarded a
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Bourse de Préactivité from the Agence de Stimulation Économique de Wallonie in
Belgium and were finalists at the 2013 Innovact Campus Awards in Reims, France.
The tractography model and others were recently exhibited at the World Intellec-
tual Property Organization (WIPO) in Geneva. The cover photo shows a public
roundtable meeting in which the founders of the spin-off were invited to discuss
intellectual property rights related to 3D printing. The panel members included
representatives of major Swiss universities, large multinational corporations, and
ambassadors to various nations.

Figure D.1: 3D printed human tractogram. This teaching tool is a commercially
available product developed using knowledge garnered through this doctoral work.

It is socially imperative to transmit scientific discoveries to the general public.
Throughout my doctoral work I have participated in activities that help promote
neuroscience. In 2011, I was awarded 1st place for a photograph in the “Promoting
Science: Let’s be innovative” competition at the Marie Curie Researcher’s Sympo-
sium in Warsaw, where I also gave an invited talk on connectomics. A derivative
piece of work was also featured in the magazine Scientific American [217]. In 2012,
I produced various still images and videos that were displayed in the musée du
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Louvre in Paris (and published in an associated book [218]) and Shanghai’s Rock-
bund Museum as part of the “Livre / Louvre” exposition by Jean-Philippe Toussaint.
In 2013, I received an honorable mention at the Art of Neuroscience competition
organized by the Netherlands Institute for Neuroscience.

Target group

The research results of the second chapter are immediately relevant to medical prac-
titioners dealing with neurodegenerative disease, as they may offer a novel method
to diagnose patients that are developing Parkinson’s disease or similar neurodegen-
erative pathologies. Differential diagnosis of PD within the spectrum of Parkinsonian
syndromes is complex. Misdiagnosis can lead to improper treatment (e.g. mismedi-
cation) and worsening of symptoms.

As this is an engineering thesis, it is not solely the results that are of interest to the
community, but also the methods that have been developed. Those in the software
engineering community, and especially those that work in the biomedical engineer-
ing field, can already benefit from the work done in this thesis because the source
code has been made freely available. Alongside the Amazon Web Services research
grant mentioned above, I was also awarded a high performance graphics processing
unit (GPU) by the NVidia Corporation to facilitate open-source development of GPU
computing methods in neuroscience.

Activities & Products

Automated diagnosis is ultimate goal of machine learning in medical imaging. No
sole modality or analysis method can provide the best basis for sensitive and spe-
cific classification of all types of genetic or neurological abnormalities in the brain.
This thesis has demonstrated both volumetric and white matter network-based ap-
proaches for discrimination between subjects’ brains. All of my publications’ source
code and example data has been released to the public using Github and NITRC.
The source code was designed to be modular and is provided as Python packages,
making them relatively easy to integrate into larger-scale applications.

Neuromodulation techniques are repeatedly applied but their mechanisms of ac-
tion and effect size are not modelled in most studies. Understanding the distribution
and strength of stimulation modalities on a study-specific basis will undoubtedly
help clarify their results. An application or service which can simplify the modelling
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of stimulation techniques such as TMS, tDCS, tACS and DBS would be a useful tool
for the neuroscientific community. This software could be developed and sold by a
research institution or medical device manufacturer to both researchers and clini-
cians, assuming proper clearance procedures are followed. It would be beneficial to
bundle this with the stimulation-guidance tools already in use.

So far, the spin-off mentioned has focused on web-based 3D modeling from
multimodal medical images (CT, MRI, DWI). The 3D models produced are designed
to be used for pre-surgical planning and patient education.

Innovation

Both Paper I and II incorporated innovative analysis techniques in order to identify
differences between groups of subjects. In Paper I, we combined state-of-the-art
fiber orientation modelling and tractography with network-based analysis and ma-
chine learning classification techniques. Our connectomes were built using a high-
resolution 1015-region atlas based on an initial anatomically defined segmentation.
To our knowledge, although there were some previous combinations of connectomics
with machine learning, no published manuscripts had thusfar utilized similarly ad-
vanced methods of structural mapping.

Paper II was innovative in many respects. This paper was the first large-scale
(n=53) application of track-weighted imaging in any population. The method, which
provides super-resolution imaging of the white matter, had been demonstrated pre-
viously but never compared quantitatively. Furthermore, unlike all previous studies,
we were able to identify abnormalities in the nigrostriatal pathway as well as extran-
igral regions using whole-brain statistics. Methodologically, Paper II was innovative
in that we built and released workflows for track density imaging and comparison
beginning from raw data. The study was performed using commercial on-demand
cloud-based servers, and it is the first published study to utilize the recently released
NITRC Computational Environment on AWS Elastic Compute Cloud.

Paper III combined diffusion-weighted imaging and structural MR imaging to pro-
duce accurate forward models for source reconstruction in electroencephalography.
The toolbox developed allows for high-resolution head models to be calculated using
100% free software. It connects off-the-shelf open-source software using pipelines
which can be easily be distributed across processing cores in a cluster or multi-core
workstation. There is currently only one toolbox capable of producing an EEG lead-
field matrix of similar quality (SimBio), but it was developed nearly ten years ago
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and is practically unusable and unmaintained today. Our toolbox is modular and
specific processing steps can be easily replaced when improved methods are made
available.

In general, the availability of complex analysis approaches found in commercially
available neuroscience software lags behind that of researcher-produced tools. This
is by design, as the vast majority of developed techniques are not financially viable to
develop and sell. Total available market sizes tend to be small and preparing a novel
technique for clinical use is costly and time consuming. Commercial software aims
to have more users and provide more stable and user-friendly tools than research
software. Researchers are generally too busy writing papers or analyzing data to
follow high-level software design and implementation practices. In this respect the
work in this thesis was highly innovative in that advanced tools were developed
in the open and were immediately available to anyone that wished to clone the
repository. In collaboration with other researchers worldwide these tools have been
constructed into reliable software packages (e.g. Nipype) with unit and continuous
integration testing, so that future contributions do not break current features and
stability is ensured.

Schedule & Implementation

Technological development in the biomedical field is impossible without financial
backing. Financial backing relies on investors (public or private) to be sufficiently
familiar with the technology they are being asked to fund. Outreach to the general
public is therefore an important first step in any value-creation strategy. Human brain
models designed and 3D printed based on research performed in this thesis have
been publicly displayed on various occasions. In addition to the WIPO exhibition,
they have also been shown in three TEDx Talks to date (in Martigny, Brussels, and
Paris).

Commercial software, if it is eventually intended for clinical applications, must be
the result of a rigorous design procedure (e.g. at least a Software Requirements Spec-
ification [219] and Software Design Document [220]). To attain the European CE
mark and be cleared by the United States’ Food and Drug Administration for clinical
use, software must be reliably developed and include a hazard analysis and revision
history, among other requirements. In all of the studies performed in this thesis,
documented revision-controlled source code has been provided under commercially
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permissive software licenses to help facilitate the production of commercially viable
methodological tools and applications.

The spin-off described above intends to produce clinically cleared 3D modeling
software based on the meshing procedures devised for Paper III. In 2013 a pre-
submission (“Pre-sub”) inquiry was filed and a teleconference performed with a
number of division directors and reviewers at the U.S. Food and Drug Administration.
The spin-off has been advised to file a 510(k) for the initial 3D modeling software, as
this is sufficient if the models are used for surgical planning and patient education
purposes. Subsequent 513(g) filings are advised for specific surgical cases (i.e. a
single neurosurgical procedure). The initial 510(k) draft is in preparation and the
spin-off is in active discussion with outside investors.
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