

Nicolas De Cock, Mathieu Massinon, Sofiene Ouled Taleb Salah, Benoît Mercatoris, Frédéric Lebeau *Université de Liège, Gembloux Agro-Bio Tech*

Introduction • •

Goals Methods

Conclusions Results

Agricultural spray application

Deposition

From the nozzle to the plant → Effect of the size on droplets driftability

Retention

Droplet impacts on the plant surface \rightarrow Effect of the droplets energy on the retention

$$We = \frac{\rho \boldsymbol{v}^2 \boldsymbol{l}}{\sigma}$$

Methods Results Conclusic

Spray characterization techniques

- Laser diffraction spectrometry (LDS) -
 - Droplet size
- Phase Doppler Anemometry (PDA)
 - Droplet size and speed
- Particle/Drop Image Analysis (PDIA)
 - Based on image analysis
 - Droplet size and speed

Need coherent light (laser)

➔ High cost

 Based on optic theory
→ Require liquid optical properties

Objective

Validation of a versatile, low cost and accurate **spray characterization tool** based on high speed imaging

Method

Assess the method capability to segregate nozzle class boundaries (VF/F, F/M, ...)

19/05/2015

Introduction Goals Methods OOO Results Conclusions

Image processing method

Overall spray characteristics is set by summing each droplet characteristic

Introduction Goals

Methods OOO Results Conclusions

Out of focus drops rejection

Determination of focus parameter threshold

Introduction Goals Methods Action Results Conclusions

Velocity measurement

Droplet tracking based on:

Droplet size

Most probable displacement

 $D_{max} = v_{max} \Delta t$

 θ deviation in respect to the main flow

Introduction Goals Methods OOO Results Conclusions

Sampling probality

Nicolas De Cock

Slide 12/18

Measurements

Scan of 6 nozzles defining the droplet size class boundaries

Class boundary	Nozzle type	Pressure (bar)
VF/F	TeeJet TP 110 01	4.5
F/M	TeeJet TP 110 03	3.5
M/C	TeeJet TP 110 06	2.5
C/VC	TeeJet TP 80 08	2.5
VC/XC	TeeJet TP 65 10	1.5
XC/UC	TeeJet TP 65 15	1.5

1 cm

Spatial distribution of the droplets

- Highest droplet density at the spray center
- Ellipsoidal shape (~1-10 for the 110 03)

Introduction Goals Methods **Results OOO** Conclusions

Spatial distribution of the droplets

- Linear decrease of the • droplet density with the distance to the spray center
- Weak effect of the nozzle
- Less than 5% of the ٠ droplet measured in the last scanning line

Cumulative drop size distribution

Conclusions

- An image processing method has been presented
- The spatial analysis of the data showed that the scanning method is appropriate for flat fan sprays
- The imaging method is able to segregate the droplet size class boundaries

Further work

Computation of the flow rate by integrating the measurements over the spray