

$$\exists r > 0, \exists \tau > 0, \exists t_0 \in \mathbb{R} : \forall t \in \{0, \dots, T-1\},$$

$$t = 0 \dots T-1$$

$$T \sim 100 - 500$$

$$B_t = \frac{1}{r} \frac{e^{\frac{-(t-t_0)}{\tau}}}{\left(1 + e^{\frac{-(t-t_0)}{\tau}}\right)^2}$$

$$\forall n \in \{1, \dots, N\}, \forall t \in \{0, \dots, T-1\}, \quad R_{n,t} \geq 0$$

$$R_{n,t+1} = (1 + \alpha_{n,t})R_{n,t} \quad \alpha_{n,t} \in [-1, \infty[$$

$$C_{n,t}(R_{n,t}, \alpha_{n,t}) \geq 0$$

$$M_{n,t} \geq 0$$

$$\gamma_{n,t} = \frac{\Delta_{n,t}}{ERoEI_{n,t}}$$

$$\mu_{n,t} = \frac{1}{ERoEI_{n,t}}$$

$$\forall n \in \{1, \dots, N\}, \forall t \in \{0, \dots, T-1\}, \exists \gamma_{n,t} > 0$$

$$C_{n,t}(R_{n,t}, \alpha_{n,t}) = \begin{cases} \gamma_{n,t} \alpha_{n,t} R_{n,t} & \text{if } \alpha_{n,t} \geq 0 \\ 0 & \text{else} \end{cases}$$

$$\exists \mu_{n,t} > 0 : M_{n,t}(R_{n,t}) = \mu_{n,t} R_{n,t}$$

$$\forall t \in \{0, \dots, T-1\}, E_t = B_t + \sum_{n=1}^N R_{n,t}$$

$$S_t = E_t - \left(\sum_{n=1}^N C_{n,t}(R_{n,t}, \alpha_{n,t}) + M_{n,t} \right)$$

$$\exists \sigma_t : C_{n,t}(R_{n,t}, \alpha_{n,t}) + M_{n,t} \leq \frac{1}{\sigma_t} E_t$$

Mosaïque du Grand Palais, Constantinople via [Wikipedia](#)

Fiesco via [Wikipedia](#)

The Roman Empire in 117 AD

Jacob van Ruisdael via Wikipedia

Hendrick Cornelis Vroom via [Wikipedia](#)

Fig. 4

Fig. 5

Hartmut Reiche via Wikipedia

Eric Kounce via [Wikipedia](#)

\$

€

Consommation mondiale d'énergie

Non renouvelable

> 80% - < 20%

Renouvelable

$$\exists r > 0, \exists \tau > 0, \exists t_0 \in \mathbb{R} : \forall t \in \{0, \dots, T-1\},$$

$$t = 0 \dots T-1$$

$$T \sim 100 - 500$$

$$B_t = \frac{1}{r} \frac{e^{\frac{-(t-t_0)}{\tau}}}{\left(1 + \frac{-(t-t_0)}{\tau}\right)^2}$$

$$\forall n \in \{1, \dots, N\}, \forall t \in \{0, \dots, T-1\}, \quad \mathcal{R}_{n,t} \geq$$

$$R_{n,t+1} + \alpha_{n,t})R_{n,t}$$

$$\alpha_{n,t} \in [-1, \infty[$$

$$C_{n,t}(R_{n,t}, \alpha_{n,t}) \geq 0$$

$$M_{n,t} \geq 0$$

$$\gamma_{n,t} = \frac{\Delta_{n,t}}{ERoE}$$

$$\mu_{n,t} = \frac{1}{ERoEI_{n,t}}$$

$$\forall n \in \{1, \dots, N\}, \forall t \in \{0, \dots, T-1\}, \exists \gamma_{n,t} > 0$$

$$C_{n,t}(R_{n,t}, \alpha_{n,t}) = \begin{cases} \gamma_{n,t} \alpha_{n,t} R_{n,t} & \text{if } \alpha_{n,t} \\ 0 & \text{else} \end{cases}$$

$$\exists \mu_{n,t} > 0 : M_{n,t}(R_{n,t}) = \mu_{n,t} R_{n,t}$$

$$\forall t \in \{0, \dots, T-1\}, E_t = B_t + \sum_{n=1}^N R_{n,t}$$

$$S_t = E_t - \left(\sum_{n=1}^N C_{n,t}(R_{n,t}, \alpha_{n,t}) + M_{n,t} \right)$$

$$\exists \sigma_t : C_{n,t}(R_{n,t}, \alpha_{n,t}) + M_{n,t} \leq \frac{1}{\sigma_t} E_t$$

