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Batch Mode Reinforcement Learning



Reinforcement Learning

● Reinforcement Learning (RL) aims at finding a policy maximizing received 
rewards by interacting with the environment

Agent Environment

Actions

Observations, Rewards

Examples of rewards:



Batch Mode Reinforcement Learning

● All the available information is contained in a batch collection of data

● Batch mode RL aims at computing a (near-)optimal policy from this collection of data

● Examples of BMRL problems: dynamic treatment regimes (inferred from clinical 
data), marketing optimization (based on customers histories), finance, etc... 

Batch mode RL

Finite collection of trajectories of the agent Near-optimal decision strategy

Agent Environment

Actions

Observations,
Rewards
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Batch collection of trajectories of patients
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Objectives

● Main goal: Finding a "good" policy

● Many associated subgoals:

– Evaluating the performance of a given policy

– Computing performance guarantees

– Computing safe policies

– Choosing how to generate additional transitions

– ...
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● Main difficulties of the batch mode setting:

– Dynamics and reward functions are unknown (and not accessible to 
simulation)

– The state-space and/or the action space are large or continuous

– The environment may be highly stochastic

● Usual Approach:

– To combine dynamic programming with function approximators (neural 
networks, regression trees, SVM, linear regression over basis functions, etc)

– Function approximators have two main roles:
● To offer a concise representation of state-action value function for 

deriving value / policy iteration algorithms
● To generalize information contained in the finite sample
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Formalization

● System dynamics:

● Reward function:

● Performance of a policy

 where

Reinforcement learning



Formalization

● The system dynamics, reward function and disturbance probability distribution are 
unknown

Batch mode reinforcement learning



Formalization

● The system dynamics, reward function and disturbance probability distribution are 
unknown

● Instead, we have access to a sample of one-step system transitions:

Batch mode reinforcement learning



● Artificial trajectories are (ordered) sequences of elementary pieces of 
trajectories:

Formalization
Artificial trajectories



Artificial Trajectories: What For?

● Artificial trajectories can help for:

– Estimating the performances of policies

– Computing performance guarantees

– Computing safe policies

– Choosing how to generate additional transitions



Artificial Trajectories: What For?
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Monte Carlo estimation would allow estimating the performance of h
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Model-free Monte Carlo Estimation

● If the system dynamics and the reward function were accessible to simulation, then 
Monte Carlo (MC) estimation would allow estimating the performance of h

● We propose an approach that mimics MC estimation by rebuilding p  artificial 
trajectories from one-step system transitions

● These artificial trajectories are built so as to minimize the discrepancy (using a 
distance metric ∆) with a classical MC sample that could be obtained by 
simulating the system with the policy h; each one step transition is used at most 
once

● We average the cumulated returns over the p artificial trajectories to obtain the 
Model-free Monte Carlo estimator (MFMC) of the expected return of h:



Model-free Monte Carlo Estimation



Example with T = 3, p = 2, n = 8

The MFMC algorithm
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The MFMC algorithm



● Lipschitz continuity assumptions:

Theoretical Analysis
Assumptions



● Distance metric ∆

● k-sparsity

●                       denotes the distance of (x,u) to its k-th nearest neighbor 
(using the distance ∆) in the sample

Theoretical Analysis
Assumptions



Theoretical Analysis
Assumptions

● The k-sparsity can be
seen as the smallest 
radius such that all
∆-balls in X×U contain
at least k elements from
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Theoretical results

● Expected value of the MFMC estimator
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Theoretical results

● Variance of the MFMC estimator

● Theorem

with 



● Dynamics:

● Reward function:

● Policy to evaluate:

● Other information:

pW(.) is uniform, 

Experimental Illustration
Benchmark



Monte Carlo estimatorModel-free Monte Carlo estimator

● Simulations for p = 10, n = 100 … 10 000, uniform grid, T = 15, x
0
 = - 0.5  .

n = 100 … 10 000, p = 10

Experimental Illustration
Influence of n

p = 10



● Simulations for p = 1 … 100, n = 10 000 , uniform grid, T = 15, x
0
 = - 0.5  .

Monte Carlo estimatorModel-free Monte Carlo estimator

p = 1 … 100, n=10 000 p = 1 … 100

Experimental Illustration
Influence of p



● Comparison with the FQI-PE algorithm using k-NN, n=100, T=5 .

Experimental Illustration
MFMC vs FQI-PE



● Comparison with the FQI-PE algorithm using k-NN, n=100, T=5 .

Experimental Illustration
MFMC vs FQI-PE



Conclusions

Stochastic setting

 

Bias / variance analysis Illustration

MFMC: estimator of the expected return
Estimator

of the
VaR

Deterministic setting
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Appendix



Estimating the Performances of Policies

● Consider again the p artificial trajectories that were rebuilt by the MFMC estimator

● The Value-at-Risk of the policy h 

can be straightforwardly estimated as follows: 

with

Risk-sensitive criterion



Deterministic Case: Computing Bounds
Bounds from a Single Trajectory

● Given an artificial trajectory :



Deterministic Case: Computing Bounds
Bounds from a Single Trajectory

● Proposition:

Let be an artificial trajectory. Then,

with



Deterministic Case: Computing Bounds
Maximal Bounds

● Maximal lower and upper-bounds



Deterministic Case: Computing Bounds
Tightness of Maximal Bounds

● Proposition:



Inferring Safe Policies
From Lower Bounds to Cautious Policies

● Consider the set of open-loop policies:

● For such policies, bounds can be computed in a similar way

● We can then search for a specific policy for which the associated lower bound is 
maximized:

● A O( T n ² ) algorithm for doing this: the CGRL algorithm (Cautious approach to 
Generalization in RL)



Inferring Safe Policies
Convergence

● Theorem



Inferring Safe Policies
Experimental Results

● The puddle world benchmark



 CGRL     FQI (Fitted Q Iteration)

     

The state space is 

uniformly covered by

the  sample

Information about the

Puddle area is

removed

Inferring Safe Policies
Experimental Results



Inferring Safe Policies
Bonus

● Theorem



Sampling Strategies

●  Given a sample of system transitions

 How can we determine where to sample additional transitions ?

● We define the set of candidate optimal policies:

● A transition is said compatible with if

 and we denote by the set of all such compatible transitions.

An Artificial Trajectories Viewpoint



Sampling Strategies

● Iterative scheme:

with

● Conjecture:

An Artificial Trajectories Viewpoint



Sampling Strategies
Illustration

● Action space:

● Dynamics and reward function:

● Horizon:

● Initial sate:

● Total number of policies:

● Number of transitions
needed for discriminating:



Connexion to Classic Batch Mode RL
Towards a New Paradigm for Batch Mode RL

l1

l1,1

l2

lk

l1,2

l1,k

lk , 1

lk , 2

lk , k

l2,1

l2,2

l2,k

lk , k ,... ,k

l1,1,. .. ,1

lk , 2,1

lk , 2,2

lk , 2,k

● FQI (evaluation mode) with k-NN:



Connexion to Classic Batch Mode RL
Towards a New Paradigm for Batch Mode RL

● The k-NN FQI-PE algorithm:

● The k-NN FQI-PE estimator:
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