Spiral arms in the disk of HD 142527 with ALMA
(Triptych on HD 142527 - part III)

Valentin Christiaens
PhD student, Universidad de Chile
Supervisor: Prof. Simon Casassus

Simon Casassus, Sebastian Perez, Gerrit van der Plas, François Ménard
Outline

1. Moment maps and detection of spiral arms
2. Description of the spiral arms
3. Geometrical modelling
4. Discussion on their origin
1. Moment maps

- Extended diffuse cloud absorbs signal in the South (Casassus et al. 2013)
- Spiral structures in I_{int} and I_{peak} maps; best seen in CO J=2-1 I_{peak} map
- Keplerian vel. + no significant vel. dispersion under the spirals
- Outer disk too faint to reveal structures in ^{13}CO J=2-1
2. Spiral arms description

★ **S1 in NIR:** diamonds (Fukagawa+ 06) and squares (e.g. Casassus+ 12)
★ **Very large scale:** $R > 300$ au for S1, $R > 500$ au for S2 and $\Delta PA \sim 100^\circ$
★ **S3 signal absorbed by an intervening cloud** (Casassus+ 13)

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R (''$)</td>
<td>1.9–2.8</td>
<td>3.0–4.2</td>
<td>3.2–4.4</td>
</tr>
<tr>
<td>$R (au)$</td>
<td>290–380</td>
<td>520–640</td>
<td>520–670</td>
</tr>
<tr>
<td>$PA (^\circ)$</td>
<td>-110 – 0</td>
<td>-100 – 0</td>
<td>100–190</td>
</tr>
</tbody>
</table>
2. Spiral arms description

- \(T(S2) < 18K \Rightarrow \text{CO should freeze-out} \) (e.g. Leger 83; Qi+ 11)
- \(\Rightarrow \text{dust depleted or settled} \) (e.g. Dubrulle+ 95; Dullemond & Dominik 04)
- and/or \(\text{CO desorbed} \) (e.g. Hersant 09)
- \(T(gap) \approx 42K \) (Fukagawa+ 13; Perez+ 14 submitted) \(\Rightarrow T \propto r^{-q} \) with \(T_b(\text{CO2-1}): q \sim 0.5 \)

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R) (")</td>
<td>1.9-2.8</td>
<td>3.0-4.2</td>
<td>3.2-4.4</td>
</tr>
<tr>
<td>(R) (au)</td>
<td>290-380</td>
<td>520-640</td>
<td>520-670</td>
</tr>
<tr>
<td>(PA) (°)</td>
<td>-110 - 0</td>
<td>-100 - 0</td>
<td>100-190</td>
</tr>
<tr>
<td>(T_b) (K)</td>
<td>20-20</td>
<td>11-15</td>
<td>?</td>
</tr>
<tr>
<td>(T_{ex}) (K)</td>
<td>22-27</td>
<td>13-15</td>
<td>?</td>
</tr>
</tbody>
</table>
2. Spiral arms description

![CO J=2-1](image)

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (")</td>
<td>1.9–2.8</td>
<td>3.0–4.2</td>
<td>3.2–4.4</td>
</tr>
<tr>
<td>R (au)</td>
<td>290–380</td>
<td>520–640</td>
<td>520–670</td>
</tr>
<tr>
<td>PA (°)</td>
<td>-110 – 0</td>
<td>-100 – 0</td>
<td>100–190</td>
</tr>
<tr>
<td>T_b (K)</td>
<td>20–20</td>
<td>11–15</td>
<td>?</td>
</tr>
<tr>
<td>T_{ex} (K)</td>
<td>22–27</td>
<td>13–15</td>
<td>?</td>
</tr>
<tr>
<td>H (au)</td>
<td>38–44</td>
<td>66–76</td>
<td>?</td>
</tr>
<tr>
<td>h</td>
<td>0.11–0.13</td>
<td>0.11–0.13</td>
<td>?</td>
</tr>
</tbody>
</table>

★ If $i \sim 28°$ (Perez+ 14, submitted) => H~20au at the wall ($h \sim 0.10–0.15$; Avenhaus+ 14)
3. Spiral arm modelling (points)

★ 20 Points with: 1st derivative null (S2,S3) in radial I_{peak} profile OR 2nd derivative null (S1)
3. Spiral arm modelling (Muto+ 12)

\[
\theta(r) = \theta_c + \frac{\text{sgn}(r - r_c)}{h_c} \left\{ \left(\frac{r}{r_c} \right)^{1+\beta} \left[\frac{1}{1+\beta} - \frac{1}{1 - \alpha + \beta} \left(\frac{r}{r_c} \right)^{-\alpha} \right] - \left(\frac{1}{1+\beta} - \frac{1}{1 - \alpha + \beta} \right) \right\}
\]

★ 5 parameters: \(\theta_c, r_c, h_c, \alpha\) and \(\beta\) (with \(\Omega \propto r^{-\alpha}\) and \(c_s \propto r^{-\beta}\))

★ The parameters are degenerate (also noted by Muto+ 12, Grady+ 13, Boccaletti+ 13).

★ \(\alpha := 1.5\) (Keplerian rotation)

\(\beta := 0.25\) \((T \propto r^{-0.5})\)

\(h_c := 0.14\) (best fit value for S1 if set as free parameter)

\[
\begin{array}{|c|c|c|c|}
\hline
\chi^2 & S1 & S2 & S3 \\
\hline
\text{CO 2-1} & 2.38 & 18.0 & 4.67 \\
\hline
\text{CO 3-2} & 2.06 & 36.0 & / \\
\hline
\end{array}
\]

★ \(\sigma\) not independently determined ⇒ S1 is better fit than S2 and S3
3. Spiral arm modelling (Muto+ 12)

★ Inflection point in the curves: best fit location of the planet
★ S1 + S3 ~ Point-symmetric of S2
3. Spiral arm modelling (Kim 11)

\[r = a\theta + b \]

★ 2 parameters: \(a \) and \(b \) (Archimedean spiral)

\[\begin{cases}
 a = r_p/M_p \\
 b = \text{cte} \\
\end{cases} \]

with \(r_p \) = planet's orbital distance; \(M_p \) = planet's Mach number

<table>
<thead>
<tr>
<th>(\chi^2)</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 2–1</td>
<td>0.16</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>CO 3–2</td>
<td>0.18</td>
<td>2.94</td>
<td>/</td>
</tr>
</tbody>
</table>

⇒ \text{S1 is also better fit than S2 and S3.}
3. Spiral arm modelling (Kim 11)

- NIR H-band spiral (diamonds, Fukagawa+ 06), Ks-band spiral root (squares, Casassus+ 12), and S1 ⇒ trace the same spiral structure?
- S3 ~ point-symmetric of S2 ⇒ two-armed spiral structure?
4. Discussion: Origin of the spirals

1/ Late envelope infall? (Tang+ 12)

- AB Aur: Herbig star, large gap, only TD with known sub-mm spirals

- AB Aur spiral arms have a larger pitch angle.
- AB Aur spiral arms seem to counter-rotate with the disk (vel. disp.).
 \[\Rightarrow \text{Late envelope infall above or below the mid-plane of the disk.} \]

For HD 142527? NO
2/ Planetary companion?

- S1 is better fit with Muto and Kim equations than S2 and S3.
- The very large scale of S2 and S3 argue against a planetary origin.
- Object (stellar companion?) detected at \(\sim 12 \text{ au} \) (Biller+ 12, Close+ 14)

Companion origin? Maybe for S1, less likely for S2 and S3
4. Discussion: Origin of the spirals

3/ Tidal interaction? (e.g. Larwood & Kalas 01, Quillen+ 05)

a) Past stellar encounter

★ Galaxy encounters are able to create $m=2$ spiral structures (Toomre 1972)

★ Stellar encounters with pp. disks too (Larwood & Kalas 01, Quillen+ 05)

★ Transient ($\sim 10^3$ yrs) => very recent encounter
=> culprit still in the neighbourhood.
No such object in a FOV of 20” (Fukagawa+ 06).

Past stellar encounter?
Requires larger FOV; cannot be ruled out.
4. Discussion: Origin of the spirals

3/ Tidal interaction? (e.g. Augereau & Papaloizou 04, Quillen+ 05)

b) Bound external companion

- Large scale (~325 au) tightly wound spiral in the disk of HD 141569A due to one of its M-dwarf companions (Augereau & Papaloizou 04, Quillen+ 05)

- For HD 142527, no external companion of $M > 4M_J$ (Casassus+ 13)

Bound external companion? Not likely
4. Discussion: Origin of the spirals

4/ Gravitational instability (GI)? (e.g. Boss 1998, talk by G. Lodato)

★ Disk self-gravity can lead to multi-arm spiral pattern (with perhaps some unresolved modes here)

★ The stability of a disk against self-gravity is characterized by:

\[Q = \frac{c_s \Omega}{\pi G \Sigma} \]

(Toomre 1964)

\[\approx \frac{M_*}{M_d} h \]

(Gammie 2001)

★ If \(Q \lesssim 1 \): disk instability

★ \[\begin{aligned} M_* & \sim 2^{+0.2}_{-0.1} M_\odot \\
M_d & \sim 0.1 M_\odot \\
h = h_s & \sim 0.1
\end{aligned} \]

(Fukagawa+ 06, Verhoeff+ 2011)

⇒ \(Q \sim 2 \) (similar to Fukagawa+ 13)

GI? Marginal stability, but very rough estimated
Summary

★ Three CO spiral arms in the disk of HD 142527:
 - S1 is radially shifted outward w.r.t. NIR spirals
 - S2 and S3 are new and at larger scale (> 500au)
★ S2 has T ≲ 18K: dust is depleted or settled or CO is desorbed.
★ h ≈ 0.11-0.13 in the outer disk
★ S1 better fit than S2 and S3 to eqs. assuming embedded companion.
★ Other possible origins: past stellar encounter
 gravitational instability
Thank you for your attention!
Appendix

S1 in NIR: diamonds (Fukagawa+ 06) and squares (e.g. Casassus+ 12)

Very large scale: $R > 300$ au for S1, $R > 500$ au for S2 and $\Delta PA \sim 100^\circ$

S3 signal absorbed by an intervening cloud (Casassus+ 13)