Computational & Multiscale Mechanics of Materials

Probabilistic model for MEMS microbeam resonance frequency

Lucas Vincent Wu Ling Arnst Maarten Golinval Jean-Claude Paquay Stéphane Noels Ludovic

3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework.

The problem

MEMS structures

- Are not several orders larger than their micro-structure size
- As a result, their macroscopic properties can exhibit a scatter
 - Due to the fabrication process
 - Due to uncertainties of the material
 - ...

- Characteristics of our model:
 - Clamped microbeam
 - Macroscopic property of interest: first mode eigenfrequency
 - For a MEMS gyroscope for example

- Up to now, the only sources of uncertainty is due to the material
 - Silicon crystals are anisotropic
 - Polysilicon is polycrystalline

Each grain has a random orientation

Monte-Carlo for a fully modelled beam

- The first mode frequency distribution can be obtained with
 - A 3D beam with each grain modelled
 - and a Monte-Carlo simulation of this model

Considering each grain is expensive and time consuming

Motivation for stochastic multi-scale methods

Motivations

- Multi-scale modelling
 - 2 problems are solved concurrently
 - The macro-scale problem
 - The meso-scale problem (on a meso-scale Volume Element)

Length-scales separation

For accuracy: Size of the mesoscale volume element smaller than the characteristic length of the macro-scale loading To be statistically representative: Size of the meso-scale volume element larger than the characteristic length of the microstructure

For structures not several orders larger than the micro-structure size

For accuracy: Size of the mesoscale volume element smaller than the characteristic length of the macro-scale loading

Meso-scale volume element no longer statistically representative: Stochastic Volume Elements*

Possibility to propagate the uncertainties from the micro-scale to the macro-scale

```
*M Ostoja-Starzewski, X Wang, 1999
P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrali, 2015
X. Yin, W. Chen, A. To, C. McVeigh, 2008
J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011
....
```


A 3-scale procedure

Grain-scale or micro-scale Meso-scale Samples of the Intermediate scale Uncertainty quantification of the microstructure (volume > The distribution of the elements) are generated macro-scale quantity material property $\mathbb{P}(C)$ is defined > E.g. the first mode Each grain has a random orientation frequency $\mathbb{P}(f_1)$

Definition of Stochastic Volume Elements (SVEs)

- Poisson Voronoï tessellation
- Each grain i is assigned an elasticity tensor \mathbb{C}_i
- \mathbb{C}_i defined from silicon crystal properties
- Each \mathbb{C}_i is assigned a random rotation
- Mixed BCs

Stochastic homogenization

Several realizations

$$oldsymbol{\sigma}_{m^i} = \mathbb{C}_i : oldsymbol{\epsilon}_{m^i}$$
 , $orall i$

Computational homogenization

$$\sigma_M = \mathbb{C}_M : \epsilon_M$$

Samples of the mesoscale homogenized elasticity tensors

- Homogenized elasticity tensor not unique as statistical representativeness is lost*
 - · It is thus called apparent elasticity tensor

*"C. Huet, 1990

- Distribution of the apparent mesoscale elasticity tensor \mathbb{C}_M
 - For large SVEs, the apparent tensor tends to the effective (and unique) one

- The bounds do not depend on the SVE size but on the silicon elasticity tensor
- However, the larger the SVE, the lower the probability to be close to the bounds

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable

Monte-Carlo simulations

 \mathbb{C}_{M^1} \mathbb{C}_{M^2} \mathbb{C}_{M^3}

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable
 - Monte-Carlo simulations

 No convergence: the macro-scale distribution (first resonance frequency) depends on SVE and mesh sizes

 \mathbb{C}_{M^1} \mathbb{C}_{M^2} \mathbb{C}_{M^3}

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable
 - Monte-Carlo simulations

Refining the 1D mesh:

More random variables having the same distribution

 \mathbb{C}_{M^1} \mathbb{C}_{M^2} \mathbb{C}_{M^3}

- Introduction of the (meso-scale) spatial correlation
 - SVEs extracted at different distances
 - Spatial correlation of the r^{th} and s^{th} components of the apparent (homogeneous) elasticity tensor \mathbb{C}_M

$$R_{\mathbb{C}}^{(rs)}(\boldsymbol{\tau}) = \frac{\mathbb{E}\left[\left(\mathbb{C}^{(r)}(\boldsymbol{x}) - \mathbb{E}\left(\mathbb{C}^{(r)}\right)\right)\left(\mathbb{C}^{(s)}(\boldsymbol{x} + \boldsymbol{\tau}) - \mathbb{E}\left(\mathbb{C}^{(s)}\right)\right)\right]}{\sqrt{\mathbb{E}\left[\left(\mathbb{C}^{(r)} - \mathbb{E}\left(\mathbb{C}^{(r)}\right)\right)^{2}\right]\mathbb{E}\left[\left(\mathbb{C}^{(s)} - \mathbb{E}\left(\mathbb{C}^{(s)}\right)\right)^{2}\right]}}$$

Represented by the correlation length:

$$L_{\mathbb{C}}^{(rs)} = \frac{\int_{-\infty}^{\infty} R_{\mathbb{C}}^{(rs)}}{R_{\mathbb{C}}^{(rs)}(0)}$$

 The correlation length increases with the SVE size

The meso-scale random field

- Use of the meso-scale distribution with stochastic (macro-scale) finite elements
 - Use of the meso-scale correlated distribution as a random field
 - Monte-Carlo simulations

Direct resolution of SVEs at each (macro-scale) (Gauss) integration-points

Not computationally efficient

Stochastic model of meso-scale elasticity tensors*

*C. Soize, 2001

S. Das, R. Ghanem, 2009

J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011

.

The meso-scale random field

- Generation of the elasticity tensor $\mathbb{C}_M(x,\theta)$ (matrix C_M) spatially correlated field
 - One possible method
 - Define a lower isotropic lower bound C_L from the silicon crystal tenor C_S

$$\min_{E,\nu} \|\boldsymbol{c}(E,\nu) - \boldsymbol{c}_S\| \text{ with } \boldsymbol{c}(E,\nu) \leq \boldsymbol{c}_M$$

– Define the positive semi-definite tensor $\Delta C(x, \theta)$ such that

$$\mathbf{C}_{M}(x,\theta) = \mathbf{C}_{L} + \Delta \mathbf{C}(x,\theta)$$

- This will ensure the convergence of the Stochastic Finite Element Method*
- We now need to generate the spatially correlated random field $\Delta C(x, \theta)$
- Cholesky decomposition

$$\Delta C(x,\theta) = A(x,\theta)A(x,\theta)^{\mathrm{T}}$$
 with $A(x,\theta) = \overline{A} + A'(x,\theta)$

- $A'(x,\theta)$ is generated using the spatial correlation matrix $R_{A'}(\tau)$
 - Here we use the spectral method**
 - Assumed Gaussian (can be changed)

Homogeneous random field

Université Ug de Liège

The meso-scale random field

Good agreement between:

- The samples of elasticity tensors computed from the homogenization
- The generated elasticity tensors

Young's modulus distribution

	Relative error [%]
mean of E	0,026
variance of E	0,97

Young's modulus spatial correlation

	Micro-samples	Generator
Skewness of E	-0,11	0,26
Kurtosis of E	2,93	3,02

CM3

Stochastic finite element method (SFEM)

- Macro-scale beam elements of size l_{mesh}
- Use the meso-scale random field obtained using SVEs of size l_{SVE}
- The meso-scale random field is characterized by the correlation length $L_{\mathbb{C}}$

- The ratio $\alpha = \frac{L_{\mathbb{C}}}{l_{\text{mesh}}}$
 - Links the (macro-scale) finite element size to the correlation length
 - Is related to the SVE size thought the correlation length

CM3

• Effect of the ratio $\alpha = \frac{l_{\mathbb{C}}}{l_{\text{mesh}}}$

• For extreme values of α:

 $\alpha\gg$ 1: no more scale separation if $L_{\rm SVE}{\sim}L_{\rm macro}$

 $lpha \ll$ 1: loss of microstructural details if $L_{
m SVE}{\sim}L_{
m micro}$

- Verification of the 3-scale process (α ~2) with direct Monte-Carlo simulations
 - First bending mode of a 3.2 μ m-long beam

Relative difference in the mean: 0.57 %

- Second bending mode of a 3.2 μ m-long beam

Relative difference in the mean: 0.44 %

Convergence of the 3-scale process

- In terms of $\alpha = \frac{l_{\mathbb{C}}}{l_{\mathrm{mesh}}}$
- First flexion mode of a 3.2 μ m-long beam

Perspectives

- Validate the 1D model on a bigger beam with experimental results
 - Measures for appropriate data as inputs: grain sizes, preferred direction, ...
 - Samples of 1st mode frequency
 - Is the grain orientation the main contribution to the scatter of the first mode?
- Extend the model to 3D
 - Extension to 3D macroscale SFEM (generator already 3D)
 - Extension to thermoelasticity
 - Will permit to study the influence of the clamp and thermoelastic damping

Study geometric uncertainties

Thank you for your attention!

