Mid-infrared prediction of β-hydroxybutyrate, acetone and citrate contents in milk

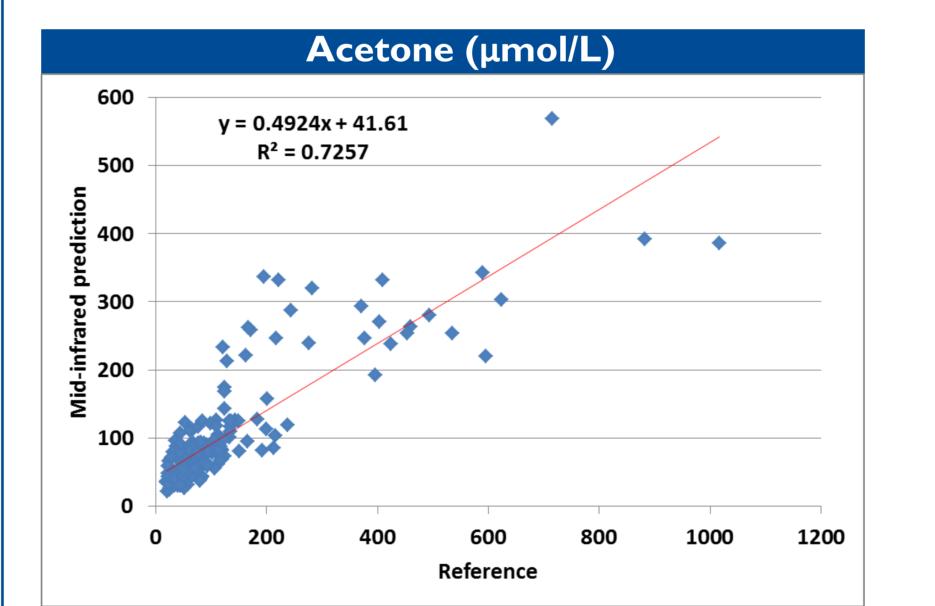
C. Bastin¹, C. Grelet², M. Gelé³, J-B. Davière⁴, R. Reding⁵, A. Werner⁶, C. Darimont², F. Dehareng², N. Gengler¹ & P. Dardenne²

- ¹ University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
- ² Walloon Agricultural Research Center, Gembloux, Belgium
- ³ French Livestock Institute, Angers, France
- ⁴ CLASEL, Le Mans, France
- ⁵ CONVIS S.C., Ettelbruck, Luxembourg
- ⁶ LKV Baden Württemberg, Stuttgart, Germany

Corresponding author: catherine.bastin@ulg.ac.be

Background

- Mid-infrared analysis of milk is a cost-effective and rapid tool to collect routinely new phenotypes for genetic and management purposes in dairy cattle.
- Ketone bodies in milk are indicators of (sub)clinical ketosis.
- Citrate in milk is identified as an indicator of physiological imbalance and mastitis.


Bjerre-Harpøth et al., 2012, J. Dairy Sci., 95:2362-2380 De Marchi et al., 2014, J. Dairy Sci., 97:1171-1186 De Roos et al., 2007, J. Dairy Sci., 90:1761-1766

Predict the content in milk of \beta-hydroxybutyrate, acetone, and citrate by mid-infrared spectrometry

Conclusion

Results

Citrate content can be predicted by mid-infrared spectrometry with good accuracy (RPDc > 3). Mid-infrared prediction of β-hydroxybutyrate and acetone contents can be used for screening.

Calibration statistics

Material & Methods

566 milk samples were collected in research and commercial farms in Luxembourg, Germany, and France

Reference analyses were performed by flow injection (Skalar) at 🤳 .

Spectral data were obtained from local milk labs and were standardized.

Descriptive statistics of the reference analyses for acetone, β -hydroxybutyrate and citrate (N=566)

	Mean	Range
Acetone (µmol/L)	103	20 to 3355
β-hydroxybutyrate (µmol/L)	215	21 to 1595
Citrate (mmol/L)	8.9	4.5 to 15.5

β-hydroxybutyrate (µmol/L) 900 y = 0.6317x + 67.31800 $R^2 = 0.7509$ ວັ 700 600 500 400 <u>, 5</u> 300 200 100 200 400 600 800 1000 1200 1400 Reference

Citrate (mmol/L)

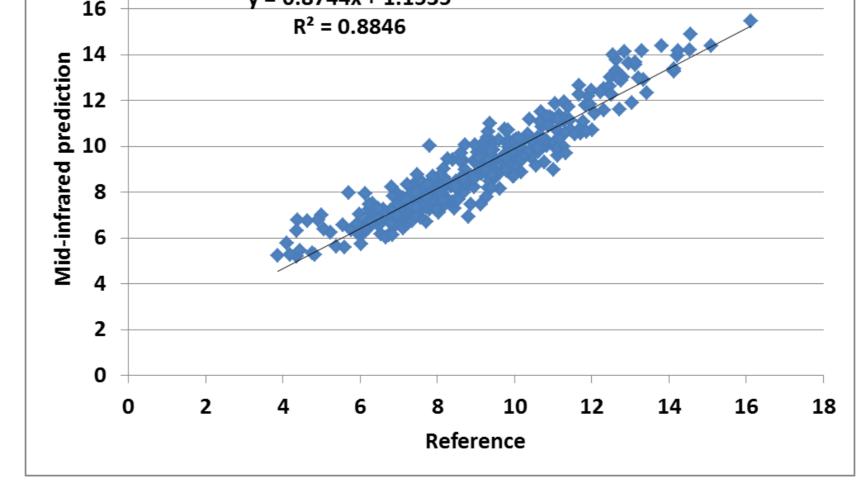
y = 0.8744x + 1.1535

	(μmol/L)	μmol/L)	(mmol/L)
Ν	419	201	338
No. of terms	9	8	9
Mean	225	117	9.05
SD	171	145	2.19
RMSEc	86	88	0.73
R ² c	0.75	0.73	0.88
RPDc	1.97	1.65	3.01

SD = standard deviation

RMSEc= root mean square error of calibration $\mathbf{R}^{2}\mathbf{c}$ = coefficient of determination of calibration RPDc = SD/SEC

External validation statistics


	<mark>β-hydroxy-</mark> butyrate (μmol/L)	Acetone (μmol/L)	Citrate (mmol/L)
Ν	124	233	128
Mean	156	50	9.01
RMSEv	65	45	0.80

RMSEv= root mean square error of validation

Implications?

Calibration procedure:

- **Log-transformation of β-hydroxybutyrate** and acetone to approach a normal distribution
- **Strict editing to select informative samples** \checkmark
- **Modified partial least square regression** after first derivative and selection of informative wavelengths (212)

- **Equations have been disseminated** through the OptiMIR network.
- **Advisory tools for monitoring (sub)** clinical ketosis have been / are being developed based on mid-infrared predictions of β -hydroxybutyrate and acetone.

The authors acknowledge the financial support of the National Fund for Scientific Research (FRS-FNRS, Brussels) through the CompoMilk project (grant 2.4604.11) as well as the support of Interreg IVB and the Service Public de Wallonie through the OptiMIR project.

www.optimir.eu

Investing in Opportunities

*

This project has received European Regional

Development Funding

through INTERREG IV B.

INTERREG IVB