Second DairyCare Conference, Cordoba, Spain, March 3rd-4th 2015

Potential use of milk based biomarkers to assess and to select for heat tolerance in dairy cattle

¹ University of Liege, Gembloux Agro-Bio Tech, Department of Agricultural Science – Gembloux, Belgium ² National Fund for Scientific Research– Brussels, Belgium

³Wageningen UR Livestock Research, Animal Breeding and Genomics Centre – Wageningen, the Netherlands

Contact: hedi.hammami@ulg.ac.be

Background

- Heat stress (HS) impacts
 - **Animal performances**

Objectives

 Estimation of HS impacts on milk production, health & milk fine composition traits

- **Well-being and welfare**
- **Growing interest in adapting animals to HS**
- **Direct measures of HS**
 - **Difficult & complex**
 - Not available routinely
- **Unlike high-throughput technics**
 - E.g., milk mid-infrared (MIR) analyses

Material & Methods

Data

- 202,733 test-day records (2007-2010)
 - Milk, fat, protein & somatic cell score
 - 7 groups and 10 individual milk fatty acid (FA) predicted by MIR
- **34,468 primiparous Holstein cows from 862** herds

Assessing the potential use of milk biomarkers as indicator of HS

Conclusions

cis-9 C18:1 : - most sensitive to hot conditions - reflects body reserve mobilisation

->Suitable milk biomarker as indicator of HS

Results

Ratios & correlations (r) between level (0) and slope (HS) for additive genetic effects and heritability (h²) of traits

- **12,045 daily weather records from 4** national meteorological stations (2000-2010)
- **Daily temperature humidity records (THI)**

 $THI = (1.8 \times T_{db} + 32) - [(0.55 - 0.0055 \times RH)]$ $\times (1.8 \times T_{db} - 26)$

where T_{db} = Dry bulb temperature & RH = Relative humidity

Model

- 23 univariate reaction norm models
 - **6** conventional production traits
 - **10 individual & 7 groups of milk FA**

 $y = Xb + Q_{HS} (Wt + Z_1p + Z_2a) + e$

where **y** = Vector of observations

b = Vector of fixed effects

 \rightarrow Herd x test-day

Fat (kg)	<u>0.09</u>	-0.19	0.16	C17:0	0.02	-0.35	0.41
Protein (kg)	<u>0.07</u>	-0.16	0.15	C18:0	0.04	0.13	0.23
Fat (%)	0.02	-0.27	0.39	<i>cis-9</i> C18:1	<u>0.09</u>	0.05	0.16
Protein (%)	0.04	-0.15	0.39	UFA	0.05	0.13	0.21
SCS	<u>0.11</u>	0.25	0.08	SFA	0.02	-0.29	0.47
C4:0	0.04	0.18	0.37	MUFA	<u>0.06</u>	0.06	0.20
C6:0	0.03	0.09	0.44	PUFA	0.04	0.38	0.30
C8:0	0.03	-0.01	0.44	SCFA	0.03	0.02	0.42
C10:0	0.03	-0.13	0.42	MCFA	0.02	-0.39	0.47
C12:0	0.03	-0.25	0.42	LCFA	<u>0.06</u>	0.15	0.19
C14:0	0.03	-0.20	0.45				

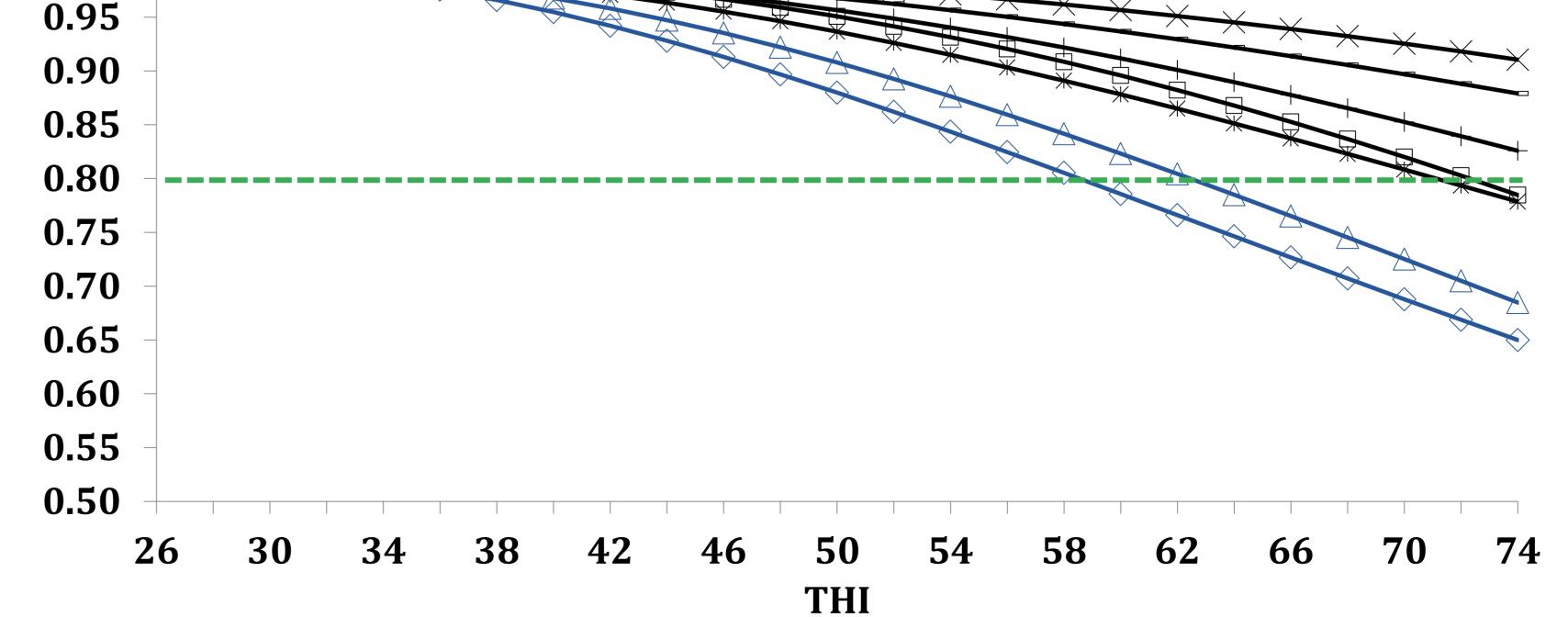
SFA = Saturated FA ; MUFA = Monounsaturated FA ; PUFA = Polyunsaturated FA ; UFA = Unsaturated FA ; SCFA = Short chain FA ; MCFA = Medium chain FA ; LCFA = Long chain FA

Genetic correlations between a THI of 25 (cold) and the rest of THI scale \Rightarrow cis-9 C18:1 \Rightarrow SCS \Rightarrow MUFA \Rightarrow Milk \rightarrow Protein % \rightarrow C8:0 \Rightarrow SFA 1.00

→ Minor lactation stage

 \rightarrow Gestation stage

 \rightarrow Lactation stage x calving age x calving season **t** = Vector of fixed regression coefficients on THI scale


p = Vector of permanent environmental random effects

a = Vector of additive genetic random effects

 Q_{HS} = Covariate matrix for 1st order Legendre polynomials for standardized THI [-1;1]

X, **W**, $Z_1 \& Z_2$ = Incidence matrices

e= Vector of residuals

Hedi Hammami, as a postdoctoral fellow, and Jérémie Vandenplas, as a former research fellow, acknowledge the Gembloux Agro-Bio Tech support of the National Fund for Scientific Research (Brussels, Belgium) for their fellowships. The Walloon Breeding Association (Ciney, Belgium) and the Royal Meteorological Institute (Brussels, Belgium) are acknowledged for providing access to animal performance and weather data, respectively.

