Genetic correlations between methane production & milk fatty acid contents of Walloon Holstein cattle throughout the lactation

M.-L. Vanrobays¹, J. Vandenplas², C. Bastin¹, H. Hammami¹, H. Soyeurt¹, A. Vanlierde³, F. Dehareng³, E. Froidmont³ & N. Gengler¹

¹ University of Liège, Gembloux Agro-Bio Tech, B-5030 Gembloux, Belgium; ² Wageningen UR Livestock Research, 6700 AH Wageningen, the Netherlands; 3 Walloon Agricultural Research Centre, B-5030 Gembloux, Belgium

Background

- Enteric methane (CH₄) emissions of cows
 - Common bio-chemical pathways with acetate & butyrate
- Milk fatty acids (FA) from acetate & butyrate
 - ✓ Potential predictors of CH₄
- Association between CH₄ emissions & milk FA changes through the lactation
 - ✓ Still unclear

Material & Methods

Data

- Prediction of CH₄ emissions (g/d) & groups of milk FA contents (g/dL of milk) from milk mid-infrared (MIR) spectra
- ≥ 5 records/cow
- ≥ 20 cows/herd
- 243,260 MIR spectra collected between January 2007 and January 2014
- From 5 to 305 days in milk (DIM)
- 33,850 first-parity Walloon Holstein cows from 630 herds
- Pedigree file: 109,975 animals

Model

- Bivariate random regression test-day models
 - MIR CH₄ & 1 group of FA
 - Resolved using REMLF90 (Misztal, 2012)

y = Xb + Q (Wh + Zp + Za) + e

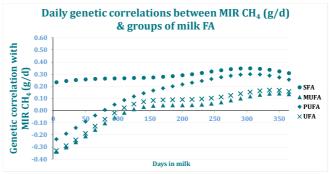
where y = Vector of observations

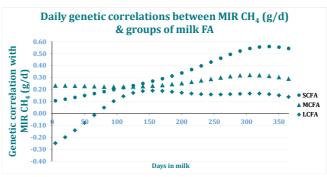
- h = Vector of fixed effects
 - → Herd x test-day
 - Classes of lactation stage
 - → Gestation stage x lactation stage
 - → Lactation stage x age at calving x season of calving
- h = Vector of herd x year of calving random effects
- p = Vector of permanent environmental random effects
- a = Vector of additive genetic random effects
- Q = Covariate matrix for 2nd order Legendre polynomials
- X. W & Z = Incidence matrices
- e= Error

Objective: Estimation of genetic correlations between CH₄ emissions & FA contents in milk throughout the lactation

Conclusions

- Genetic correlations between CH₄ production & milk FA vary according to lactation stage of the cow
- ➤ Need to take into account this fact when predicting CH₄ emissions from milk FA contents


Results


Heritabilities of studied traits & genetic correlations of FA with CH₄

Trait	h ²	Averaged daily genetic correlation with CH ₄
MIR CH ₄ (g/d)	0.24	/
SFA (g/dL of milk)	0.40	0.29
MUFA (g/dL of milk)	0.19	0.00
PUFA (g/dL of milk)	0.29	0.12
UFA (g/dL of milk)	0.20	0.04
SCFA (g/dL of milk)	0.39	0.29
MCFA (g/dL of milk)	0.41	0.25
LCFA (g/dL of milk)	0.17	0.15

 h^2 = heritability; SFA = Saturated FA; MUFA = Monounsaturated FA; PUFA = Polyunsaturated FA; UFA = Unsaturated FA; SCFA = Short-chain FA; MCFA = Medium-chain FA; LCFA = Long-chain FA

Evolution of genetic correlations between MIR CH₄ and groups of FA

Positive correlations between CH₄ and SFA. SCFA & MCFA

correlations in early lactation and high after for SCFA & correlations more stable icross DIM for SFA & MCFA

correlations between CH₄ and UFA & LCFA in early lactation & increasing afterward to become positive

