A stable numerical scheme for shallow flow modelling
taking into account bottom curvature

B.J. Dewals1,2, S. Erpicum1 and M. Pirotton1

1Department ArGEnCo, Research unit of Applied Hydrodynamics and Hydraulic Constructions, University of Liege, Chemin des Chevreuils 1 Bât. B52/3+1, 4000 Liege, Belgium

2Fund for Scientific Research F.R.S.-FNRS
e-mails: B.Dewals@ulg.ac.be, S.Erpicum@ulg.ac.be, Michel.Pirotton@ulg.ac.be

Accurately modelling free surface flows on strongly vertically curved bottoms, such as for instance over a spillway (see picture: spillway of the Nisramont dam), is a challenge for any depth-averaged model. This type of computation requires the use of axes properly inclined along the mean flow direction in the vertical plane (Figure 1) and a modelling of curvature effects. The herein presented generalized model performs such computations by means of suitable curvilinear coordinates in the vertical plane (Figure 2) \cite{1}, leading to the possibility of conducting unified simulations of the flows in the upstream reservoir, on the spillway, in the stilling basin and in the downstream river reach within a single computation domain. The velocity profile is generalized in comparison with the uniform one usually assumed in the classical shallow water equations. The pressure distribution is modified as a function of the bottom curvature and is thus not purely hydrostatic but accounts for effects of centrifugal forces. The new model constitutes a two-dimensional extension of the pioneering work carried out by Dressler \cite{2} in 1978.

This enhanced mathematical modelling framework has been implemented within the finite volume numerical model \textit{WOLF 2D}. A specific \textit{Flux Vector Splitting} (FVS) technique has been developed and demonstrated to be stable for any flow regime, by means of a von Neuman analysis. The upwind scheme offers the advantage of being dependent only on the sign of the bottom curvature. For a vanishing bottom curvature, the new model converges smoothly towards the conventional shallow-water equations.

Besides describing the mathematical and numerical extended model, the presentation will detail several validation examples, as well as an application of the model to design a large hydraulic structure.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Frame of reference locally inclined along the mean flow direction (A vs B).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Cartesian (x, y) vs curvilinear (\(\xi\), \(\eta\)) frames of reference.}
\end{figure}

\textbf{References}

\begin{enumerate}
\end{enumerate}