

Gembloux Agro-Bio Tech Université de Liège

Context

Cover crop & crop residue = source of organic matter

TO VALORIZE

Soil fertility restauration

Externat uses (fodder, bioenergy,...)

The aim of our project is to understand all major processes involved in cover crop management in the soil-water-plant systems in silty loam soil and temperate climate.

In this context we focus on beat production from two different experimental fields and weather conditions (2013 and 2014).

Field experiment

on cover crop management

Two fields with same protocol but delayed by one year. Contrasted cover crop managements :

 \rightarrow Time of intervention winter 🔶 spring \rightarrow Intensity of tillage plow 🔶 reduced tillage \rightarrow Cover crop destruction mode physical ⇔ chemical \rightarrow Main crop soil preparation 100% \iff 30% disruption \rightarrow Crop residue placement -25 cm \iff -10 cm \iff top soil Bare soil \sim Cover crop Dead crop Spring plot Prepared soil Spring crop Decompaction & 3. (C Shallow tillage Glyphosate Ploughing Strip tillage (4) **M** Strip till * Dec March

S

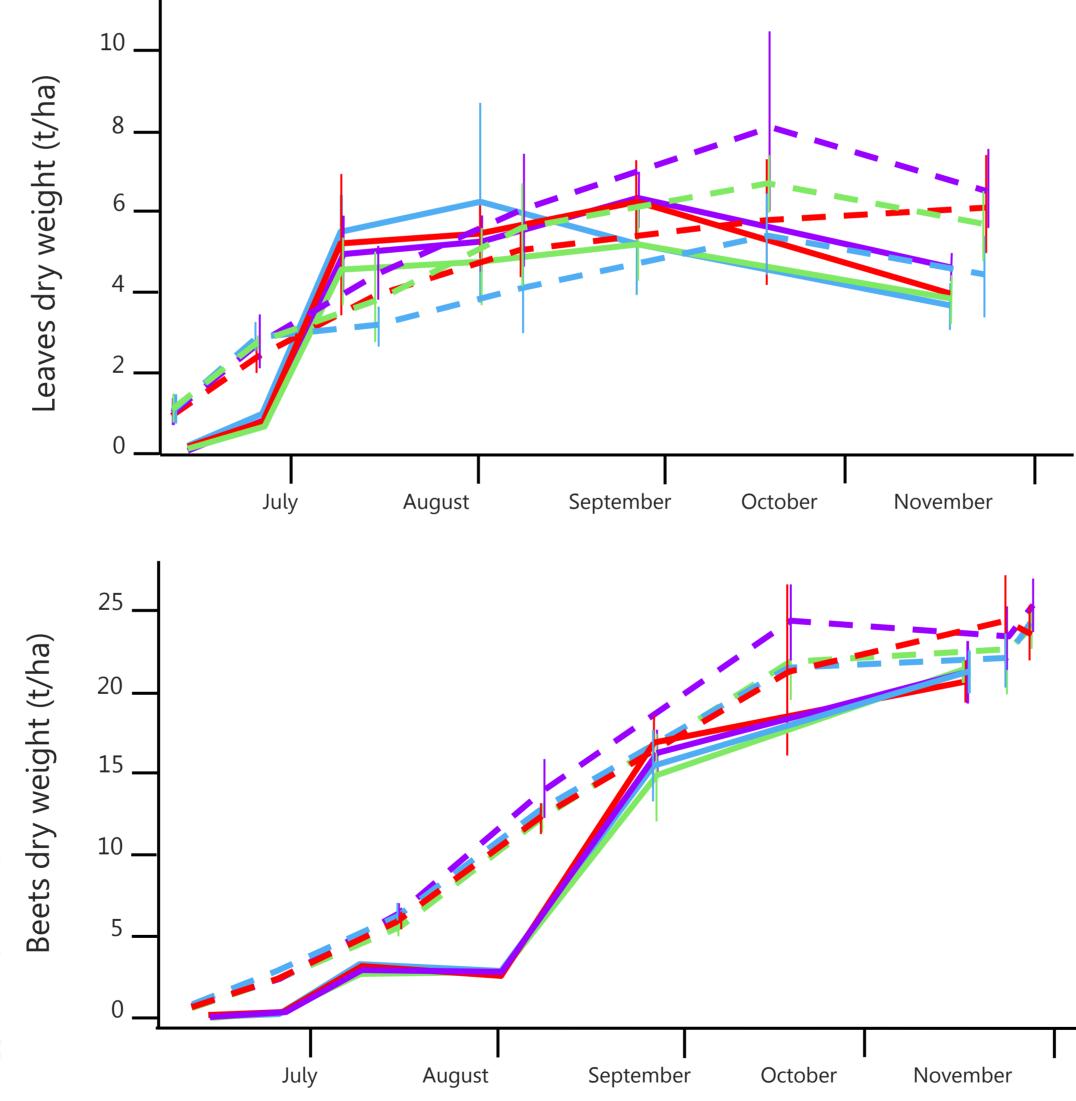
Tillage as a tool to manage crop residue : impact on sugar beet production

Marie-Pierre HIEL^{1,2}, Florine DEGRUNE¹, Marie CHELIN¹, Nargish PARVIN¹ – Bernard BODSON² (1) AgricultureIsLife, Gembloux Agro-Bio Tech, University of Liège, Belgium, (2) AgroBioChem, Gembloux Agro-Bio Tech, University of Liège

✓ Shallow tillage

Weather conditions **2013:** cold spring and dry summer

2014: warm and dry spring, rainy summer


Cover crop

Results

2013: 1,4 t/ha burried in winter ploughing, 1,1 t/ha in other treatments \rightarrow frost

2014: 1 t/ha burried in winter ploughing, 2 t/ha in other treatments \rightarrow mild winter

Leaves and beets growth

Yield components

	Decompaction Shallow tillage		Strip tillage		Spring ploughing		Winter ploughing	
	2013	2014	2013	2014	2013	2014	2013	2014
Beets yield (t/ha)	80,8	86,7**	79,8	83,4**	79,9	86,9**	81,4	94,4**
Sugar yield	15,12	15,17***	15,12	14,88***	15,08	15,45***	15,34	16,9***
Sugar yield (t/ha) at 16%	94,5	94,9***	94,5	93,0***	94,3	96,6***	96,1	105,6***
Sugar (%)	18,72	17,51	18,94	17,82	18,88	17,78	18,88	17,89
αN	0,79	0,74*	0,81	0,8 <mark>1</mark> *	0,92	0,8 <mark>3*</mark>	0,80	0,86*
К	3 <i>,</i> 35*	3,02	3,22*	3,01	3,20*	2,82	3,14*	2,91
Na	0,20	0,24	0,19	0,24	0,21	0,23	0,20	0,24

Significant codes : P < 0,01 '***', P < 0,05 '**', P < 0,1'*'; colors for different statistical group

Marie-pierre.hiel@ulg.ac.be

Germination rate

____ | __ _ Decompaction & shallow tillage

Strip tillage

---- Winter ploughing

Spring ploughing

No effect of modalities in both year BUT rate higher in **2013** and differences in the dynamics. In **2014** : 17mm of rain in two days \rightarrow crust formation particularly in ploughing plots.

(%) 80

40

20

2013:

Legend

2013 2014

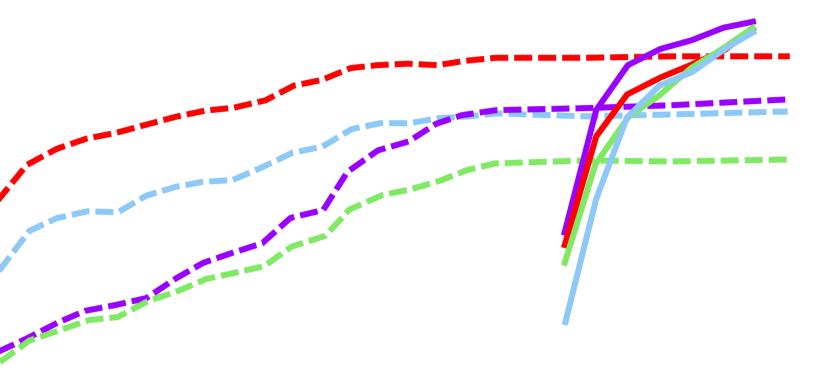
- few variations between treatments

2014 sowing

- weather influence highly visible

2014:

- high variation inside treatments
- significative differences in leaves (shallow tillage versus winter ploughing particularly)
- but not observable in beets.


October	November	Т

Conclusions

- season did not impact yield
- Higher yield in winter ploughing in 2014
- No significant differences in 2013
- knowing cultural past.

In order to fully understand the impact of cover crop management on crop production, further years of experiment are needed due to the high importance of weather on crop development.

2013 sowing

- Difference between decompaction (low) and ploughing (high)
- Importance of rotation on rapeseed occurrence
- Diversity in weeds higher in strip tillage 2014:
- Slight effect (P=0,055) of tillage on weed occurrences.
- Higher quantity in strip tillage

```
Weather conditions and soil humidity are crucial during sowing period
Strip tillage is quite technical, not user friendly
Weather conditions have major impact on crop production
Difference observed on sizes and shapes on beets during growing
Tillage has great impact on weed occurrences \rightarrow importance of
```