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Abstract

This doctoral study characterizes, for simple geometries, the cardiac autonomous elec-

trical activity induced by the mechanical deformations of the myocardium via the

mechano-electric feedback within a thermo-electro-mechanical framework. The under-

lying fundamental mechanisms are highlighted and discussed in detail.

In a healthy heart, the mechano-electric feedback acts as a regulator able to damp me-

chanical perturbations undergone by the heart, by appropriately modulating electrical

activity shortly after these perturbations. In this way, a new healthy electromechan-

ical situation is recovered. However, under certain conditions, this feedback can be a

generator of dramatic cardiac arrhythmias by inducing local electrical depolarizations

resulting from abnormal cardiac muscle tissue deformations. These local perturbations

can then propagate in the whole heart and, thus, lead to global cardiac dysfunctions.

The one- and two-dimensional models developed in this work to study the arrhythmo-

genic consequences of the mechano-electric feedback within a thermo-electro-mechanical

framework account for three couplings: the excitation-contraction coupling, the mech-

ano-electric feedback, and the thermo-electric coupling. The excitation-contraction

coupling allows the mechanical contraction of cardiac muscle cells resulting from the
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electrical excitation of these cells, triggered by a propagating action potential initially

generated by the sino-atrial node in a healthy heart. The mechano-electric feedback

takes into account the influence of mechanical deformations on the electrical activity,

both at the cell and the macroscopic level. The thermo-electric coupling then modu-

lates certain electrical properties due to a temperature change.

The excitation-contraction coupling is modeled in a phenomenological way by combin-

ing the Aliev–Panfilov model and the Rogers–McCulloch model. The propagation of

the electrical excitation through cardiac muscle tissue is modeled by using the mon-

odomain approach. The mechano-electric feedback is taken into account by considering

two different contributions, namely the physiological contribution (physiological feed-

back) and the geometric contribution (geometric feedback). The physiological feedback

consists in the onset of stretch-activated currents due to the deformations of the car-

diac muscle tissue via specific mechanosensitive channels. Regarding the geometric

feedback, it simply reflects that the propagation of the depolarization waves is altered

by the deformations of the geometry. The thermo-electric coupling is modeled via a

dependence with respect to the temperature which is exponential for the gating kinet-

ics of ion channels, exponential for the kinetics of the active tension development in

cardiomyocytes, and linear for the ionic conductances.

This study shows that the mechano-electric feedback can be arrhythmogenic under

specific conditions. In particular, this work clearly reveals that the size of the domain

and the importance of stretch-activated currents are key factors in the behavior of

the autonomous electrical activity induced by the mechano-electric feedback. This

doctoral study also shows that temperature variations such as those undergone by

the heart during therapeutic hypothermia or hyperthermia play a central role in the

cardiac electromechanical behavior. Moreover, this work emphasizes the influence of

the initial conditions on the electromechanical behavior of cardiac tissue. In the one-

dimensional framework, an important result of this work is that the disappearance of

the autonomous electrical activity induced by the deformations of the cardiac muscle

can be associated with different types of bifurcation phenomena, depending on the

values of the parameters. These bifurcations, which correspond in fact to different

ways for the AEA to vanish, are emphasized and discussed in detail.



Résumé

Cette étude doctorale caractérise, dans le cadre de géométries simples, l’activité élec-

trique autonome cardiaque induite par les déformations mécaniques du myocarde au

travers du feedback mécano-électrique dans un contexte thermo-électro-mécanique. Les

mécanismes fondamentaux sous-jacents sont mis en évidence et discutés en détails.

Dans un cœur sain, le feedback mécano-électrique agit comme un régulateur capable

d’amortir des perturbations mécaniques ressenties par le cœur, en modulant de manière

appropriée l’activité électrique subséquente à ces perturbations. De cette façon, une

nouvelle situation électromécanique saine est retrouvée. En revanche, dans certaines

conditions particulières, ce feedback peut être à l’origine d’arythmies cardiaques im-

portantes en induisant localement des dépolarisations électriques générées par des dé-

formations anormales du tissu musculaire cardiaque. Ces perturbations locales peuvent

alors se propager à l’ensemble du tissu et de ce fait, induire des dysfonctionnements

cardiaques globaux.

Les modèles unidimensionnels et bidimensionnel développés dans ce travail afin d’étu-

dier les conséquences arythmogènes du feedback mécano-électrique dans un cadre ther-

mo-électro-mécanique prennent en compte trois couplages : le couplage excitation-con-
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traction, le feedback mécano-électrique et le couplage thermo-électrique. Le couplage

excitation-contraction permet la contraction mécanique des cellules musculaires car-

diaques qui résulte de l’excitation électrique de ces dernières provoquée par le passage

d’un potentiel d’action, initialement généré au sein du nœud sinusal dans un cœur

sain. Le feedback mécano-électrique rend compte de l’influence des déformations mé-

caniques sur l’activité électrique tant au niveau cellulaire qu’au niveau macroscopique.

Enfin, le couplage thermo-électrique module certaines propriétés électriques suite à un

changement de température.

Le couplage excitation-contraction est modélisé de manière phénoménologique en com-

binant les modèles de Aliev–Panfilov et de Rogers–McCulloch. La propagation de

l’excitation électrique au sein du tissu musculaire cardiaque est modélisée en utilisant

l’approche monodomaine. Le feedback mécano-électrique est pris en compte en con-

sidérant deux contributions distinctes, à savoir la contribution physiologique (feedback

physiologique) et la contribution géométrique (feedback géométrique). Le feedback

physiologique consiste en l’apparition de courants induits par les déformations du tissu

musculaire cardiaque au travers de canaux mécano-sensibles particuliers. Quant au

feedback géométrique, il traduit simplement que la propagation des ondes de dépola-

risation est altérée par les déformations de la géométrie qui les supporte. Le couplage

thermo-électrique est modélisé via une dépendance vis-à-vis de la température qui est

exponentielle pour la cinétique d’ouverture et de fermeture des canaux ioniques, expo-

nentielle pour la cinétique relative au développement de la tension active au sein des

cardiomyocytes et linéaire pour les conductances ioniques.

Cette étude montre que le feedback mécano-électrique peut dans certaines conditions

particulières être arythmogène. En particulier, cette étude montre clairement que la

taille du domaine ainsi que la présence plus ou moins importante des courants in-

duits par les déformations sont des facteurs déterminants dans le comportement de

l’activité électrique autonome induite par le feedback mécano-électrique. Ce travail

montre aussi que des variations de température telles que celles subies par le cœur lors

d’une hypothermie thérapeutique ou lors d’une hyperthermie jouent un rôle central

sur le comportement électromécanique cardiaque. Par ailleurs, cette étude met égale-

ment en évidence l’importance des conditions initiales d’excitation sur le comportement

électromécanique du tissu musculaire cardiaque. Dans le contexte unidimensionnel, un

résultat important de ce travail est que la disparition de l’activité électrique autonome
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induite par les déformations du muscle cardiaque peut être associée à différents types

de phénomènes de bifurcation qui dépendent des valeurs des paramètres. Ces bifur-

cations, correspondant en fait à différents chemins que l’activité électrique autonome

emprunte pour disparaître, sont mises en évidence et discutées en profondeur.
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Introduction

Motivations and framework

Cardiovascular diseases (CVDs) are the most common cause of death in the industri-

alized world. In 2008, an estimated 17.3 million people died from CVDs, representing

30 % of all global deaths [1]. The number of people who die from CVDs (mainly from

heart disease and stroke) is forecast to reach 23.3 million by 2030 [1, 2] and CVDs will

most probably remain the leading cause of death [2]. Within CVDs, a major cause of

death is sudden cardiac arrest attributed to ventricular fibrillation (VF)1, which is a

specific kind of cardiac arrhythmia2. Another kind of rhythm disturbance called atrial

fibrillation (AF) is also very common. Although not as immediately life-threatening

as VF, AF causes a significant proportion of all strokes due to clot formation from

stagnation of blood in the atria. As a result, AF is a very important pathology to deal

with.

Some arrhythmias in ventricles [3] and atria [4] have been shown to be caused by me-

1Ventricular fibrillation consists in a fast-developing electrical disturbance in the heart’s rhythm
that renders the pumping function inefficient or completely null.

2Cardiac arrhythmia is a generic term used to refer to any rhythm disorder in the heart.
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chanical changes inducing several electrophysiological alterations via mechano-electric

feedback (MEF). MEF is also called contraction-excitation coupling (CEC) [5] in ref-

erence and in contrast with the excitation-contraction coupling (ECC) [6], which de-

scribes the contraction of cardiomyocytes as a result of electrical excitation previously

triggered inside these cells. The terms cardiac MEF refer to the various phenomena

related to modulation of electrophysiology by mechanical deformation of cells and tis-

sues of the heart [7]. Under specific conditions, a very interesting phenomenon induced

by the MEF can be observed in the cardiac tissue that is referred to in this work as

autonomous electrical activity (AEA). This phenomenon consists in the onset of spon-

taneous electrical activity in the cardiac tissue due to mechanical deformation of the

latter. Depending on several parameters, this AEA can be more or less organized in

space and time.

Although advances in the field of cardiac resuscitation have led to the return of spon-

taneous circulation in many victims of cardiac arrest, only a small proportion of these

survive to hospital discharge. The main causes of this fact are brain and cardiovascular

damages due to global ischemia/reperfusion injuries. So far, therapeutic hypothermia

(TH) is known as the most efficient treatment for reducing post-resuscitation brain

damage from a cardiac arrest. The mechanisms underlying the neuroprotection of TH

are multifaceted. For instance, one of them is the fact that TH reduces glucose and

oxygen consumption in the cerebral metabolism, so that existing stores last longer be-

fore damage occurs [8, 9, 10]. In addition, some preclinical studies have shown that TH

also has a protective effect on the myocardium. Although the mechanisms by which TH

enhances cardioprotection have not been as thoroughly elucidated as in the brain, sev-

eral potential explanations have been proposed such as preservation of cellular energy

and viability [11, 12, 13, 14, 15].

In this context, this work aims at gaining insight into the mechanisms leading to the

modulation of the electrical activity of cardiac muscle due to its deformations (e.g.

atrial stretching) via the MEF within a thermo-electro-mechanical (TEM) framework.

In particular, the spatio-temporal behavior of the AEA generated and sustained by

the MEF will be studied with respect to the different model parameters. The influence

of temperature variations, such as those observed during TH or hyperthermia, on the

electromechanical behavior of cardiac muscle will be characterized, taking into account

three temperature-dependent electrophysiological properties. For this purpose, compu-
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tational models in one-dimensional and two-dimensional geometries will be developed

and will take into account different coupled submodels:

i. a cell model describing cardiac electrical excitation

ii. a model accounting for the propagation of electrical excitation through cardiac

tissue

iii. a model providing passive and active mechanical properties of cardiac muscle

iv. a model taking into account the influence of a temperature variation on cardiac

electrical activity

Outline

Chapter 1 introduces the general framework within which the heart works. The struc-

ture and anatomy of the latter are described from a macroscopic and a microscopic

point of view as well. Some main concepts relative to the physiology of the heart are

also introduced.

Chapter 2 aims at introducing general concepts about cardiac electrophysiology mod-

eling. First, this chapter emphasizes the underlying theoretical key points for modeling

cardiac electrophysiology. Second, it describes some important phenomenological (or

qualitative) and quantitative models mimicking the membrane potential dynamics at

the cellular level, resulting from the dynamics of all ionic currents through the cell

membranes. The famous formulation established by Hodgkin and Huxley in 1952 [16]

is presented for the three main ionic currents in the giant axon of squid: the sodium

current, the potassium current, and a so-called leakage current. This formulation is

still used nowadays in a lot of state-of-the-art ionic models. Then, three phenomeno-

logical models for describing electrical cardiac excitation, based on the formulation

developed by Hodgkin and Huxley, are described. The equations and the main fea-

tures of the FitzHugh model [17], the Rogers–McCulloch model [18], and the Aliev–

Panfilov model [19] are presented. These kinds of models are very interesting because

their properties can be analytically studied using phase space diagrams. To emphasize

the complexity of biophysical models in comparison with phenomenological ones, the

Fenton–Karma model [20] is also described briefly. Finally, this chapter presents two

different approaches to model the propagation of a local depolarization:
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i. the monodomain formulation

ii. the bidomain formulation

Chapter 3 deals with cardiac mechanics. This part of the work has been written with

the intention to provide an overview of general assumptions and to define key notions

relative to continuum mechanics. The kinematics of a continuous body is described and

the balance principles controlling all continuous bodies independently of their intrinsic

properties are presented. Moreover, this chapter presents some general implications on

the macroscopic models resulting from the microstructural architecture of the cardiac

muscle. Finally, the procedure to account for the active tension is explained as well as

the assumptions associated with this active tension.

Chapter 4 describes the strong (bidirectional) cardiac electromechanical coupling, in-

cluding both ECC and MEF, which are essential for normal functioning of a healthy

heart. More specifically, the active tension development, resulting from the ECC and

the stretch-activated currents (SACs), one of the main physiological contributions to

the MEF, are briefly introduced. Two different ways for modeling the active tension

development in cardiomyocytes are depicted:

i. the Hunter–McCulloch–ter Keurs model [21], specially designed for electrome-

chanical simulations at the cardiac tissue-level

ii. the single ordinary differential equation, the approach adopted in this work

Modeling of the SACs, which are the physiological contribution to the MEF taken into

account in this work, is then explained. In addition, the modeling of the influence of

mechanical deformations on depolarization wave propagation is introduced by rewriting

the monodomain equation in an appropriate way. Finally, the weak (unidirectional)

thermo-electric coupling (TEC), mimicking the modulation of cardiac electrophysiology

due to a temperature variation, is taken into account by three temperature dependent

properties:

i. the gating kinetics of ion channels, which shows an exponential dependence with

respect to the temperature

ii. the kinetics relative to the active tension development in cardiomyocytes, which

shows an exponential dependence with respect to the temperature

iii. the ionic conductances, which show linear dependencies with respect to the tem-
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perature

All these key theoretical and modeling elements relative to the different couplings

have been taken into account to develop one single mathematical method. This time-

dependent thermo-electro-mechanical (TEM) model of the cardiac muscle tissue is

presented at the end of this chapter.

Chapter 5 introduces the methods used and developed in this doctoral study and

extensively discusses the original results obtained in this work. This chapter is made

up of two parts. The first part is dedicated to a one-dimensional framework whereas the

second one considers a two-dimensional framework. Chapter 5 presents and discusses

results from numerical simulations performed with the time-dependent TEM model

developed in chapter 4 for specific conditions. Due to the intrinsic complexity of

this model, additional difficulties arising from realistic geometries or three-dimensional

spatial configurations are avoided by using simplified geometries.

The first part of chapter 5 introduces a one-dimensional time-dependent TEM model

and a simplified version of this model. A comparison between these two models is then

performed which enables to show that the simplified model is suitable to describe the

thermo-electro-mechanical behavior of cardiac tissue in a one-dimensional configura-

tion. Besides, a parametric study of the simplified model is conducted to determine

the role played by the different model parameters. The arrhythmogenic effects of the

MEF are then characterized in terms of the key parameters regarding the MEF phe-

nomenon and the underlying mechanisms are highlighted and discussed. The influence

of temperature changes on these arrhythmogenic effects is also examined in detail. In

addition, the role played by the initial conditions on the electromechanical behavior in

a TEM framework is underlined and discussed. Finally, a Floquet stability analysis is

conducted to characterize the way the autonomous electrical activity induced by the

MEF disappears.

The second part of chapter 5 is devoted to an extension of the one-dimensional study to

a two-dimensional framework. This two-dimensional study is mainly qualitative and is

conducted in the spirit of paving the way for further more extensive and quantitative

studies. Similar questions to those addressed in the one-dimensional framework are

examined from a qualitative point of view. For this purpose, a finite element model

has been developed using the software COMSOL Multiphysicsr.
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Finally, the original key results from this doctoral study are summarized and some

perspectives are suggested to go further into the different issues tackled in this work.

Some mathematical notations

In the literature, different conventions are used to write vector and second-order tensor

operations. Therefore, to avoid any confusion, the notations used in this work are

presented here.

Both lowercase and uppercase Latin or Greek letters are used for scalars. Lowercase

and uppercase bold-face Latin letters are used for vectors and second-order tensors.

The dot product (scalar product or inner product) of two vectors a and b is a scalar

and denoted by

a · b .

The cross product (or vector product) of two vectors a and b is a vector perpendicular

to both a and b and denoted by

a × b .

The dot product of two second-order tensors C and D is a second-order tensor and

denoted by

C ·D .

The scalar product of two second-order tensors C and D is a scalar and denoted by

C : D .

The dot product of a second-order tensor C with a vector a is a vector and denoted by

C · a .

The Einstein summation convention is used in this work. Repeated index implies

summation over this index. For instance, the dot product of two vectors a and b may

be written as

a · b =
3∑

i=1

ai bi = ai bi .



CHAPTER 1

Background: cardiac physiology and

anatomy

This doctoral study is mainly focused on the modeling of the electromechanical behav-

ior of cardiac tissue from a macroscopic point of view. This approach often requires

simplifications or assumptions regarding the stream of complex molecular mechanisms

leading to the final cardiac contraction for reasons of computational cost. However,

to present a complete picture of cardiac contraction, it is important to provide some

background to the key elements of the basic microscopic mechanisms leading to the

synchronized contraction of the entire cardiac muscle. This chapter establishes a global

view of the structure of cardiac tissue at a microscopic level to provide context for the

modeling of the macroscopic level. It also briefly introduces the context in which the

heart works.
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1.1 Global anatomy of the heart

The heart can be viewed as two separate pumps in series. The first one is called the

left heart, and the second one the right heart. The left heart pumps blood through the

peripheral organs (systemic circulation) and the right one pumps blood through the

lungs (pulmonary circulation) (Fig. 1.1). Each heart is composed of two chambers: an

atrium and a ventricle (Fig. 1.2). The atria are weak pumps that help blood to move

into the ventricles while the left and right ventricles act as the main pumps and propel

the blood through the systemic and pulmonary circulations, respectively.

As shown in Fig. 1.2, there are also four valves in the heart. These valves enable

unidirectional blood flow through the heart by restricting retrograde flow. The atrio-

ventricular (AV) valves are found between atria and ventricles. The left one is called

the mitral valve while the right one is referred to as the tricuspid valve. The aortic valve

is located between the left ventricle and the aorta. As a result, it controls the blood

flow between the left ventricle and the aorta. The pulmonary valve is found between

the right ventricle and the pulmonary artery and, therefore, controls the blood flow

between the right ventricle and the pulmonary pathway.

1.2 Structure of cardiac tissue

The pumping function of the heart is the result of a rhythmic cycle of contraction

and relaxation of about 10 billion muscle cells called cardiomyocytes. These cells are

cable-like structures, approximately cylindrical in shape, and typically 100µm long and
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Fig. 1.1 – Schematic representation of the cardiovascular system (CVS).
The distribution of the amount of blood in each part of the CVS is
indicated in terms of percentages of the total amount of blood contained
in the CVS [22].

Fig. 1.2 – Global structure of the heart. The black dashed arrows
indicate the pathway of the blood flow through the different parts of
the heart [22].
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15µm in diameter. The spatial organization of the cardiomyocytes looks like a three-

dimensional irregular brick-like packing, surrounded by extracellular medium (Fig. 1.3)

[23].

Fig. 1.3 – Cardiomyocytes are mechanically and electrically intercon-
nected due to intercalated discs [22].

Cardiac muscle works as a syncytium due to the interconnection between cardiomyo-

cytes. Each cardiomyocyte is connected with its neighboring cells, mainly in an end-

to-end fashion, due to specialized contacts called intercalated discs (Fig. 1.3). These

structures enable mechanical and electrical coupling of the cardiomyocytes.

Fig. 1.4 – Structure of gap junctions [24].

Intercalated discs consist of three components: gap junctions (electrical coupling),

desmosomes, and fasciae adherents (mechanical coupling). Gap junctions consist of

intercellular channels, which form direct contact between the intracellular spaces of two

neighboring cells. As shown in Fig. 1.4, each gap junction is built of two hemichannels

(or connexons). Each connexon is made up of six protein subunits called connexins1,

1There are several kinds of connexins, named for their atomic weight, ranging from 25 to 50 kD.
In addition, there are four kinds of connexins in the heart, namely, connexin37 (Cx37), connexion40
(Cx40), connexin43 (Cx43) (the most abundant in the heart) and connexin45 (Cx45).
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which are barrel-like structures with a length of about 75 Å [25]. These gap junctions

constitute a low-resistance electrical pathway between two neighboring cells because the

effective resistance is significantly less than which would result from two cell membranes

butted together. Nevertheless, compared to the internal cytoplasm of cardiac cells, gap

junctions are characterized by a very high-resistance. This relatively high resistance

results from the greatly reduced cross-sectional area for electrical conduction through

gap junctions compared with cardiac cells [23].

In cardiac tissue, there are several different kinds of cardiomyocyte depending on their

function, which is closely related to their anatomy. The volume, surface area, and

distribution of cellular components are different due to functional reasons. There are

three major kinds of cardiac muscle fibers:

i. atrial muscle fibers

ii. ventricular muscle fibers

iii. specialized excitatory and conductive muscle fibers

Atrial and ventricular cardiomyocytes contract in a similar way as skeletal myocytes.

However, the duration of contraction is much longer for cardiomyocytes in compari-

son with skeletal myocytes. The specialized excitatory and conductive muscle fibers

are characterized by very few contractile fibrils (or myofibrils). As a result, they con-

tract only feebly. This type of fiber either generates rhythmical electrical discharge in

the form of action potentials in a spontaneous way or conducts the action potentials

through the heart in an efficient manner. Thus, this kind of fiber provides an excitatory

and conductive system that controls the rhythmical beating of the heart [22].

In normal conditions, cardiac impulse arises in the sino-atrial (SA) node (Fig. 1.5).

But, the SA node is not the only part of the excitatory and conductive system that

exhibits intrinsic rhythmical excitation. The atrio-ventricular (AV) node and the Purk-

inje fibers are also characterized by a similar activity (Fig. 1.6). However, the frequency

at which the intrinsic rhythmical excitation is provided in the AV node and Purkinje

fibers is lower than in the SA node, namely 40 − 60 times per minute (2/3 − 1 Hz)

and 15 − 40 times per minute (1/4 − 2/3 Hz), respectively. For comparison, the SA

node provides excitation at a frequency of 70 − 80 times per minute (7/6 − 4/3 Hz).

Due to this difference related to the natural self-excitatory discharge frequency, the

heart’s rhythm is controlled by the SA node. Thus, the SA node is referred to as the
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pacemaker of the normal heart.

Fig. 1.5 – Specialized excitatory and conductive system of the heart
[22].

It can be readily understood why it is the SA node that controls the rhythmical activity

of the heart. Each time that a discharge is generated in the SA node, it is conducted

towards both the AV node and the Purkinje fibers, which are in turn excited by this

impulse. The next natural self-excitatory discharge in the SA node is triggered a

very few moments after the previous one and has already reached the AV node and

the Purkinje fibers before these can reach their own threshold for self-excitation. As

a result, the new impulse from the SA node discharges both the AV node and the

Purkinje fibers before self-excitation can occur in either of these [22].

1.2.1 Pathway of the heart’s conduction system

As previously mentioned, in a healthy heart, the electrical excitation is initiated at

the SA node, located in the upper part of the right atrium. The excitation propagates

through both atria via atrial cells and reaches the AV node, located at the floor of

the right atrium (Fig. 1.5). This AV node acts like an electrical bridge between atria

and ventricles, which are separated by a septum composed of non excitable cells. This

septum prevents the direct propagation of excitation from atrial to ventricular cells.

As shown in Fig. 1.6, the conduction of the excitation signal is quite slow through
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the AV node. As a result, there is a latency between atrial and ventricular excitation

that is useful for the pumping action of the heart. When the excitation exits the AV

node, it propagates through the bundle of His, which is composed of Purkinje fibers

(Fig. 1.5). The network of Purkinje fibers then spreads to both the left and right

bundle branches where the excitation rapidly propagates throughout the interior of the

ventricles, ending at the endocardial surface of the ventricles. The electrical excitation

then propagates through the ventricular wall outward via ventricular cells from the

endocardial surface to the epicardial surface.

Fig. 1.6 – Pathway of the conduction system of the heart: sequence of
electrical activation [26]. Tabulation of the activation sequence adapted
from [27].

1.2.2 Working myocardium

Cardiomyocytes in the myocardium (atrial and ventricular cardiomyocytes) produce a

mechanical tension resulting from specialized contractile elements, called sarcomeres.

These sarcomeres are approximately 2µm long and are the elementary sections of

myofibrils (Fig. 1.7D). The myofibrils are tube-shaped contractile elements making up

41− 53 % and 45− 54 % of the volume of atrial and ventricular myocytes, respectively

[28]. Each cardiac fiber contains several hundred to several thousand myofibrils. In

addition, each myofibril consists of approximately 1500 sarcomeres butted together,

which contain the myofilaments (Fig. 1.7E). The myofilaments are composed of so-

called actin filaments (referred to as thin filaments) and myosin filaments (referred
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to as thick filaments). As shown in Fig. 1.7E, actin and myosin filaments overlap in

a partial way leading to alternating light and dark bands in myofibrils (Fig. 1.7D).

The light bands consist of only of actin filaments and are referred to as I bands due to

isotropy with respect to polarized light. The dark bands contain both myosin filaments

and the ends of the actin filaments and are referred to as A bands because they are

anisotropic to polarized light [22].

Fig. 1.7 – Muscle structure, from the macroscopic to the molecular level
[22]. Note that this illustration presents the skeletal striated muscle
but this is also suitable for the cardiac striated muscle regarding the
particular structural points that are introduced in this section.
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1.2.2.1 Actin filaments

The actin filaments are approximately 1µm long and are composed of three protein

components, namely actin, tropomyosin, and troponin (Fig. 1.8).

Fig. 1.8 – Composition of actin filaments [22].

The backbone of the actin filament is built up of a double F-actin helix (Fig. 1.7K).

Each strand of the double F-actin helix is composed of polymerized G-actin molecules

(Fig. 1.7J). These molecules are plate-shaped proteins, with a molecular weight of

42 kD. In addition, each of these G-actin molecules is connected to a adenosine diphos-

phate (ADP) molecule. As reported in [22], ADP molecules are believed to be the active

sites on the actin filaments interacting with the cross-bridges of the myosin filaments.

Each active site is found approximately every 2.7 nm on the actin filaments (Fig. 1.9).

Fig. 1.9 – Interaction between actin and myosin filaments [22].

Actin filaments also contain two strands of tropomyosin molecules that fit in the grooves

between the actin strands (Fig. 1.8). Moreover, tropomyosin is characterized by seven

actin binding sites and one binding site for troponin. Troponin is a complex, built up by

three loosely bound protein subunits, namely troponin I, troponin T, and troponin C.

Each subunit has a specific function in controlling cardiac muscle contraction. Troponin

I has a strong affinity for actin, troponin T for tropomyosin and troponin C for calcium

ions.
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1.2.2.2 Myosin filaments

Myosin filaments are made up of 200 or more individual myosin molecules. The struc-

ture of each myosin molecule can be split into two different parts: a tail and two heads

(Fig. 1.10A). The tail of the myosin molecule is composed of two heavy chains wrapped

around each other in a spiral, forming a double helix. One end of each heavy chain

displays a globular polypeptide structure, forming a myosin head.

Fig. 1.10 – Structure of a myosin molecule (A) and spatial configuration
of actin and myosin filaments (B) [22].

The myosin filament can be viewed as a body, constituted of many myosin molecules

butted together, with many heads of the molecules hanging out of the sides of the

body (Fig. 1.10B). Note that another part of the body of each molecule also hangs

outward to the side along with the myosin head, usually called the arm. The arm

allows the head to extend outward from the body. These structures are referred to as

cross-bridges (Fig. 1.10B). Each cross-bridge is flexible due to hinges located at two

specific points, where the arm leaves the body, and where the head is connected to the

arm.

Each myosin filament is approximately 1.6µm long. As shown in Fig. 1.10B, there are

no cross-bridges in the center of the myosin filament for a distance of about 0.2µm due

to the configuration of the hinged arms, as they extend away from the center.
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Moreover, sarcomeres also contain elongated proteins called titin and nebulin. Titin

is the third most abundant protein after myosin and actin in cardiomyocytes. Each

titin molecule has a molecular weight of about 3 MD. In addition, titin molecules

are filamentous and as a result, are very springy. These elastic titin molecules act as

a framework that holds the myosin and actin filaments in place [22]. Besides, from

a spatial configuration point of view, titin molecules span from Z discs towards the

center of the sarcomeres parallel to the myofilaments.





CHAPTER 2

Cardiac electrical activity

Cardiac electrical activity in the heart has already been described in the previous

chapter from a macroscopic point of view. Here, key cellular mechanisms leading to

the onset of electrical excitation in cardiomyocytes, implying their contraction, are

introduced in detail. An overview of cardiac electrophysiology is presented before

explaining how the cellular electrical phenomena are modeled from both qualitative

and quantitative points of view. Modeling of these phenomena at a larger spatial scale,

namely at a tissue level, is then performed by taking into account the propagation of

the local electrical excitation.
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2.1 Electrical activity at the cellular level

2.1.1 Description

Like all biological cells, cardiac cells are surrounded by a membrane. The cell membrane

is composed of a double layer of phospholipid molecules1 about 7.5 nm thick, containing

many kinds of proteins. As a result, the cell is separated from its external environment.

The membrane acts as a barrier separating the intracellular and extracellular media

(note that properties of the intracellular and extracellular media are labeled by the

subscripts ‘i’ and ‘e’, respectively) and preventing the free passage of molecules, such

as ions, from one side to the other.

Specialized proteins embedded in the cell membrane, called ion channels, possess the

remarkable property of selective permeability. These channels allow particular species

of ions to cross the cell membrane. There are many types of ion channels, each being

1Phospho- because each molecule has a globular head containing a phosphate group, which is
hydrophilic, and -lipid due to two fatty acid tails, which are hydrophobic [29].
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specific to a certain ion, e.g. Na+ and Ca+. In addition, these channels can be open

or closed, controlling the passage of the specific ion species.

The gating process (opening or closing) is regulated by several physico-chemical prop-

erties of the intracellular and extracellular environments, the most important being

the value of the electrical potential difference across the membrane. This membrane

potential (or transmembrane potential) is labeled Vm. By convention, Vm is defined as

the difference between the internal and external electrical potentials [23, 29]:

Vm = φi − φe . (2.1)

The value of Vm is used by the cardiomyocyte as a signal which indicates to the cell

whether the contraction must be triggered. In a resting state, a cardiomyocyte is

typically characterized by a membrane potential ranging from approximately −90 mV

to −80 mV. These values are close to the Nernst potential (discussed later in this

chapter), EK, of the potassium ion. This potential reflects the high permeability of the

membrane (in a resting state) to potassium ions.

Many biological cells maintain a stable equilibrium membrane potential. If sufficiently

strong currents are applied to such cells for a short period of time, the membrane

potential can either [23]:

i. directly return to the equilibrium value after the applied current is removed;

ii. experiences a large excursion, called an action potential (AP), before eventually

returning to rest.

The behaviors described in (i) and (ii) define nonexcitable and excitable cells, respec-

tively.

Excitability is a very powerful natural selective tool to distinguish background noise

from a healthy stimulus. If a stimulus of sufficient amplitude, enabling to exceed the

threshold potential, is applied to an excitable cell, the latter responds in full to this

stimulus. If the amplitude of a stimulus is too low, the excitable cell does not respond

at all. The five main phases of a given AP are shown in Fig. 2.1:

• phase 0: rapid depolarization of the cell, from the resting state (−90 mV for this

specific AP) to the overshoot (30 mV for this specific AP)
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• phase 1: rapid partial repolarization of the cell, just after the overshoot

• phase 2: plateau of the AP

• phase 3: recovery of the cell back to the resting state (repolarization)

• phase 4: resting state, around 300 ms after the initial depolarization for this

specific cardiomyocyte

Note that each kind of cardiomyocyte is characterized by a particular AP2 but each

type of AP displays these five main phases.

Phase 0, consisting in a sharp upstroke (rapid depolarization), is due to a supra-

threshold stimulus leading to a rapid influx of sodium ions generating the sodium

current, INa. The membrane potential then rapidly decreases due to an outward potas-

sium current, IK (phase 1). Just after phase 1, there is a plateau due to inward calcium

currents, ICa, compensating the potassium current (phase 2). During the entire AP,

potassium currents exist and tend to bring the membrane potential back to the resting

state. Just after the plateau-phase, the calcium currents can no longer hold the mem-

brane potential in a depolarized state (phase 3) and finally, potassium currents return

the cell to its resting state (phase 4).

Fig. 2.1 – Typical phases of an action potential from a particular cardiac
muscle cell, adapted from [28].

2APs differ depending on the stimulus frequency, tissue type, and location in the heart.
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Three important time periods must be highlighted to understand some mechanisms

further in this work:

• The effective or absolute refractory period (ERP/ARP) is defined as the time

period during which no AP can be initiated, regardless of the strength of the

stimulus. This period includes phases 0, 1, 2, and the first part of phase 3.

• The relative refractory period (RRP), directly follows the ERP. The RRP is the

time period in which an AP can be elicited, but requires a stimulus much stronger

than that needed for the resting cell. This period ends slightly before the end of

phase 3.

• The supernormal period (SP), directly follows the RRP. During this period, the

cardiomyocyte can undergo an AP with a stimulus slightly smaller than the

normal phase 4 supra-threshold stimulus.

These three periods make up the full recovery time after the onset of an AP.

2.1.2 Modeling

Almost all cardiac cell models are based on the model developed by Hodgkin and

Huxley in 1952 [16]. For this reason, the key concepts of this model are introduced

here. In 1952, Hodgkin and Huxley wrote a series of five papers [16, 30, 31, 32, 33]

whose the general aim was to determine the laws which govern movements of ions

through the cell membrane during electrical activity in the giant axon of Loligo3. They

performed numerous measurements of individual ion currents at the cellular level. From

these experimental results, Hodgkin and Huxley derived the first mathematical model

that quantitatively accounts for the time evolution of ion currents. In particular, the

evolution of the three major components of the total ionic current were modeled: the

sodium current INa, the potassium current IK, and a small ‘leakage’ current Il made

up by chloride and other ions.

From a modeling point of view, Hodgkin and Huxley suggested to describe the electrical

activity at a cellular level by considering the membrane as an electrical circuit. This

circuit was composed of a capacitor, with a capacitance Cm, in parallel with branches

containing three different ion currents: INa, IK, and Il (Fig. 2.2).

3Loligo is a genus of squids.
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Fig. 2.2 – Equivalent circuit of an axon membrane assuming no current
applied to the cell.

The total transmembrane current is referred to as Im and is written as follows:

Im = IC + Iion (2.2)

= Cm
dVm
dt

+
3∑

S=1

IS , (2.3)

where IC is a capacitive current, Iion is the total ion current, and S is the label relative

to the S-ion, e.g. Na+. The Kirchhoff’s first law4 applied to the electrical circuit shown

in Fig. 2.2 gives Im = 0 and, therefore, due to Eq. (2.3),

dVm
dt

= − 1
Cm

3∑

S=1

IS . (2.4)

Most state-of-the-art cell models describe the total transmembrane current, Im, as in

Eq. (2.2). The difference between cell models boils down to the description of the total

ion current through the cell membrane: the term Iion in Eq. (2.2). Some models, like

the Hodgkin–Huxley (HH) model, only take into account a few different ion currents

whereas others introduce many ion currents. According to Hodgkin and Huxley, each

individual ion current can be satisfactorily described by the following current-voltage

law [16]:

IS (Vm, t) = gS (Vm, t) (Vm − ES) , (2.5)

4Kirchhoff’s first law says that the algebraic sum of currents in a network of conductors meeting
at a node is zero.
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where gS (Vm, t) is the conductance of the membrane for the S-ion and represents a mea-

sure of the membrane S-ion permeability. Note that gS is voltage- and time-dependent

and is measured in Siemens per unit area. It is also the reciprocal of resistance per

unit area. ES represents the so-called Nernst potential for the S-ion, already mentioned

earlier in this chapter. Its value is given by the Nernst equation:

ES =
RT

zS F
ln

[S]e
[S]i

, (2.6)

where [S]e and [S]i are the extracellular and intracellular concentrations of the ion S, R

is the universal gas constant, T is the absolute temperature, zS is the valence of ion S

and F is Faraday’s constant. The meaning of the Nernst potential, ES, can be stated

in two ways [25]:

i. If the pores in a membrane are permeable only to ions of type S, a few ions would

move and the membrane potential will change to ES.

ii. If the membrane potential is held somehow at ES, there will be no net flux of

S-ions through S-selective pores.

The Nernst potential, ES, represents an equilibrium potential between diffusion and

electrostatic forces. First, assume that, due to several kinds of cellular mechanisms,

the cell membrane is permeable only to the S-ions and that there is a concentration

difference across the cell membrane regarding this S-ion. As a result, S-ions will diffuse

from the high concentration side to the lower concentration side. The diffusion of

S-ions causes a buildup of charges across the membrane and consequently, sets up

an electric field that opposes the further diffusion. An equilibrium state is reached

when the electric field and the corresponding potential difference exactly balance the

diffusion process. This potential difference is the Nernst potential. As a result of these

considerations, the net force acting on the S-ion depends on the electrical potential and

concentration gradients and is known as the electrochemical gradient, or driving force,

and is defined as (Vm − ES) [25].

Eq. (2.5) is effectively a modification of Ohm’s law and is empirical like Ohm’s law itself.

To a first approximation, this law is often suitable, but many pores are known to be

characterized by other nonlinear current-voltage relations when open. Assuming the

current-voltage relation given by Eq. (2.5), the direction of IS across the cell membrane
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depends on the sign of the driving force. The magnitude of IS is determined by both

the driving force and the conductance of the membrane to the S-ion. Substituting

Eq. (2.5) into Eq. (2.3) and assuming an applied current Iapp, Im becomes

Im (Vm, t) = Cm
dVm
dt

+ Vm
3∑

S=1

gS (Vm, t)−
3∑

S=1

gS (Vm, t) ES + Iapp . (2.7)

From the experimental data obtained by Hodgkin and Huxley, showing that sodium and

potassium conductances behave in a nonlinear way with respect to time and voltage, it

is reasonable to expect that gS obeys a nonlinear ordinary differential equation (ODE)

such as

dgS

dt
= f (Vm, t) , (2.8)

where f is a nonlinear function of Vm and t. However, rather than writing a nonlinear

ODE directly for each ion conductance, Hodgkin and Huxley realized that it would be

easier to express gS (Vm, t) as a maximum conductance ḡS multiplied by some power of

different variables (n, m, and h), which are controlled by linear ODEs. Thereby, they

wrote gK, gNa, and gl as follows:

gK (Vm, t) = ḡK [n (Vm, t)]
4 , (2.9)

gNa (Vm, t) = ḡNa [m (Vm, t)]
3 h (Vm, t) , (2.10)

gl = ḡl . (2.11)

Note that n, m, and h are often called gating variables and their values are ranged

from 0 to 1. As shown in Eqs (2.9)-(2.11), there is an upper limit to each possible

conductance. Originally, Hodgkin and Huxley described the gating process of each ion

channel in terms of independent membrane-bound ‘particles’. To trigger the opening of

a particular ion channel, all the particles involved in the gating process of the channel

have to be in the ‘correct position’. Following this approach, each gating variable

(n, m, and h) represents the probability that a particle is in the correct position to

allow the opening of the channel. Moreover, given that the opening depends on the

membrane potential, the hypothetical particles are assumed to bear an electric charge

that makes their distribution in the membrane voltage-dependent. In this context, it

is interesting to stress that all the kinetic properties of the model are contained in the
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time dependence of the three gating variables n, m, and h [25].

The mathematical expressions given by Eqs (2.9)-(2.11) were proposed by Hodgkin and

Huxley further to their experimental observations of the time dependence of each ionic

conductance considered in the model. They observed that the increase of gK on depo-

larization results in an S-shaped time course, whereas the decrease on repolarization

behaves exponentially. They also noticed that such kinetics would be obtained if the

opening of a K-channel was controlled by four identical particles able to move between

two positions: a permissive position and a nonpermissive position. The probabilities

that one particle is in the permissive position and the nonpermissive position are given

by n and 1− n, respectively. As a result, the probability that all four particles are in

a permissive position, resulting in the opening of the channel, is equal to n4.

The kinetics of transitions between permissive and nonpermissive positions are first-

order. When the membrane potential is changed, the probability, n, relaxes exponen-

tially towards a new value. In this way, the delayed increase on an S-shaped curve

on depolarization and the decrease of gK is well modeled by n4. If n rises exponen-

tially from zero, n4 rises along an S-shaped curve and if n falls exponentially, n4 falls

exponentially as well.

Hodgkin and Huxley used a similar approach for the Na conductance. They described

the behavior of gNa using four gating particles that make transitions between permissive

and nonpermissive positions in an independent way with first-order kinetics. However,

they used two different kinds of gating particles because there are two opposing gating

mechanisms: activation and inactivation. Hodgkin and Huxley assumed three particles

to control the activation process and one particle to describe the inactivation process.

The two kinds of particle are in a permissive position with a probability m (activation)

and h (inactivation). Therefore, the probability that the Na channel is open, namely

all particles are in the permissive position, is m3 h [25].

For practical application, Hodgkin and Huxley rewrite Eqs (2.9)-(2.11) by introducing

a shifted potential, v = Vm− Veq, where Veq is the equilibrium membrane potential5 or

resting potential. As Veq is a constant, dv/dt = dVm/dt. From Eq. (2.7), Veq can be

5The equilibrium membrane potential is model-dependent.
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written as

Veq =
ENa gNa + EK gK + El gl

gNa + gK + gl

. (2.12)

Veq actually represents the balance between the reversal potentials6 for the three ionic

currents. Substituting v for Vm, the gating variables n (v, t), m (v, t), and h (v, t) satisfy

the following set of linear ODEs:

dn

dt
= αn (v) (1− n)− βn (v) n , (2.13)

dm

dt
= αm (v) (1− n)− βm (v) m , (2.14)

dh

dt
= αh (v) (1− n)− βh (v) h , (2.15)

accounting for the voltage- and time-dependent changes of n, m, and h. Eqs (2.13)-

(2.15) describe in fact the first-order kinetics of transitions between nonpermissive and

permissive states. This kind of kinetics can be written in the form

1− y
αy(v)−−−⇀↽−−−
βy(v)

y , (2.16)

where y = n, m, or h; αy (v) and βy (v) are the voltage-dependent rate constants (s−1)

regarding y and are given by [23]

αn = 0.01
10− v

exp
(10− v

10

)
− 1

, (2.17)

βn = 0.125 exp
(−v

80

)
, (2.18)

αm = 0.1
25− v

exp
(25− v

10

)
− 1

, (2.19)

βm = 4 exp
(−v

18

)
, (2.20)

αh = 0.07 exp
(−v

20

)
, (2.21)

βh =
1

exp
(30− v

10

)
+ 1

. (2.22)

6The reversal potential is actually the same quantity as the Nernst potential and represents the
potential at which the chemical and electrical forces acting on a single ion species are in equilibrium
[29]. Depending on circumstances, either the term ‘reversal potential’ or the expression ‘Nernst
potential’ is used.
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Eqs (2.13)-(2.15) are also reported in the literature in terms of voltage-dependent time

constants, τy (v) (s), and steady-state values, y∞, as follows:

dy (v, t)
dt

=
y∞ (v)− y (v, t)

τy (v)
, (2.23)

where y = n, m, or h . The solution of this equation is given by

y (v, t) = y∞ (v)− [y∞ (v)− y (0)] exp

(
− t

τy (v)

)
, (2.24)

with the following relations:

τy (v) =
1

αy (v) + βy (v)
, (2.25)

y∞ (v) =
αy (v)

αy (v) + βy (v)
, (2.26)

which describe τy and y∞ in terms of αy and βy. Fig. 2.3 shows the quantities given

by Eqs (2.25) and (2.26).
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Fig. 2.3 – (a) Time constants and (b) steady-state values of gating vari-
ables as functions of the shifted potential, v = Vm−Veq. Depolarizations
increase m∞ and n∞ and decrease h∞. The time constants of relaxation
are maximal near the resting potential and become shorter on either
side.

.
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In summary, the HH model is given by

−Iapp = Cm
dv
dt

+ ḡNa m
3 h (v − vNa) + ḡK n

4 (v − vK) + ḡl (v − vl) , (2.27)

dm
dt

= αm (1−m)− βmm , (2.28)

dh
dt

= αh (1− h)− βm h , (2.29)

dn
dt

= αn (1− n)− βm n . (2.30)

As an example, Fig. 2.4a shows the time course of the shifted potential, v, following a

supra-threshold stimulus using the parameter values given in Tab. 2.1. Fig. 2.4b is a

plot of the time course of the gating variables n (v, t), m (v, t), and h (v, t) during the

action potential shown in Fig. 2.4a.
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Fig. 2.4 – (a) Action potential generated by a supra-threshold stimu-
lus mimicked with the HH model and (b) time courses of the gating
variables during the same action potential.

Parameter Value Units
Cm 1 µF cm−2

vNa 115 mV
vK −12 mV
vl 10.6 mV
ḡNa 120 mS cm−2

ḡK 36 mS cm−2

ḡl 0.3 mS cm−2

Tab. 2.1 – Parameter values of the HH model [16].
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2.1.3 Models of cardiac muscle cells

Cardiac muscle cells are modeled using two different approaches: a biophysical approach

and a phenomenological approach (non-biophysical). Biophysical models attempt to

describe the AP of a single cell by mimicking the biophysics related to the underlying

subcellular processes. The complexity inherent to this kind of model has increased

over the time in a significant way. The first biophysically-based model, established by

Hodgkin and Huxley, only included 3 ionic currents and 3 gating variables [16] whereas

the more recent model developed by Noble, Varghese, Kohl and Noble (NVKN ) [34]

contains 27 ionic currents, 5 fluxes, 3 subcellular spaces, and tracks 9 ion concentrations.

Biophysical models aim at describing a specific type of cardiomyocyte for a particular

species (e.g. human, rabbit, or pig). For a given species, they can be split into 5

categories: SA node models (e.g. [35]), atrial models (e.g. [36]), AV node models,

Purkinje fiber models (e.g. [37]), and ventricular models (e.g. [38]). Sometimes, it is

not necessary to describe each ionic current and each subcellular process in an accurate

way: it depends strongly on the purpose of the conducted study.

This work presents the phenomenological approach, mainly for reasons of computa-

tional cost. Indeed, this kind of model aims at reproducing the global properties of an

AP without concern for the complex individual ionic mechanisms leading to the AP.

These types of model are particularly interesting for investigating physical phenomena

on large spatial and temporal scales because they consist of only a small number of

ODEs, resulting in a reduced computational cost. The differences between all simplified

models are due to the different descriptions used for Iion in Eq. (2.3). In this section,

three simplified phenomenological models (FH model, RM model, and AlP model) are

presented. Besides, one biophysical minimal model (FK model) of cardiomyocytes is

also described to emphasize the difference between the two approaches.

Adding an applied current, Iapp, to Eq. (2.3), the vanishing of the total membrane

current (Kirchhoff’s first law), Im, gives

dVm
dt

= − 1
Cm

(Iion + Iapp) , (2.31)

which is a relation valid for all models studied below. Note also that the three simplified
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models presented in this section were originally formulated to describe dimensionless

excitation and recovery variables. However, in this section, they are also formulated in

terms of the dimensional AP controlled by the time course of the dimensional membrane

potential, Vm [Eq. (2.31)]. For a particular simplified model, the relation between the

membrane potential, Vm, and the dimensionless excitation variable, labeled u, is [29]

u =
Vm − Vr

Vp − Vr

, (2.32)

where Vr and Vp represent the resting potential and the plateau potential, respectively.

Therefore, from Eqs (2.31) and (2.32), dVm/dt and du/dt are related by

dVm
dt

= Va
du
dt

, (2.33)

where Va is given by

Va = Vp − Vr . (2.34)

2.1.3.1 FitzHugh model (1961)

The well-known FitzHugh model (FH model), originally called the Bonhoeffer–van der

Pol model (BVP model) in [17], presents the same qualitative dynamical properties as

the HH model. However, the FH model has only two state variables instead of the

four in the HH model. Thus, its properties can be examined and discussed in a phase

plane (as illustrated later in this section). The FH model can qualitatively describe a

wide class of nonlinear systems showing excitable and oscillatory behavior, including

the HH model [17].

FitzHugh showed, using phase space methods [39], that the essence of the HH model is

contained in a two-dimensional reduction of itself [40]. Further, FitzHugh showed that

the four variables can be split into two subsystems of variables, characterized by two

different dynamics, like the fast and slow variables of the FH model. In the HH model,

Vm (or similarly v) and m change relatively rapidly while h and n change relatively
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slowly (Fig. 2.4). The FH model is given by the following two ODEs [17]:

du
dt

= f (u, v)−iapp = c1 u (u− a) (1− u)− c2 v−iapp, (2.35)

dv
dt

= ε g (u, v) = ε (u− γ v) . (2.36)

Eq. (2.35) describes the time course of excitation in terms of a cubic polynomial of the

normalized membrane potential, u. Parameter c1 is an excitation rate constant, c2 is

an excitation decay constant, a represents the normalized threshold potential, which

can be related to the dimensional threshold potential, Vth, by [29]

a =
1
Va

(Vth − Vr) , (2.37)

and iapp is the normalized applied current which can be related to Iapp by

iapp =
1

Va Cm
Iapp . (2.38)

Eq. (2.36) mimics the time course of the recovery variable, v. Parameter ε is a re-

covery rate constant and γ is a recovery decay constant. Using Eqs (2.32)-(2.34) and

Eqs (2.37)-(2.38), the FH model [Eqs (2.35)-(2.36)] can be written in terms of the

dimensional membrane potential, Vm, as follows:

dVm
dt

=
c1

V 2
a

(Vm − Vr) (Vm − Vth) (Vp − Vm)− c2 Va v −
Iapp

Cm
, (2.39)

dv
dt

= ε
(
Vm − Vr

Va

− γ v
)

. (2.40)

Note that in the literature, there are different forms used to describe the FH model.

The form used here is taken from [18, 29].

The time courses of the membrane potential, Vm, and the gate variable, v, are shown

in Figs 2.5a and 2.5b, respectively. To study the dynamics of the original FH model

(in terms of u and v), its phase plane is established (Fig. 2.6).
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Fig. 2.5 – FitzHugh model: time courses of the membrane potential, Vm
(a), and the gate variable, v (b), for an applied stimulus of 6.25µA cm−2

at a frequency of 10/7 Hz and with a duration of 12.5 ms. FH model
parameter values are given in Tab. 2.2.

Parameter Value Units
Cm 1 µF cm−2

Vr −85 mV
Vth −75 mV
Vp 15 mV
c1 0.175 ms−1

c2 0.03 ms−1

ε 0.011 ms−1

γ 0.55 dimensionless

Tab. 2.2 – Parameter values of the FH model [18, 29, 41].

The nullclines are obtained by imposing conditions: f (u, v)−iapp = 0 and g (u, v) =

0. As a result, when iapp = 0 ms−1, the u-nullcline and v-nullcline are given by the
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following equations, respectively:

v =
c1

c2

u (u− a) (1− u) , (2.41)

v =
1
γ
u . (2.42)

Fig. 2.6 shows that the two nullclines have a single intersection point. This point

represents the steady state of the FH system defined by du/dt = dv/dt = 0. When

ε → 0, it can be shown that this point is a linearly stable point if it is on the left

branch (namely on the left side of the minimum of the u-nullcline) or the right branch

(namely on the right side of the maximum of the u-nullcline) of the u-nullcline.

−0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

v
(d

im
en

si
on

le
ss

)

u (dimensionless)

Fig. 2.6 – Phase plane of the original FH model in terms of u and
v. Long dashed line represents the u-nullcline (Eq. 2.41) when iapp =
0 ms−1, short dashed line corresponds to the v-nullcline (Eq. 2.42) when
iapp = 0 ms−1, and solid curve is the path of the phase point describing
the state of the FH system from 2 s to 4 s.

When the point corresponding to the steady state is on the left branch but not so far

from the minimum of the u-nullcline (as it is the case in Fig. 2.6), the FH system is

excitable [23]. This is due to the fact that even if the steady state is linearly stable, a

sufficiently large perturbation from this point allows the excitation variable u to run far

away from the steady state before eventually returning to the steady state (Fig. 2.6).

The phase point (describing the state of the FH system) goes rapidly to the right

branch and then it goes slowly upward following the right branch. When it reaches the

maximum of the u-nullcline (top of the right branch), it goes rapidly to the left branch

and eventually returns to the steady state staying close to this branch.
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2.1.3.2 Rogers–McCulloch model (1994)

The Rogers–McCulloch (RM) model [18] consists in a modification of the original FH

model. This modification was proposed mainly to prevent the hyperpolarization from

the refractory part of the AP corresponding to the excursion of Vm below its resting

value in Fig. 2.5a and the negative excursion of u in Fig. 2.6.

This hyperpolarization is not observed in actual cardiac APs and in addition, can affect

the recovery properties of the model. The method used by Rogers and McCulloch [18]

to eliminate this effect consists in modifying the last term in Eq. (2.35) as shown in

Eq. (2.43). The RM model is mathematically described by the following two ODEs:

du
dt

= c1 u (u− a) (1− u)− c2 u v−iapp, (2.43)

dv
dt

= b (u− d v) . (2.44)

As with the FH model, the RM model [Eqs (2.43)-(2.44)] can be written in terms of

the dimensional membrane potential, Vm:

dVm
dt

=
c1

V 2
a

(Vm − Vr) (Vm − Vth) (Vp − Vm)− c2 (Vm − Vr) v −
Iapp

Cm
, (2.45)

dv
dt

= b
(
Vm − Vr

Va

− d v
)

. (2.46)

As shown in Fig. 2.7a, the hyperpolarization does not occur anymore in the time course

of the membrane potential. Thus, in comparison with the FH model, this model is

closer to the actual behavior of an AP. Fig. 2.7b depicts the time course of the gate

variable, v, simulated with the RM model.

Note that the original RM system [Eqs (2.43)-(2.44)] is characterized by two nullclines.

When iapp = 0 ms−1, the u-nullcline is made up of two parts given by

v =
c1

c2

(u− a) (1− u) , (2.47)

u = 0 . (2.48)

Regarding the v-nullcline, it consists of a single part given by a form similar to

Eq. (2.42): v =
1
d
u.
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Fig. 2.7 – Rogers–McCulloch model: time courses of the membrane
potential, Vm (a), and the gate variable, v (b), for an applied stimulus
of 6.25µA cm−2 at a frequency of 10/7 Hz and with a duration of 12.5 ms.
RM model parameter values are given in Tab. 2.3.

Parameter Value Units
Cm 1 µF cm−2

Vr −85 mV
Vth −75 mV
Vp 15 mV
c1 0.26 ms−1

c2 0.1 ms−1

b 0.013 ms−1

d 0.8 dimensionless

Tab. 2.3 – Parameter values of the RM model [18, 29, 41].

.
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2.1.3.3 Aliev–Panfilov model (1996)

The Aliev–Panfilov model (AlP model)7 [19] consists in another modification of the

original FH model to mimic the cardiac electrophysiology in a more realistic way.

More precisely, this model accounts for one important restitution property of cardiac

tissue which is the action potential duration (APD) as a function of the cycle length of

stimulation. Besides, the AlP model adequately represents the shape of an AP.

In a similar way to the FH model, the AlP model accounts for both fast and slow

processes with only two variables controlled by the following two ODEs:

du

dt
= k1 u (u− a) (1− u)− k2 u v−iapp , (2.49)

dv

dt
= ε (u, v) gAlP (u, v) = ε (u, v) [−v − k1 u (u− a− 1)] , (2.50)

where ε (u, v) is given by

ε (u, v) = ε0 +
µ1 v

u+ µ2

. (2.51)

As in the RM model, the second term on the right-hand side (RHS) of Eq. (2.35)

is replaced by −u v to prevent the hyperpolarization phenomenon. In addition, the

original linear function g from Eq. (2.36) is replaced in Eq. (2.50) by the nonlinear

function, gAlP, to better fit the reality [19]. The AlP model can be written, in terms

of the dimensional membrane potential, Vm:

dVm
dt

=
k1

V 2
a

(Vm − Vr) (Vm − Vth) (Vp − Vm)− k2 (Vm − Vr) v −
Iapp

Cm
, (2.52)

dv
dt

= ε (Vm, v)

[
−v − k1

V 2
a

(Vm − Vr) (Vm − Vth − Va)

]
, (2.53)

where

ε (Vm, v) = ε0 +
µ1 v Va

Vm − Vr + µ2 Va

. (2.54)

The time courses of Vm and v are shown in Figs 2.8a and 2.8b, respectively.

7The abbreviations of ‘action potential’ and ‘Aliev Panfilov’ used in this work are AP and AlP,
respectively.
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Fig. 2.8 – Aliev–Panfilov model: time courses of the membrane poten-
tial, Vm (a), and the gate variable, v (b), for an applied stimulus of
6.25µA cm−2 at a frequency of 10/7 Hz and with a duration of 12.5 ms.
AlP model parameter values are given in Tab. 2.4.

Parameter Value Units
Cm 1 µF cm−2

Vr −85 mV
Vth −75 mV
Vp 15 mV
k1 8 ms−1

k2 1 ms−1

ε0 0.0002 ms−1

µ1 0.0155 ms−1

µ2 0.3 dimensionless

Tab. 2.4 – Parameter values of the AlP model [19].
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Note that the original AlP system [Eqs (2.49)-(2.51)] is characterized by two nullclines.

When iapp = 0 ms−1, the u-nullcline is composed of two parts given by

v =
k1

k2

(u− a) (1− u) , (2.55)

u = 0 . (2.56)

Regarding the v-nullcline, it is made up of a single part:

v = −k1 u (u− a− 1) . (2.57)

2.1.3.4 Fenton–Karma model (1998)

The Fenton–Karma (FK) model [20], known as the three-variable model, aims at quan-

titatively mimicking the ventricular AP and its restitution properties by retaining the

minimal ionic complexity. This model describes the total ionic current as the sum of

three ionic currents:

Iion = Ifi + Iso + Isi , (2.58)

where Ifi is a fast inward current (sodium current) that is responsible for depolarization

of the membrane, Iso is a slow outward current (potassium current) that is responsible

for repolarization of the membrane, and Isi is a slow inward current (calcium cur-

rent) that balances Iso. Note that Ifi depends on membrane potential Vm and on one

inactivation–reactivation gate variable v. Iso depends only on the membrane potential

Vm, and Isi depends on Vm and on one inactivation–reactivation gate variable w.

As already noted, reducing the dynamics of the membrane to the sodium, potassium,

and calcium currents is an oversimplification of the actual dynamics [42]. However,

taking into account only these three currents retains the minimal ionic complexity

providing the membrane recovery processes that give rise to generic restitution curves

[20]. Fenton and Karma refer to these currents as fast inward, slow inward, and slow

outward currents rather than sodium, calcium, and potassium currents to emphasize

that they do not represent quantitatively individual measured currents, but rather their
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activation, inactivation, and reactivation dynamics needed to reproduce restitution

properties in a quantitative way.

For convenience, Fenton and Karma introduced a dimensionless membrane potential,

u, and scaled currents (ms−1) in the following way:

u =
Vm − V0

Vfi − V0

, (2.59)

Jfi =
Ifi

Cm (Vfi − V0)
, (2.60)

Jso =
Iso

Cm (Vfi − V0)
, (2.61)

Jsi =
Isi

Cm (Vfi − V0)
, (2.62)

where Vfi, Vso, and Vsi represent the reversal potentials of the fast inward, slow outward,

and slow inward currents, respectively, while V0 is the resting membrane potential. As

a result, from Eq. (2.31) and Eqs (2.59)-(2.62), the following ODE is obtained:

du
dt

= − (Jfi + Jso + Jsi)− Japp , (2.63)

where Japp = IappC
−1
m (Vfi − V0)

−1 is an applied scaled current. In Eq. (2.63), Jfi

behaves as a function of u and v, Jso depends only on u, and Jsi is a function of u and

w. The dynamics of the gate variables, v and w, depicted in Fig. 2.9, are controlled by

the following two ODEs:

dv
dt

=
1− v
τ−v

Θ
(
ufi
c − u

)
− v

τ+
v

Θ
(
u− ufi

c

)
, (2.64)

dw
dt

=
1− w
τ−w

Θ
(
ufi
c − u

)
− w

τ+
w

Θ
(
u− ufi

c

)
, (2.65)

where τ−v and τ+
v are the time constants that govern the reactivation and the inactiva-

tion of the fast inward current, respectively, τ−w and τ+
w represent the time constants

that govern the reactivation and the inactivation of the slow inward current, ufi
c is the

threshold membrane potential for activation of Jfi, and Θ represents the well-known

Heaviside function. In addition, Fenton and Karma found that it was necessary to

express τ−v separately over two voltage ranges as follows:

τ−v = τ−v1 Θ (uv − u) + τ−v2 Θ (u− uv) , (2.66)
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where uv is a threshold membrane potential. As a result, τ−v = τ−v1 if u is smaller than

uv and τ−v = τ−v2 otherwise.

Finally, the three scaled currents which control the dynamics of u (Fig. 2.9) are given

by

Jfi (u, v) = − v
τd

(1− u)
(
u− ufi

c

)
Θ
(
u− ufi

c

)
, (2.67)

Jso (u) =
u

τo
Θ
(
ufi
c − u

)
+

1
τr

Θ
(
u− ufi

c

)
, (2.68)

Jsi (u,w) = − w

2 τsi

(
1 + tanh

[
k
(
u− usi

c

)])
. (2.69)

In Eq. (2.69), usi
c is the threshold membrane potential for activation of Jsi and k is

a parameter. In addition, τd, τo, τr, and τsi represent the time scales to depolarize

the membrane, the time constant to repolarize the membrane when u < ufi
c , the time

constant to repolarize the membrane when u > ufi
c , and the time constant of the slow

inward current, respectively. They are given by τd = Cm/ḡfi, τo = Cm/ḡso, τr = Cm/Īso,

and τsi = Cm/Īsi.
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Fig. 2.9 – Fenton–Karma model: time courses of the dimensionless
membrane potential, u (solid line), the inactivation-reactivation gate
variable, v (long dashed line), and the inactivation-reactivation gate
variable, w (short dashed line), for an applied scaled stimulus of 0.2 ms−1

at a frequency of 10/7 Hz and with a duration of 1 ms. FK model param-
eter values are given in Tab. 2.5.

.
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Parameter set 1 set 2 set 3 set 4 Units
ḡfi 4 4 5.8 8.7 dimensionless
Cm 1 1 1 1 µF cm−2

V0 −85 −85 −85 −85 mV
τr 33.33 50 130 25 ms
τsi 29 44.84 127 22.22 ms
τo 12.5 8.3 12.5 12.5 ms
τ+
v 3.33 3.33 10 10 ms
τ−v1 1250 1000 18.2 333 ms
τ−v2 19.6 19.2 18.2 40 ms
τ+
w 870 667 1020 1000 ms
τ−w 41 11 80 65 ms
ufi
c 0.13 0.13 0.13 0.13 dimensionless
uv 0.04 0.055 − 0.025 dimensionless
usi
c 0.85 0.85 0.85 0.85 dimensionless
k 10 10 10 10 dimensionless

Tab. 2.5 – Parameter values of the FK model [20].

2.2 Electrical activity in the whole heart

As already described in section 1.2, an electrical excitation (depolarization of cell mem-

brane) is spontaneously generated by specialized cells in a specific region (SA node).

The coordinated contraction of the whole cardiac tissue is the consequence of the

propagation of this electrical excitation throughout the heart in a rapid and highly

coordinated fashion. Previous sections have shown the way to model the electrical

activity at a cell level. However, the overall goal of this work is to study this activity

at a tissue level. Thus, a mathematical model is needed to describe the propagation of

the depolarization wave through the cardiac tissue.

2.2.1 Cardiac tissue is modeled as a continuous medium

To avoid difficulties arising from the discrete nature of the cardiac tissue, which is

composed of cells, a common convenient way is to consider that any physical quantity at

a ‘point’ within the cardiac tissue is defined as the average over a small (in comparison

with the scales of the study) but multicellular volume around the considered point. As

a result, the cardiac tissue can be modeled as a volume conductor [41]. Consequently,

from Maxwell’s equations, it is known that for a volume conductor, the electric field E
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and the magnetic field B are related by the following equation:

curl E = −∂B

∂t
, (2.70)

known as the Faraday’s law of induction. In cardiac tissue, the quasi-stationarity

condition can be considered [43] and therefore, Eq. (2.70) reduces to

curl E = 0 . (2.71)

From Eq. (2.71), the electric field can be written as the negative gradient of a scalar

electric potential function, φ:

E = −gradφ . (2.72)

In addition, it is known that any volume conductor is characterized by its intrinsic

properties, taken into account by a constitutive equation, which will be chosen as

Ohm’s law. From this law, the current density vector, J, is known to be proportional

to the electric field:

J = σ · E , (2.73)

where σ is the conductivity tensor. Combining Eq. (2.72) and Eq. (2.73), the following

relation may be written:

J = −σ · gradφ . (2.74)

Moreover, considering a part of the volume conductor characterized by a volume, V ,

surrounded by a surface, S, and assuming that there are no current sources or sinks

and there is no build-up of charge at any spatial point inside V , the following equality

must be satisfied:

∫

S
n · J dS = 0 , (2.75)
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where n is the outward unit normal to the surface S. Using the divergence theorem,

Eq. (2.75) can also be written as

∫

V
div J dV = 0 (2.76)

and given that Eq. (2.76) must be satisfied for any volume V , the integrand must

vanish:

div J = 0 . (2.77)

2.2.2 The bidomain model

The bidomain model was introduced for the first time in [44] to describe the spatial dis-

tribution of macroscopic electric potentials as they are measured on the heart surface.

The bidomain model aims at describing quantities associated with both intracellular

and extracellular domains at a macroscopic scale.

Intracellular and extracellular quantities are defined in the bidomain model in an av-

eraged sense. They consist in spatial averages of the corresponding (local) microscopic

quantities. As a result, the bidomain model considers the cardiac tissue as a two-phase

medium where the extracellular and intracellular domains occupy the same macroscopic

three-dimensional space and overlap at every point. At the microscopic scale, these

two domains are actually physically separated by cell membranes and interconnected

by specific structures embedded in cell membranes.

Each domain is considered separately as a distinct and homogeneous structure. More-

over, the electrical properties of each domain mainly depend on:

i. the passive electrical properties of each domain;

ii. the electrical properties of gap junctions between neighboring cells;

iii. the geometric configuration of the cardiac cells.

In addition, the coupling between both domains is provided by the transmembrane

current, Im, through the cell membrane. The cell membrane can be viewed from

a macroscopic point of view as a volume-distributed boundary which separates the

intracellular and extracellular domains [44, 45, 46].
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2.2.2.1 Mathematical description of the bidomain model

Let σi and σe be the conductivity tensors of the intracellular and extracellular domains,

respectively. At each spatial point in the cardiac tissue, the current density vector J

can be split into two components in the following way:

J = Ji + Je , (2.78)

where Ji and Je are the current density vectors relative to the intracellular and ex-

tracellular domains, respectively. For each domain, Ohm’s law can be applied from

Eq. (2.73). Therefore, Ji and Je are given by

Ji = −σi · gradφi , (2.79)

Je = −σe · gradφe . (2.80)

From Eqs (2.77)-(2.80), at each spatial point, the following relation is satisfied:

div (σi · gradφi + σe · gradφe) = 0 . (2.81)

As Vm = φi − φe, Eq. (2.81) can also be written as

div (σi · gradVm) = −div [(σi + σe) · gradφe] . (2.82)

The transmembrane current, Im, at a spatial point, is considered positive when it

leaves the intracellular domain to enter the extracellular domain through the volume-

distributed cell membrane. Note that any current leaving one domain must enter the

other as a transmembrane current [44]:

Im = −divJi = div (σi · gradφi) , (2.83)

Im = divJe = −div (σe · gradφe) . (2.84)

As already mentioned in section 2.1.2, the transmembrane current consists of both ionic

and capacitive currents. From Eqs (2.2) and (2.83), the following relation is obtained:

χ

(
Cm

∂Vm
∂t

+ Iion

)
= div (σi · gradφi) , (2.85)
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where χ is a constant that represents the ratio of the membrane area to volume of the

myocytes8. Given that Vm = φi − φe, Eq. (2.85) can be written as

χ

(
Cm

∂Vm
∂t

+ Iion

)
= div (σi · gradVm) + div (σi · gradφe) . (2.86)

Eqs (2.82) and (2.86) provide the classical formulation of the bidomain model.

2.2.3 The monodomain model

The monodomain model is a simplification of the bidomain model based on the as-

sumption of equal anisotropy ratios:

σe = ασi , (2.87)

where α is a constant scalar [23, 41]. Taking into account Eq. (2.87), Eq. (2.82) becomes

div (σi · gradVm) = − (1 + α) div (σi · gradφe) (2.88)

or, equivalently,

1
1 + α

div (σi · gradVm) = −div (σi · gradφe) . (2.89)

Substituting Eq. (2.89) into Eq. (2.86), the following relation is obtained:

χ

(
Cm

∂Vm
∂t

+ Iion

)
= div (σi · gradVm)− 1

1 + α
div (σi · gradVm) . (2.90)

The monodomain equation can then be written as

χ

(
Cm

∂Vm
∂t

+ Iion

)
=

α

1 + α
div (σi · gradVm) , (2.91)

8Considering a single cell, the transmembrane current is given by Eq. (2.2). Assuming an element
of volume dV containing n cells, each one characterized by an area, S, the total transmembrane current
inside dV is given by multiplying Eq. (2.2) by nS. If the result of this product is divided by dV, χ
naturally appears and represents the ratio of the area of the surface of a cell over the volume dV/n
occupied by the considered cell inside dV.



48 2.2. Electrical activity in the whole heart

or,

χ

(
Cm

∂Vm
∂t

+ Iion

)
= div (σ · gradVm) , (2.92)

where

σ =
α

1 + α
σi . (2.93)



CHAPTER 3

Cardiac mechanics

During the heart cycle, cardiomyocytes undergo large deformations. Their length can

be stretched by up to 20 % with respect to their unstressed length [47]. Therefore,

the linearized theory of elasticity is not suitable to describe the motion of the cardiac

tissue. The finite deformation theory (the nonlinear theory of elasticity) is necessary.

In this chapter, a general theoretical framework for modeling cardiac tissue mechanics

enabling to account for most intrinsic properties of the heart is presented. First, the

basic assumptions of the continuum mechanics are reminded and key notions therein

as well. Secondly, some basic elements of kinematics (the study of motion and defor-

mation), which are required to describe cardiac mechanics, are discussed. Third, the

physical laws (the balance principles) which govern the spatio-temporal behavior of

all continuous media, independently of the intrinsic nature of materials, are briefly re-

viewed. The constitutive laws are also discussed briefly. Finally, the general framework

is particularized to the specific cases examined in this work.
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3.1 Preliminaries

3.1.1 Key assumptions and notions

3.1.1.1 Particles and continuous bodies

By nature, matter is discontinuous due to its atomic structure. Nevertheless, when a

macroscopic system in the sense that the typical spatial scales of phenomena involved

are large enough with respect to the intermolecular spacings is studied, the matter can

then be successfully described with a continuous approach (macroscopic approach). In

the continuum mechanics theory, a fundamental assumption states that a body, labeled

B, may be considered as having a continuous distribution of matter with respect to

space and time. Moreover, the body B can be viewed as a continuous set of particles,

labeled P . Note that a particle can also be referred to as a material point in the field

of continuum mechanics. A very important notion to emphasize is that the particle

does not have to be understood as the point mass of the Newtonian mechanics or as

the discrete particle of the atomistic theory. Actually, a continuous particle is a part of

a continuous body and typically, involves an accumulation of a large number molecules

but small enough to be considered as a particle.

3.1.1.2 Frame of reference and coordinate system

In common life, people and other objects occupy particular positions, which are sets

of points in a three-dimensional space. The properties of these points are given once

and for all and are not modulated by the presence or absence of people. Besides, the
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changes that people observe in themselves or in their environment are considered to be

at specific instants, which are points in a one-dimensional space altogether independent

on the space of positions. Positions and instants are associated with events. The

totality of events is called the event world W . As very nicely depicted in [48], ‘the

event world is the blank canvas on which pictures of nature may be painted, the quarry

for blocks from which statues of nature may be carved. This canvas, this quarry, must

be chosen by the artist before he sets to work. It lays limitations upon his art, but it by

no means determines the images he will fashion.’

Each event, referred to as e, occurs at a specific instant. All these instants are elements

of a given Euclidean space T . Different events that take place at the same instant are

said to be simultaneous. The totality of the simultaneous events at the instant t is

referred to as Wt and it assumed to be a three-dimensional Euclidean space.

Assuming a three-dimensional Euclidean point space E , an event e is mathematically

described in terms of a frame of reference O defined as a function

O : W 7→ E × T (3.1)

such that

O (e) = (x, t) , (3.2)

where O is a bijection such that Ot, namely the restriction of O to Wt, is a bijection

of Wt onto E for each instant t. Formally, it can be written as follows:

Ot : Wt 7→ E , Ot (e) = x , (3.3)

if

O (e) = (x, t) . (3.4)

The different elements of E are referred to as x and are called positions in E . In a more

physical way, a frame of reference can be viewed as a moving rigid-body with its own

time clock and given the nature of physical phenomena involved in this doctoral study,

it is reasonable to consider the continuous medium as governed by classical mechanics
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and therefore, time is independent of the frame of reference used. As a result, time

is an absolute notion. In addition, a coordinate system can be assigned to T . The

coordinate of an instant is the time of this instant. Commonly, the unit and origin

of time in a particular frame of reference O are considered as set in advance by the

observer and T is identified with the real line R regarding this choice of coordinate

and metric. As a result, Eq. (3.1) may be rewritten as

O : W 7→ E ×R . (3.5)

Moreover, to quantify the motion of a particle1 P embedded in a continuous medium,

it is needed to introduce a coordinate system in the chosen frame of reference. In

other words, the coordinate system allows to mathematically describe the behavior of

a continuous medium in a specific frame of reference. It is important to note that an

infinity of coordinate systems can be defined in a particular frame of reference.

3.1.2 Configurations and motion

When a continuous body B moves in space from one instant of time to another, it

occupies a continuous sequence of geometrical regions referred to as the configurations

of the body. Mathematically, the motion, labeled χ, of the continuous body B can be

written as

χ : B ×R 7→ E (3.6)

and explicitly,

x = χ (P , t) , P ∈ B , t ∈ I . (3.7)

Eq. (3.7) means that x is the position in E that the particle P occupies at the time t in

the motion χ. In addition, the configuration Ω of B at the time t is the set of positions

that the particles occupy. As a result, the following relation can be written:

Ω = χ (B, t) (3.8)

= {χ (P , t) : P ∈ B} . (3.9)

1In the sense defined in section 3.1.1.1.
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In addition, for each t, the mapping χ (•, t) is assumed to be a homeomorphism of B
onto its configuration χ (B, t) and has an inverse χ−1 (•, t), defined over the configura-

tion χ (B, t) as follows:

P = χ
−1 (x, t) , x ∈ χ (B, t) , t ∈ I . (3.10)

Note that in mechanics, it is customary to consider that such motions χ are differ-

entiable with respect to t at least twice and often as many times as desired for each

particle P [48]. In particular, the velocity v of the particle P is given by

v =
∂χ (P , t)

∂t
. (3.11)

3.1.2.1 Material description

The material description defines the motion in terms of the particles embedded in the

body and the time t. Therefore, the motion can symbolically be written as in Eq. (3.7).

3.1.2.2 Referential description

The referential description defines the motion with respect to an arbitrarily chosen

reference configuration, in which the particle P occupies the position X, and the time

t. Mathematically, the motion is written as follows:

x = χ (X, t) . (3.12)

Note that in elasticity, the reference configuration is very often chosen as the initial

unstressed state. When the chosen reference configuration corresponds to the initial

configuration at time t = 0, the referential description is called the Lagrangian descrip-

tion. Note also that, in the literature, the distinction between the referential description

and the material description is not very straightforward. The main reason is that most

of the authors use the position X of the particle P in the reference configuration as a

label for the particle and therefore refer to Eq. (3.12) as the material description.
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3.1.2.3 Spatial description

The spatial description or Eulerian description describes the motion in terms of the

current position x occupied by the particle at time t and the present time t. This

description is very popular in the field of fluid mechanics.

3.1.2.4 Conventions used in this thesis

The conventions used to describe the motion in this work are now emphasized. First,

most of the time, the reference configuration of a body corresponds to the initial con-

figuration of this body at time t = 0, namely the Lagragian description. Moreover, the

coordinates associated with the position X of the particle P in the reference configu-

ration are called material coordinates while the ones associated with the position x in

the current configuration are called spatial coordinates.

3.1.3 Position vector, base vectors, covariant and contravariant

components

A position vector of a position x in E is a vector that translates some given origin x0

into x. Therefore, a position vector field, p, associated with the motion χ is defined as

follows:

p (P , t) = χ (P , t)− x0 . (3.13)

To each coordinate system, a set of base vectors, forming a basis, can be associated. If

the basis consists of mutually orthogonal unit vectors, it is an orthonormal basis. For

instance, such a basis is usually associated with Cartesian coordinates and in this case,

p is given by

p = z1 i1 + z2 i2 + z3 i3 , (3.14)

where z1, z2, and z3 are the three components of the vector p and the coordinates of

P in the Cartesian coordinate system, and i1, i2, and i3 are the unit vectors parallel to
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the coordinate axes. Using the summation convention of Einstein2, Eq. (3.14) can be

rewritten in the form

p = zr ir (3.15)

and the position vector increment, dp, is written as follows:

dp = dzr ir . (3.16)

Now, a set of base vectors3, gm (m = 1, 2, 3), associated with a general curvilinear

coordinate system, xm (m = 1, 2, 3), called the natural basis of the general curvilinear

coordinate system, is introduced. The position vector increment, dp, can also be

written, in terms of the general curvilinear coordinate system, in the following way:

dp = dxm gm , (3.17)

where the base vectors gm are defined by

gm =
∂p

∂xm
(3.18)

and are thus tangent to the coordinate lines. Note that the base vectors regarding the

Cartesian coordinate system can also be defined by the same relation:

ir =
∂p

∂zr
with r = 1, 2, 3 . (3.19)

In addition, gm can be decomposed in terms of the base vectors ir:

gm =
∂p

∂zr
∂zr

∂xm
(3.20)

=
∂zr

∂xm
ir . (3.21)

Now, consider another set of base vectors, ḡm (m = 1, 2, 3), which is the natural basis

of another general curvilinear coordinate system, x̄m (m = 1, 2, 3). The position vector

2For components associated with an arbitrary curvilinear coordinate system, summation is only
implied by repeated indices if one of the repeated indices appears as a superscript and one as a
subscript.

3The base vectors associated with a general curvilinear coordinate system are not necessarily unit
vectors.
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increment, dp, is then written as follows:

dp = dx̄m ḡm , (3.22)

where both systems of base vectors are related by the following relations:

ḡm =
∂xr

∂x̄m
gr , (3.23)

gr =
∂x̄m

∂xr
ḡm . (3.24)

Besides, the position vector increment, dp, can also be described in terms of a set of

contravariant base vectors, gm (m = 1, 2, 3). These vectors constitute the dual basis

to the natural basis, gm (m = 1, 2, 3), previously introduced. The dual base vectors

gm (m = 1, 2, 3) are defined as the set of vectors satisfying the conditions

gm · gn = δmn , m = 1, 2, 3, n = 1, 2, 3) , (3.25)

where δmn is the Kronecker delta. By definition, δmn = 1 if m = n and δmn = 0 other-

wise. Fundamentally, Eq.(3.25) means that each vector of a basis is orthogonal to the

two vectors of the other basis whose indices are different. Considering the particular

case of an orthogonal curvilinear coordinate system4, magnitudes of the covariant and

contravariant base vectors are related in the following way:

|gm| =
1
|gm|

. (3.26)

Eq. (3.26) is readily obtained by developing the scalar product between gm and gm

and taking into account the orthogonality. Using the dual base vectors, gm, the vector

position increment, dp, can be written as follows:

dp = dxm gm , (3.27)

where dxm are the covariant components of dp with respect to the dual basis. For the

curvilinear coordinate system, xm, the contravariant base vectors gm may be defined

4For such a system, the following relations are satisfied: ĝm · ĝn = δmn where ĝm = gm/hm with

the scale factor hm = (gm · gm)
1/2

.
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by

gm =
∂xm

∂zr
ir , (3.28)

where ir = ir for a Cartesian basis because covariant and contravariant base vectors

are the same for any orthonormal basis. Besides, as observed in the different previ-

ous expressions, superscript and subscript indices refer to contravariant and covariant

quantities, respectively.

3.1.4 The metric tensor

Another very important notion is the metric tensor5, g. It is naturally introduced by

writing the scalar-invariant quadratic form, (ds)2, defined as the square of the length

of dp, called the metric of the space [49]:

(ds)2 = dp · dp (3.29)

= gmn dxm dxn , (3.30)

where dxm and dxn are the general curvilinear coordinate increments of the vector

position increment dp, and gmn are the covariant components of the metric tensor, g,

in terms of the base vectors gm. In addition, the components gmn of the metric tensor

are given by the scalar products

gmn = gm · gn , (3.31)

where the quantities are symmetric with respect to the indices m and n. Moreover,

when the curvilinear coordinates are orthogonal (e.g. polar, cylindrical, or spherical

coordinates), gmn = 0 for m 6= n. In other words, in that case, only the diagonal

elements of the matrix do not vanish. For example, considering a cylindrical coordinate

system (r, θ, z), the metric of the space is written in the form

(ds)2 = (dr)2 + (r dθ)2 + (dz)2 . (3.32)

5Note that the metric tensor is also called the unit tensor or the fundamental tensor [49].
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Using Eqs (3.30) and (3.32), the covariant components, gmm, of the metric tensor,

g, with respect to the base vectors gm (dual basis) associated with the cylindrical

coordinates, can be easily written as follows:

g11 = 1 , g22 = r2 , g33 = 1 . (3.33)

Note that when a curvilinear coordinate system is orthogonal, the contravariant com-

ponents, gmm, of the metric tensor, g, with respect to the base vectors gm are equal

to 1/gmm. Regarding a general (non-orthogonal) curvilinear coordinate system, the

matrices of the components, [gmn] and [gmn], with respect to a particular natural

basis and the corresponding dual basis of the metric tensor, g, satisfy the relation

[gmn] = [gmn]
−1. Due to Eq. (3.31), it is obvious that the matrix [gmn] is symmetric.

Similarly to Eq. (3.31), gmn = gm · gn and thus, the matrix [gmn] is also symmetric.

3.1.5 Christoffel symbols

A very useful tool in tensor calculus is the Christoffel symbols of the first and the

second kind. The Christoffel symbols of the second kind Γlmn and Γmnl naturally arise

when the spatial partial derivative of the covariant and contravariant base vectors gm

and gm, respectively, is taken:

∂gm

∂xn
= Γlmn gl , (3.34)

∂gm

∂xn
= −Γmnl g

l , (3.35)

where Γlmn can be written, in terms of the components of the metric tensor, in the form

Γlmn =
glk

2

(
∂gnk
∂xm

+
∂gkm
∂xn
− ∂gmn

∂xk

)
(3.36)

= glk [mn, k] , (3.37)

where [mn, k] represent by definition the Christoffel symbols of the first kind.

In addition, as shown in Eq. (3.36), the Christoffel symbols are symmetric with respect
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to the indices m and n:

Γlmn = Γlnm , (3.38)

[mn, k] = [nm, k] . (3.39)

Note that in Cartesian coordinates, Γlmn = 0 and [mn, k] = 0.

3.1.6 Covariant derivatives

Consider an arbitrary vector v which is decomposed in terms of its contravariant com-

ponents vm relative to the natural basis gm associated with a general curvilinear coor-

dinate system xm in the following way:

v = vm gm . (3.40)

The partial derivative of v with respect to coordinate xn is given by

∂v

∂xn
=

∂vm

∂xn
gm + vm

∂gm

∂xn
(3.41)

=
∂vm

∂xn
gm + vm Γlmn gl (3.42)

=

(
∂vm

∂xn
+ Γmln v

l

)
gm . (3.43)

In Eq. (3.43), the expression in parentheses is the so-called covariant derivative of vm

with respect to xn and is noted vm|n. In the special case of a Cartesian coordinate

system, this covariant derivative is written as

vm|n =
∂vm

∂xn
, (3.44)

because all the Christoffel symbols are equal to zero for such a coordinate system.

3.2 Kinematics

Consider a continuous body B (closed system) whose reference configuration is Ω0 (at

time t = 0), with a volume V0 and bounded by a surface ∂Ω0, characterized by an area
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A0. The continuous body B is submitted to a motion χ resulting in a deformation

and so, in a new configuration, namely the current configuration Ω (at time t). In this

configuration, the body B occupies a volume V , bounded by a surface ∂Ω, character-

ized by an area A. In addition, the motion of each particle, embedded in the body

B, is characterized by a velocity and an acceleration (which can be described either

using the material description or the spatial description). Besides, as already discussed

previously, the motion χ, given by Eq. (3.12), is assumed to be uniquely invertible

(homeomorphism). As a result, the inverse motion χ−1 can be written as

X = χ
−1 (x, t) . (3.45)

For a given time t, Eq. (3.45) gives the material position X (located in Ω0) of the

particle occupying the spatial position x (located in Ω).

3.2.1 Material time derivative

Consider two smooth functions g (x, t) and G (X, t) having the same value f for prop-

erly corresponding arguments [Eq. (3.12)]: g = f and G = f . It is rather common in

physics to denote both functions by using the unique symbol f , which is the value of

the functions. In this context, functional operations can be ambiguous since the inde-

pendent variables are not explicitly written. To avoid any confusion, different symbols

can be introduced for the differential operators [48, 49]. Df/Dt and Grad f will be

used to represent the partial time derivative and the gradient of the function G (X, t),

respectively:

Df
Dt

=
∂G (X, t)

∂t
, (3.46)

Grad f =
∂G (X, t)
∂X

. (3.47)

Note that Grad (•) is sometimes called the material gradient operator [50]. On the

other hand, the partial time derivative and the gradient of the function g (x, t) are
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denoted by ∂f/∂t and grad f (also called the spatial gradient [50]), respectively:

∂f

∂t
=

∂g (x, t)
∂t

, (3.48)

grad f =
∂g (x, t)
∂x

. (3.49)

Since g and G are related by the relations

g (x, t) = G
(
χ
−1 (x, t) , t

)
, (3.50)

G (X, t) = g (χ (X, t) , t) , (3.51)

and applying the chain rule of differentiation to Eq. (3.51), the following relation can

be written:

∂G

∂t
=

∂g

∂t
+
∂g

∂x
· ∂χ
∂t

. (3.52)

In terms of f , Eq. (3.52) can be written as

Df
Dt

=
∂f

∂t
+ v · grad f , (3.53)

where v = ∂χ/∂t = ∂x/∂t is the velocity. The operator D (•) /Dt is the material time

derivative and can thus be expressed in terms of ∂(•)/∂t and grad (•):

D (•)
Dt

=

(
∂

∂t
+ v · grad

)
(•) . (3.54)

3.2.2 Deformation gradient

Consider the motion χ of B from configuration Ω0 to configuration Ω. The deformation

gradient tensor F at a given t is defined as the tensor that operates on an arbitrary

infinitesimal material vector dX at X (in Ω0) and gives its corresponding vector dx at

x (in Ω):

dx = F · dX , (3.55)
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with

F =
∂χ (X, t)
∂X

=
∂x

∂X
. (3.56)

Consider then two independent coordinate systems XM and xm in the reference con-

figuration, Ω0, and the current configuration, Ω, respectively. The motion can then be

written as

xm = χ
m
(
XM , t

)
, m = 1, 2, 3 , M = 1, 2, 3 , (3.57)

and the components of the deformation gradient tensor are given by

FmM =
∂χm

(
XM , t

)

∂XM
=

∂xm

∂XM
, m = 1, 2, 3 , M = 1, 2, 3 . (3.58)

Note that F is a two-point tensor because it involves points in two distinct configura-

tions. The inverse of the deformation gradient tensor, F−1, which operates on dx at x

(in Ω) to relate it with dX at X (in Ω0), can then be written as

dX = F−1 · dx , (3.59)

with

F−1 =
∂χ−1 (x, t)

∂x
=

∂X

∂x
. (3.60)

3.2.3 Displacement, velocity, and acceleration fields

The displacement field of a typical particle can be expressed either in terms of the

reference configuration or in terms of the current one:

U (X, t) = χ (X, t)−X , (3.61)

u (x, t) = x− χ−1 (x, t) . (3.62)
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Obviously, these two functions U and u have the same value for corresponding x and

X, and represent the same physical quantity. They are related by means of the motion:

U (X, t) = u (χ (X, t) , t) . (3.63)

In addition, any particle is characterized by a velocity field (already mentioned) and

an acceleration field. Using the material description, these are described, respectively,

by the following functions:

V (X, t) =
∂χ (X, t)

∂t
, (3.64)

A (X, t) =
∂2
χ (X, t)
∂t2

. (3.65)

In terms of the spatial description, these fields are described by the two functions v (x, t)

and a (x, t). As previously performed for the displacement field, the two descriptions

are transformed into each other by using the motion χ:

V (X, t) = v (χ (X, t) , t) , (3.66)

A (X, t) = a (χ (X, t) , t) . (3.67)

3.2.4 Volume ratio and Nanson’s formula

This section examines how an infinitesimal material volume element dV0 and an in-

finitesimal material surface element dA0 map onto the associated infinitesimal spatial

volume element dV and the infinitesimal spatial surface element dA following the mo-

tion χ.

3.2.4.1 Volume ratio

Assume three infinitesimal vector elements in the reference configuration dX, dY,

and dZ. The infinitesimal material volume element dV0, encompassed by these three

vectors, is given by the following mixed product:

dV0 = (dX× dY) · dZ . (3.68)
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Following the motion χ, dX, dY, and dZ map onto dx, dy, and dz, respectively. As

a result, the infinitesimal material volume element maps onto the infinitesimal spatial

volume element, which is written as

dV = (dx× dy) · dz . (3.69)

Taking into account Eqs (3.55) and (3.68), it can be shown that [49, 50]

dV = J (X, t) dV0 , (3.70)

where

J = det F (X, t) . (3.71)

J represents the determinant of the deformation gradient tensor and is known as the

volume ratio or the Jacobian determinant. Since χ is invertible, J 6= 0. In addition,

given that χ and χ−1 are continuous and J = 1 in the reference configuration, J > 0

for all X and for all times t.

3.2.4.2 Nanson’s formula

Consider an infinitesimal surface element, dA0, in the reference configuration, given by

|dX× dY|, where dX and dY are infinitesimal material vector elements. This surface

element is characterized by the outward unit normal N̂ (normal to dA0) and a vector

area dA0 = N̂ dA0. Due to the motion χ, dA0 maps onto the infinitesimal surface

element dA in the current configuration, characterized by the outward unit normal n̂

(normal to dA) and the vector area dA = n̂ dA.

The way dA0 maps onto dA is now examined. For this purpose, consider the in-

finitesimal volume element, encompassed by dA0 and dZ, can also be written as a dot

product:

dV0 = dA0 · dZ . (3.72)
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Using Eq. (3.70), Eq. (3.72) can be rewritten as

dV = J dA0 · dZ . (3.73)

Taking into account Eq. (3.55) and subtracting Eq. (3.73) from Eq. (3.72), the following

relation is found:

(
FT · dA− J dA0

)
· dZ = 0 . (3.74)

Given that Eq. (3.74) must be satisfied for any dZ, the so-called Nanson’s formula

giving the mapping between the vector areas dA0 and dA is obtained:

dA = J F−T · dA0 . (3.75)

3.2.5 Right and left Cauchy–Green deformation tensors

The right Cauchy–Green deformation tensor, C, gives the new squared length, (ds)2,

of a spatial line element, dx, in terms of the corresponding material line element, dX,

in the following way:

(ds)2 = dx · dx (3.76)

=
(
dX · FT

)
· (F · dX) (3.77)

= dX ·C · dX , (3.78)

where

C = FT · F . (3.79)

In terms of components, Eqs (3.76) and (3.79) can be written as

(ds)2 = gmn dxm dxn (3.80)

= gmn F
m
M F

n
N dXM dXN (3.81)

= CMN dXM dXN , (3.82)
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where gmn are the covariant components of the metric tensor, g, of the current config-

uration, Ω. The quantities

CMN = gmn F
m
M F

n
N (3.83)

are the components of C. Note that C is a symmetric and positive definite tensor,

defined on the reference configuration.

Moreover, the left Cauchy–Green deformation tensor, b, can also be introduced. It

gives the squared length, (dS)2, of a material line element, dX, in terms of the corre-

sponding spatial line element, dx, as follows:

(dS)2 = dX · dX (3.84)

=
(
dx · F−T

)
·
(
F−1 · dx

)
(3.85)

= dx · b−1 · dx , (3.86)

where

b−1 = F−T · F−1 . (3.87)

As a result, b = F ·FT. In terms of components, Eqs (3.84) and (3.87) can be written

as

(dS)2 = GMN dXM dXN (3.88)

= GMN F
M
m F

N
n dxm dxn , (3.89)

where GMN are the covariant components of the metric tensor, G, of the reference

configuration, Ω0. Comparing Eqs (3.86) and (3.89), the following relation can be

written:

b−1
mn = GMN F

M
m F

N
n . (3.90)

Note that b is a symmetric and positive definite tensor, defined on the current config-

uration. In addition, taking into account Eq. (3.71) allows to write

det C = det b = J2 > 0 . (3.91)
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3.2.6 Green–Lagrange and Euler–Almansi strain tensors

The Green–Lagrange strain tensor, E, is defined so that it gives the change in squared

length of a material vector, dX, as follows:

(ds)2 − (dS)2 = 2 dX · E · dX . (3.92)

The Euler–Almansi strain tensor, e, is defined so that it gives the change in squared

length of a spatial vector, dx, as follows:

(ds)2 − (dS)2 = 2 dx · e · dx . (3.93)

Substituting Eqs (3.78) and (3.84) into Eq. (3.92), the relation between E and C is

obtained:

2 E = C−G . (3.94)

The components of the Green–Lagrange strain tensor are thus given by

2EMN = CMN −GMN . (3.95)

In a similar way, substituting Eqs (3.76) and (3.86) into Eq. (3.93), the relation between

e and b−1 is found:

2 e = g− b−1 . (3.96)

In terms of components, Eq. (3.96) may be written as

2 emn = gmn − b−1
mn . (3.97)

3.2.7 Polar decomposition

The polar decomposition is a fundamental theorem in continuum mechanics consisting

in the decomposition of the gradient deformation tensor F relative to a local motion

into a pure stretch and a pure rotation. This decomposition is unique and, at each
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point X ∈ Ω0 and each time t, is written in the form

F = R ·U , (3.98)

where the rotation tensor R is a proper orthogonal tensor and the right stretch tensor

U is a symmetric positive definite tensor. Therefore, these tensors have to satisfy the

following relations:

RT ·R = G , (3.99)

det R = 1 , (3.100)

UT = U . (3.101)

Moreover, substituting Eq. (3.98) into Eq. (3.79) and taking into account Eqs (3.99)

and (3.101), the following relation can be written:

C =
(
UT ·RT

)
· (R ·U) = U2 . (3.102)

Eventually, Eqs (3.91) and (3.102) give

det U = J > 0 . (3.103)

3.3 Balance principles

3.3.1 Conservation of mass

When the body, B, moves from configuration Ω0 to configuration Ω, its mass m is

conserved:

m (Ω0) = m (Ω) . (3.104)

The fundamental law described by Eq. (3.104) is satisfied for any time t and is known as

the conservation of mass. Let introduce the positive continuous scalar fields ρ0 (X) and

ρ (x, t) characterizing the same particle, P , in the reference and current configurations,

respectively. ρ0 is called the reference mass density and depends only on the position
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X ∈ Ω0 whereas ρ is called the spatial mass density and depends on the position x ∈ Ω

and time t as well. The aforesaid particle, P , is characterized by an infinitesimal mass

element dm > 0 and occupies the infinitesimal volume elements dV0 and dV in the

reference and current configurations, respectively. Therefore, by definition of ρ0 and ρ,

the following relations can be written:

dm (X) = ρ0 (X) dV0 , (3.105)

dm (x, t) = ρ (x, t) dV . (3.106)

The conservation of the infinitesimal mass element of the particle, P , enables to write

ρ0 dV0 = ρ dV . (3.107)

Eq. (3.107) shows that the volume of the particle increases when the mass density

decreases. Actually, Eq. (3.107) is the equivalent local form of Eq. (3.104). It is readily

observed by integrating the left-hand side (LHS) and the right-hand side (RHS) of

Eq. (3.107) over Ω0 and Ω, respectively:

m (Ω0) =
∫

Ω0

ρ0 dV0 =
∫

Ω
ρ dV = m (Ω) = const . (3.108)

Therefore, for all times t, the following relation can be written:

d
dt

∫

Ω
ρ (x, t) dV = 0 . (3.109)

3.3.1.1 Continuity equation

The continuity equation is a consequence of the conservation of mass. Indeed, taking

into account Eq. (3.70) and J > 0, Eq. (3.108) can be rewritten as

∫

Ω0

[ρ0 (X)− ρ (χ (X, t) , t) J (X, t)] dV0 = 0 . (3.110)

Since the integral of Eq. (3.110) vanishes for an arbitrary choice of Ω0, the integrand

must therefore vanish at each point X ∈ Ω0. Hence, the continuity equation finally
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writes in the material description in the form

ρ0 (X) = ρ (χ (X, t) , t) J (X, t) . (3.111)

Taking the time derivative of the two members of Eq. (3.111), the following relation

can be written:

0 =
D (ρ J)

Dt
(3.112)

= J
Dρ
Dt

+ ρ
DJ
Dt

. (3.113)

In addition, it can then be shown that [49]

DJ
Dt

= J div v . (3.114)

Substituting Eq. (3.114) into Eq. (3.113) gives

J

(
Dρ
Dt

+ ρ div v

)
= 0 . (3.115)

Due to Eq. (3.54) and taking into account the constraint J > 0, Eq. (3.115) can

eventually be written as

∂ρ (x, t)
∂t

+ div [ρ (x, t) v (x, t)] = 0 , (3.116)

which is the continuity equation in the spatial description.

3.3.2 Linear momentum balance principle

3.3.2.1 Spatial description

As already introduced, the motion, χ, of the body, B, is characterized by a spatial

velocity, v (x, t), and a spatial mass density, ρ (x, t). The total linear momentum,

referred to as L, is defined, in the spatial description, by

L (t) =
∫

Ω
ρ (x, t) v (x, t) dV (3.117)
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and is time-dependent. The linear momentum principle states that the time rate of

change of the total momentum of a given set of particles which fill an arbitrary region,

Ω, equals the vector sum of external forces acting on the particles of the set. Hence,

the balance of linear momentum is given by

dL (t)
dt

=
d
dt

∫

Ω
ρv dV = F (t) . (3.118)

In a general way, the resultant external force, F, can be split into two contributions as

follows:

F (t) =
∫

∂Ω
t (x, t, n̂) dA+

∫

Ω
ρb (x, t) dV . (3.119)

In Eq. (3.119), t (force measured per unit surface area in the current configuration)

and b (force measured per unit mass) represent the Cauchy traction vector6 and the

body force, respectively. Note that t, which acts across the infinitesimal surface element

dA ∈ ∂Ω, is described exclusively in terms of x, t, and the unit outward normal vector,

n̂ (Cauchy’s postulate). Substituting Eq. (3.119) into Eq. (3.118), the linear momentum

balance can be written as

d
dt

∫

Ω
ρv dV =

∫

∂Ω
t dA+

∫

Ω
ρb dV . (3.120)

The LHS of Eq. (3.120) can be rewritten as7

d
dt

∫

Ω
ρv dV =

∫

Ω
ρ

Dv

Dt
dV . (3.121)

The Cauchy’s stress theorem states that the dependence of t with respect to n̂ is linear.

Therefore, there exists a unique second-order tensor field, σ, called the Cauchy stress

6t is also referred to as surface traction, contact force, stress vector or load.
7Consider a smooth field f (note that f may be a scalar, a vector, or a tensor) described in

terms of the current configuration by f (x, t). The Reynolds transport theorem allows to write
d
dt

∫
Ω
f dV =

∫
Ω

(
Df
Dt + f div v

)
dV. Assuming f (x, t) = ρ (x, t) f⋆ (x, t) where f⋆ is defined per

unit mass, d
dt

∫
Ω
ρ f⋆ dV =

∫
Ω

(
D(ρ f⋆)

Dt + ρ f⋆ div v
)

dV can be written. Using Eqs (3.54) and (3.115),

d
dt

∫
Ω
ρ f⋆ dV =

∫
Ω
ρ Df⋆

Dt dV is obtained.
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tensor or true stress tensor, relating t and n̂:

t (x, t, n̂) = σ (x, t) · n̂ (3.122)

= n̂ · σT (x, t) . (3.123)

Note that, for non polar media, σ is a symmetric8 tensor field (σT = σ), defined in

terms of the current configuration. Taking into account Eq. (3.122) and using the

divergence theorem [49] allows to write the RHS of Eq. (3.120) in the following way:

∫

∂Ω
t dA+

∫

Ω
ρb dV =

∫

Ω
(divσ + ρb) dV . (3.124)

Finally, the global form of the Cauchy’s first equation of motion is given by

∫

Ω
ρ

Dv

Dt
dV =

∫

Ω
(divσ + ρb) dV . (3.125)

Given that Eq. (3.125) must be satisfied for any arbitrary volume V , it follows that

ρ
Dv

Dt
= divσ + ρb (3.126)

must be satisfied for each point x and for all times t. Eq. (3.126) is referred to as

the local form of the Cauchy’s first equation of motion. In terms of contravariant

components, Eq. (3.126) can be written as

ρ
Dvm

Dt
= σmn|n + ρ bm , m = 1, 2, 3. (3.127)

3.3.2.2 Material description

The linear momentum balance may also be written in terms of the material description.

In other words, Eq. (3.120) may be transported in the reference configuration. Using

Eqs (3.70) and (3.111), the following relation can be written:

∫

Ω
ρb dV =

∫

Ω0

ρ0 B dV0 . (3.128)

8The symmetry of the Cauchy stress tensor is a consequence of the moment of momentum balance

principle for a non polar continuous medium [49, 50].
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with B (X, t) = b (χ (X, t) , t). Moreover, the transformation of the Cauchy stress vec-

tor t is obtained by using the first Piola–Kirchhoff traction vector (force measured per

unit surface area in the reference configuration), T
(
X, t, N̂

)
, introduced by claiming

that for every surface element, according to Fig. 3.1,

dF = t dA = T dA0 , (3.129)

where dF is the infinitesimal load acting on the current configuration, Ω. Thus, T

is the force acting on the current configuration per unit surface area in the reference

configuration. From Eq. (3.129), the following relation is readily obtained:

∫

∂Ω
t dA =

∫

∂Ω0

T dA0 . (3.130)

Substituting Eqs (3.128) and (3.130) into Eq. (3.120), and transforming the LHS of

Eq. (3.120) by using Eq. (3.70), the linear momentum balance can eventually be writ-

ten, with respect to the reference configuration, as follows:

d
dt

∫

Ω0

ρ0 V dV0 =
∫

∂Ω0

T dA0 +
∫

Ω0

ρ0 B dV0 . (3.131)

Fig. 3.1 – Traction vectors t and T acting across the surface elements
dA and dA0 with respective outward unit normals n̂ and N̂.
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In Eq. (3.131), it is important to note that T acts on the region Ω but it is a function

of the referential position X and the unit outward normal vector N̂ with respect to

the infinitesimal surface element dA0 ∈ ∂Ω0. This is why T is often referred to as the

nominal traction vector as well.

In addition, as previously, the Cauchy’s stress theorem allows to write

T
(
X, t, N̂

)
= P (X, t) · N̂ , (3.132)

where P is called the first Piola–Kirchhoff (PK1) stress tensor. This is a two-point

tensor field and in general, not symmetric. Taking into account Eq. (3.132) and using

the divergence theorem, Eq. (3.131) can eventually be written as

∫

Ω0

ρ0
∂V

∂t
dV0 =

∫

Ω0

(Div P + ρ0 B) dV0 , (3.133)

which is the global form of the equation of motion in the reference configuration. Note

that Div (•) (with an upper-case ‘D’) is often referred to as the material divergence

operator whereas div (•) (with a lower-case ‘d’) is often referred to as the spatial di-

vergence operator [50] with a similar meaning as the one for the gradient operator

previously introduced. In addition, given that Eq. (3.133) must be satisfied for any

arbitrary volume V0, the associated local form is obtained:

ρ0
∂V

∂t
= Div P + ρ0 B . (3.134)

In terms of components, Eq. (3.134) can be written as

ρ0
∂V m

∂t
= PmN

∣∣∣
N

+ ρ0 B
m , m = 1, 2, 3 . (3.135)

The relation between σ and P is found by using Eq. (3.129) and taking into account

Eqs (3.122) and (3.132):

σ · n̂ dA = P · N̂ dA0 . (3.136)

Using Eq. (3.75) (Nanson’s formula), the Piola transformation is finally obtained:

P = J σ · F−T . (3.137)
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The first Piola–Kirchhoff stress tensor have two main inconveniences, namely it is a

two-point tensor (neither spatial nor material) and non symmetric. That is why the

second Piola–Kirchhoff (PK2) stress tensor, S, is often introduced. It is a material and

symmetric tensor field. The traction vector T⋆, associated with the PK2 stress tensor,

acts on the region Ω0 (contrary to the traction vector associated with the PK1 stress

tensor that acts on the region Ω) and is a function of the referential position X and

the unit outward normal vector N̂ with respect to the infinitesimal surface element

dA0 ∈ ∂Ω0:

dF0 = T⋆ dA0 , (3.138)

where dF0 is a force related to the actual force dF in the same way as an arbitrary

infinitesimal material vector dX at X is related to the corresponding spatial vector dx

at x [Eq. (3.59)]:

dF0 = F−1 · dF . (3.139)

Moreover, the Cauchy’s stress theorem allows to write

T⋆ dA0 = S · N̂ dA0 . (3.140)

Taking into account Eqs (3.136)-(3.140), the relations between S, P, and σ are found:

S = F−1 ·P (3.141)

= J F−1 · σ · F−T . (3.142)

Substituting Eq. (3.141) into Eq. (3.134), the local form of the Cauchy’s first equation

of motion may be written in terms of the PK2 stress tensor as follows:

ρ0
∂V

∂t
= Div (F · S) + ρ0 B . (3.143)

In terms of components, Eq. (3.143) is written as

ρ0
∂V m

∂t
=

(
FmM S

MN
)∣∣∣
N

+ ρ0 B
m , m = 1, 2, 3 . (3.144)
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3.4 Cauchy-elastic materials

A Cauchy-elastic or elastic material is characterized by a stress field that is independent

of the deformation path, In other words, for such a material, the stress field at time t

depends only on the state of the deformation (and the temperature) at this time t and

not on the deformation history (and temperature history). However, in general, the

work done by the stress field on an elastic material depends on the deformation path.

3.4.1 Basics about constitutive equations

A constitutive equation describes the intrinsic physical properties of a continuous body.

For the case of deformable bodies, a constitutive equation describes generally the state

of stress at any point of that body submitted to any arbitrary motion at time t.

Assuming an isothermal (DT/Dt = 0 where T is the absolute temperature) elastic

body, the constitutive equation relates the Cauchy stress tensor, σ, at each spatial

point, x = χ (X, t), with the deformation gradient tensor, F (X, t). Mathematically,

the constitutive equation can be written in the general form

σ = g (F (X, t) ,X) , (3.145)

where g is referred to as the response function associated with the Cauchy stress

tensor σ. From a mathematical point of view, g is a tensor-valued tensor function9.

In Eq. (3.145), σ depends on F and the referential position X as well. It means that

the stress response can vary from one particle to the other due to inhomogeneities. In

the particular case where homogeneous continuous bodies are considered, Eq. (3.145)

becomes

σ = g (F) , (3.146)

which determines the Cauchy stress tensor, σ, from the given deformation gradient

tensor, F. A constitutive equation such as Eq. (3.146) is often referred to as a stress

relation.

9A tensor-valued tensor function is a function whose arguments are one or more tensor variables
and whose value is a tensor.



78 3.4. Cauchy-elastic materials

The principle of material frame-indifference10, which states that material properties do

not depend on the observer, imposes certain restrictions on the function g. Consider

two motions x = χ (X, t) and x+ = χ+ (X, t+) of the same body, which differ from

each other by a superimposed rigid-body motion and a time-shift. The pairs (x, t)

and (x+, t+), defined on the configurations Ω and Ω+, respectively, are related by the

Euclidean transformation (appendix A.1). Choosing to use Cartesian coordinates to

describe the two motions, χ and χ+, the transformation can be written as

x+ = c (t) + Q (t) · x , (3.147)

t+ = t+ α , (3.148)

where c represents a rigid-body translation, Q represents a rigid-body rotation about an

axis of rotation, and α is a real number that represents the time-shift. The deformation

gradient tensors F and F+ are related by

F+ = Q · F , (3.149)

enabling to state that the deformation gradient tensor is objective. It can be shown

that the Cauchy stress tensor transforms as

σ
+ = Q · σ ·QT , (3.150)

meaning that the Cauchy stress tensor is also objective.

Since the constitutive law [Eq. (3.146)] is assumed objective, the stress relation in

configuration Ω+ must be written as

σ
+ = g

(
F+
)

, (3.151)

where g is the same function as in Eq. (3.146). Due to Eqs (3.149)-(3.151), the response

function g must satisfy

Q · g (F) ·QT = g (Q · F) , (3.152)

for every nonsingular gradient deformation tensor F and any orthogonal tensor Q.

10This principle is also known as the principle of material objectivity or as objectivity.
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Inserting the polar decomposition [Eq. (3.98)] into the RHS of Eq. (3.152),

Q · g (F) ·QT = R · g (U) ·RT . (3.153)

Since Eq. (3.153) holds for all proper orthogonal tensors Q, it is also satisfied for the

particular choice Q = RT. As a result, Eq. (3.152) eventually boils down to

g (F) = R · g (U) ·RT , (3.154)

for the function g and for every F and R.

Eq. (3.146) may also be written in terms of the PK1 stress tensor, P. Taking into

account Eq. (3.137), Eq. (3.146) becomes

P = det Fg (F) · F−T (3.155)

= G (F) , (3.156)

where G is a tensor-valued tensor function associated with the PK1 stress tensor, P,

which must verify the restriction

Q ·G (F) = G (Q · F) , (3.157)

for every F and Q to satisfy the principle of material frame-indifference. Using the

same reasoning that enables to establish Eq. (3.154) from Eq. (3.152), Eq. (3.157) boils

down to

G (F) = R ·G (U) . (3.158)

A very useful alternative form of Eq. (3.146) can be written in terms of the PK2 stress

tensor, S. Taking into account Eq. (3.142), Eq. (3.146) becomes

S = det F F−1 · g (F) · F−T (3.159)

= H (F) , (3.160)

where H is a tensor-valued tensor function associated with the PK2 stress tensor, S.

Using the polar decomposition [Eq. (3.98)] and Eq. (3.154), and taking into account
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the symmetry of the right stretch tensor, U, Eq. (3.159) may be written as

S = det U U−1 · g (U) ·U−1 . (3.161)

Given that U = C1/2 [Eq. (3.102)], Eq. (3.161) may eventually be written in the form

S = HC (C) , (3.162)

where HC is a tensor-valued tensor function associated with the PK2 stress tensor, S.

3.4.1.1 Isotropic Cauchy-elastic materials

Assume that the Cauchy stress tensor, σ, depends on the left Cauchy–Green deforma-

tion tensor, b (section 3.2.5). In this case, Eq. (3.146) can be written as

σ = h (b) , (3.163)

where h is a tensor-valued tensor function associated with b. A Cauchy-elastic material

which can be described by a constitutive equation such as Eq. (3.163) and which satisfies

the fundamental invariance relation

Q · h (b) ·QT = h
(
Q · b ·QT

)
, (3.164)

for any orthogonal tensor Q, is said to be isotropic.

3.4.1.2 Incompressible Cauchy-elastic materials

In the case of an incompressible Cauchy-elastic material, the stress relation is de-

termined only up to an arbitrary scalar p which can be identified as a pressure-like

quantity. Therefore, Eqs (3.146) and (3.162) are replaced by

σ = −pg + g (F) , (3.165)

and

S = −pC−1 + HC (C) , (3.166)
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respectively. Note that the tensor-valued tensor functions g (F) and HC (C) need only

to be defined for the kinematic constraints det F = 1 and det C = 1, respectively. In

addition, the scalar p required to maintain incompressibility is obtained by the equi-

librium conditions and the boundary conditions and is not specified by a constitutive

equation. Moreover, in any stress relation associated with an incompressible material,

the scalar p must always be included.

3.4.2 Hyperelastic materials

In the case of a purely mechanical theory (thermal effects are ignored), the existence

of a Helmholtz free-energy defined per unit reference volume, Ψ, is postulated for a

hyperelastic material (or Green-elastic material). This Helmholtz free-energy, can be

described by a scalar-valued tensor function that depends only on one of the strain or

deformation tensors for homogeneous materials, e.g. Ψ = ΨF (F). This Helmholtz free-

energy, Ψ, is related to the Helmholtz free-energy defined per unit mass on the current

configuration, ψ, by Ψ = ρ0 ψ [49]. For heterogeneous materials, the Helmholtz free-

energy is additionally dependent on the position of a point in the considered medium.

For the following considerations, only homogeneous materials are discussed without

loss of generality. In the case of an isothermal deformation of a hyperelastic material,

the Helmholtz free-energy is called the strain-energy.

An isothermal hyperelastic material is defined as a subclass of an isothermal elastic ma-

terial for which the response functions introduced in Eqs (3.146), (3.156), and (3.162),

depend only on a strain-energy function (provided by the model considered) and are

given by

σ = g (F) = J−1 ∂ΨF (F)
∂F

· FT , (3.167)

P = G (F) =
∂ΨF (F)
∂F

, (3.168)

S = HC (C) = 2
∂ΨC (C)
∂C

, (3.169)

where ΨF (F) and ΨC (C) are two different strain-energy functions with the same scalar

value, Ψ.

It can now be shown that Eqs (3.168)-(3.169) are directly derived from the Clausius–
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Planck form of the second law of thermodynamics11. By definition, an isothermal defor-

mation of a hyperelastic material produces locally no entropy (the internal dissipation

is zero or in other words, the isothermal deformation of a hyperelastic material is a re-

versible process). Assuming such an isothermal reversible process, the Clausius–Planck

inequality degenerates to an equality and may be written in the reference configuration,

in terms of P or S, as follows:

P :
∂F

∂t
− ∂ΨF (F)

∂t
=

(
P− ∂ΨF (F)

∂F

)
:
∂F

∂t
= 0 , (3.170)

S :
∂E

∂t
− ∂ΨE (E)

∂t
=

(
S− ∂ΨE (E)

∂E

)
:
∂E

∂t
= 0 , (3.171)

where ΨE is another strain-energy function with the same value than ΨF and ΨC.

Since F and thus ∂F/∂t can be chosen arbitrarily in Eq. (3.170), the expressions

in parentheses must vanish and Eq. (3.168) is thus obtained. For similar reasons,

the expressions in parentheses in Eq. (3.171) must vanish. As a result, the following

relation must be satisfied:

S =
∂ΨE (E)
∂E

. (3.172)

Due to Eq. (3.94), the PK2 stress tensor may also be written as

S = 2
∂ΨC (C)
∂C

, (3.173)

which is Eq. (3.169). As well explained in [49, 51], Ψ is only dependent on the stretching

part of F, namely the symmetric right stretch tensor, U (section 3.2.7). This result

is obtained from the principle of material frame-indifference. From this principle, the

following relation must be satisfied:

ΨF (F) = ΨF (U) . (3.174)

In addition, expressing the strain-energy as a function of E or C, the stress tensors σ

11The Clausius–Planck form of the second law of thermodynamics is a stronger form than the
Clausius–Duhem form [50].
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and P may also be written as [51]

σ = J−1 F · ∂ΨE (E)
∂E

· FT = 2 J−1 F · ∂ΨC (C)
∂C

· FT , (3.175)

P = F · ∂ΨE (E)
∂E

= 2 F · ∂ΨC (C)
∂C

. (3.176)

3.4.2.1 Isotropic hyperelastic material

Regarding the particular case of an isotropic hyperelastic material, it can be shown

[49] that the strain-energy can be written in a unique way in terms of the principal

invariants of C:

Ψ = Ψ∗
C

[I1 (C) , I2 (C) , I3 (C)] , (3.177)

where

I1 (C) = tr C , (3.178)

I2 (C) =
1
2

[
(tr C)2 − tr C2

]
, (3.179)

I3 (C) = det C = J2 . (3.180)

Taking into account Eq. (3.173) and Eqs (3.177)-(3.180), and using the chain rule of

differentiation, the PK2 stress tensor is given by

S = 2
3∑

α=1

∂Ψ∗
C

∂Iα

∂Iα
∂C

(3.181)

= 2

[(
∂Ψ∗

C

∂I1

+ I1
∂Ψ∗

C

∂I2

)
G− ∂Ψ∗

C

∂I2

C + I3
∂Ψ∗

C

∂I3

C−1

]
. (3.182)

3.4.2.2 Compressible hyperelastic material

For a compressible hyperelastic material, the only restriction is J > 0. Moreover,

for this kind of materials, it is convenient to split the deformation into a volumetric

part and an isochoric part because these two parts behave in a quite different way in

bulk and shear [52]. As a result, the tensors F and C can be written as multiplica-

tive decompositions into volume-changing (or volumetric) and volume-preserving (or
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isochoric) parts as follows:

F = J1/3 F , (3.183)

C = J2/3 C . (3.184)

In Eqs (3.183) and (3.184), F and C are called modified deformation gradient tensor and

modified right Cauchy–Green tensor, respectively, and are both associated with volume-

preserving deformations of the considered material. The factors J1/3 [Eq. (3.183)] and

J2/3 [Eq. (3.184)] are related to volume-changing deformations of the material. Taking

into account the kinematic assumption given by Eq. (3.184), the strain-energy, Ψ, can

be postulated in a unique decoupled form as follows [51]:

Ψ = Ψvol (J) + Ψiso

(
C
)

, (3.185)

Therefore, taking into account Eqs (3.173) and (3.185), the PK2 stress tensor is given

by

S = 2
∂Ψvol (J)
∂C

+ 2
∂Ψiso

(
C
)

∂C
(3.186)

= J pC−1

︸ ︷︷ ︸
Svol

+ J−2/3 Dev


2

∂Ψiso

(
C
)

∂C




︸ ︷︷ ︸
Siso

, (3.187)

where Svol and Siso represent the purely volumetric and isochoric contributions to the

PK2 stress tensor, respectively. Besides, the constitutive equation for the hydrostatic

pressure p is defined by

p =
dΨvol (J)

dJ
(3.188)

and Dev (•) is the material deviator operator defined by

Dev (H) = H− 1
3

(H : C) C−1 , (3.189)

where H is an arbitrary second order tensor.
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3.4.2.3 Compressible isotropic hyperelastic material

For a compressible isotropic hyperelastic material, in an analogous way to the decoupled

representation given by Eq. (3.185), the strain-energy can be written as

Ψ = Ψ∗vol (J) + Ψ∗iso
[
Ī1

(
C
)
, Ī2

(
C
)]

, (3.190)

where Ī1

(
C
)

and Ī2

(
C
)

are the first two principal invariants of the modified right

Cauchy–Green tensor, C. As previously mentioned in this section, this description is

only valid for isotropic materials. In addition, considering the kinematic assumption

described by Eq. (3.184), it can be shown that the relations between Īα and Iα (α =

1, 2, 3) are given by [49, 51]

Ī1

(
C
)

= J−2/3 I1 (C) , (3.191)

Ī2

(
C
)

= J−4/3 I2 (C) , (3.192)

Ī3

(
C
)

= I3 (C) . (3.193)

Note that the first three modified invariants Īα (α = 1, 2, 3) are defined exactly in the

same way as in Eqs (3.178)-(3.180) substituting C for C.

3.4.2.4 Mooney–Rivlin model

Assuming a compressible isotropic hyperelastic material and adopting the Mooney–

Rivlin model [53, 54], the strain-energy is written in the decoupled representation as

follows:

Ψ = Ψ∗vol (J) + Ψ∗,MR
iso

[
Ī1

(
C
)
, Ī2

(
C
)]

, (3.194)

with

Ψ∗,MR
iso

[
Ī1

(
C
)
, Ī2

(
C
)]

= c1

(
Ī1 − 3

)
+ c2

(
Ī2 − 3

)
, (3.195)
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where c1 and c2 are material constants which must satisfy certain restrictions. The

strain-energy can also be written in the coupled representation as

Ψ = Ψ∗,MR [J, I1 (C) , I2 (C)] , (3.196)

with for instance [51]

Ψ∗,MR [J, I1 (C) , I2 (C)] = c (J − 1)2 − d ln (J)

+ c1 (I1 − 3) + c2 (I2 − 3) . (3.197)

Note that the first two terms on the RHS of Eq. (3.197) were initially proposed in

[55] as [c J2 − d ln (J)]. In Eq. (3.197), c is a material constant and d is a parameter

with certain restrictions. Assuming that the reference configuration is stress-free, d =

2 (c1 + 2 c2) is deduced from Eq. (3.197). Using the decoupled representation of the

strain-energy [Eq. (3.194)], the PK2 stress tensor can be written as

S = J pC−1 + J−2/3 Dev
[
2 c1 G + 2 c2

(
Ī1 G−C

)]
, (3.198)

where p = dΨ∗vol (J) /dJ . Note that Ψ∗vol (J) may be written in several different ways

[51]. For instance, the following form is proposed in [56]:

Ψ∗vol (J) = κβ−2
[
β ln (J) + J−β − 1

]
(3.199)

for β > 0. κ is the constant bulk modulus in the reference configuration and β represents

an empirical coefficient that is strictly positive.

Now, considering the so-called coupled representation of the strain-energy [Eq. (3.197)],

the PK2 stress tensor can be written as

S = (2 c1 + 2 c2 I1) G− 2 c2 C + [2 c J (J − 1)− d] C−1 . (3.200)
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To establish Eqs (3.198) and (3.200), the following relations have been used [49, 51]:

∂I1

∂C
= G ,

∂Ī1

∂C
= G, (3.201)

∂I2

∂C
= I1 G−C ,

∂Ī2

∂C
= Ī1 G−C, (3.202)

∂J

∂C
=

J

2
C−1 . (3.203)

3.5 Implications of mechanical properties of cardiac tis-

sue on modeling

The heart wall can be split into three different layers: the endocardium (the inner

layer), the myocardium (the middle layer) and the epicardium (the outer layer). The

endorcardium and epicardium are membranes with thickness of the order of 100µm.

The first one consists mainly of epimysial collagen, elastin and a layer of endothelial

cells which act as an interfacial layer between the wall and the blood [50].

In this work, mainly the functional tissue of the heart wall, namely the myocardium, is

considered. The latter is characterized by a complex structure that is well represented

in several quantitative studies [57, 58, 59, 60]. The most documented myocardial

structure is that of the left ventricle. As a result, it is convenient to examine it to

give some key elements explaining implications of microstructural architecture on the

macroscopic mechanical modeling.

The left ventricular wall can be modeled reasonably well as a thick-walled ellipsoid of

revolution that is truncated at the base, as shown in Fig. 3.2. This wall is a composite

of discrete layers, called sheets or laminæ, of parallel cardiomyocytes (cardiac muscle

fibers) occupying 70 % of the volume. The remaining part of the volume is composed

of various interstitial components [61]. Note that only 2 % to 5 % of this interstitial

volume is constituted of collagen, spatially arranged in a network that forms lateral

connections between adjacent muscle fibers. In this context, the muscle fiber directions

change through the wall thickness from the epicardium to the endocardium as shown

in Fig. 3.2. In the equatorial region, the muscle fiber orientation changes from +70o

to −70o with respect to the circumferential direction of the left ventricle when the
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wall from the sub-epicardial region (at 10 % of the wall thickness from the epicardium)

to the sub-endorcardial region (at 90 % of the wall thickness from the epicardium) is

crossed as depicted in Fig. 3.2.

Fig. 3.2 – Microstructural organization of cardiac tissue shown by a
transmural segment of tissue removed from the equatorial region of
the left ventricular wall. The upper left schematic diagram depicts
the transmural variation from the epicardium to the endocardium of
the fiber orientation given by the red axes. The lower schematic di-
agram shows that fibers are bound tightly together in sheets 3 or 4
cardiomyocytes thick (by endomysial collagen), separated by cleavage
planes (perimysial collagen) [57].

From a modeling point of view, for inhomogeneous and anisotropic materials such

as the cardiac tissue, it is convenient to adopt a material coordinate system aligned

with certain structural features of the material. To encapsulate the microstructural

organization of the cardiac tissue, a microstructural orthogonal curvilinear material

coordinate system ΥM is introduced. A natural set of material covariant base vectors

ΥM associated with the ΥM -coordinate system is given by the fiber axis f which coin-

cides with the muscle fiber orientation, the sheet axis s which is defined to be in the

plane of the laminæ perpendicular to the fiber direction and the sheet-normal axis n

which is defined to be orthogonal to the other two. Obviously, in the deformed config-

uration, these three particular directions are not orthogonal anymore. The covariant

spatial base vectors are referred to as υm and are associated with the microstructural

curvilinear spatial coordinate system υm. As a result, in terms of these two coordinate
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systems, the motion is written as

υm = χ
m
(
ΥM , t

)
, m = f, s, n , M = f, s, n . (3.204)

The covariant components of the metric tensors G and g (with respect to the reference

and current configurations) are, respectively, given by

GMN = ΥM ·ΥN , (3.205)

gmn = υm · υn . (3.206)

The components of the deformation gradient tensor and the right Cauchy–Green de-

formation tensor are written as follows:

FmM =
∂υm

∂ΥM
, (3.207)

CMN = gmn
∂υm

∂ΥM
∂υn

∂ΥN
, (3.208)

CMN = gmn
∂ΥM

∂υm
∂ΥN

∂υn
. (3.209)

From different experimental simple shear tests on the passive ventricular myocardial

tissue, the latter is known to behave as an orthotropic material having three mutually

orthogonal planes, namely the plane built by the f-axis and the s-axis (fs-plane), the

plane built by the f-axis and the n-axis (fn-plane) and the plane built by the s-axis

and the n-axis (sn-plane), with distinct material responses [62]. From these shear

stress-strain experiments, it is known that the ventricular myocardium is the least

resistant to simple shear in the f-direction and s-direction in the fn-plane and the sn-

plane, respectively, while the ventricular myocardium is the most resistant to shear

deformations that induce extension in the f-direction in the fs-plane and the fn-plane.

Note that for the fs-plane and the fn-plane, the shear responses in the s-direction

and the n-direction are different. In a similar way, for the fs-plane and the ns-plane,

the shear responses in the f-direction and the n-direction are also different. However,

for the fn-plane and the sn-plane, the shear responses in the f-direction and the s-

direction are the same for the specific sample used in [62]. Regarding the passive biaxial

mechanical properties of the passive ventricular myocardial tissue, they are described

in [63, 64, 65, 66]. As an example of these studies, Fig. 3.3 shows representative stress-

strain data, extracted from [64].
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Fig. 3.3 – Stress-strain data obtained from a canine left ventricle my-
ocardium for biaxial loading in the fs plane using three different loading
protocols. Note that Sii and Eii (i = f, s, where f and s are the fiber and
sheet directions, respectively) are the components of the PK2 stress
tensor and the Green–Lagrange strain tensor, respectively. Sff as a
function of Eff (a) and Sss as a function of Ess for three different con-
stant strain ratios Eff/Ess equal to 2.05 (triangles), 1.02 (squares), and
0.48 (circles) (b). From [50] using data from [64].

In a similar way to many other soft biological tissues, the myocardial tissue can be

considered as an incompressible material. This has been established from experimental

results in [67]. Moreover, the myocardium tissue appears to be viscoelastic but from a

modeling point of view, it can be treated as elastic because the time scale of the cardiac

cycle is long in comparison with the relaxation time of the viscoelastic response [50].

Previously in this section, a general theoretical framework, allowing to develop vari-

ous detailed three-dimensional mechanical models accounting for more or less intrinsic

features of cardiac tissue, has been introduced. However, using inhomogeneous and/or

anisotropic properties is not suitable in the case of interest here because only the basic

mechanisms related to the mechano-electric feedback (MEF) are examined. Thus, it is

preferable to avoid inserting too much complexity because it can generate some addi-

tional effects that disturb the understanding of the basic physical processes regarding

the MEF. Keeping this idea in mind, only essential mechanical properties of cardiac

tissue needed to study the MEF issue are taken into account. As a first approach12,

12For further modeling works, the general theoretical framework is already established.
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the cardiac tissue is considered as a compressible13 isotropic hyperelastic material and

the Mooney–Rivlin model is used. As a result, a strain energy function given by an

expression similar to Eq. (3.197) is adopted:

Ψ̃∗,MR [J, I1 (C) , I2 (C)] = c1 (I1 − 3) + c2 (I2 − 3)− d

2
(J − 1) . (3.210)

Therefore, the pure elastic part of the PK2 stress tensor is given by

Selastic = (2 c1 + 2 c2 I1) G− 2 c2 C− J dC−1 . (3.211)

In addition, its contravariant components in terms of the microstructural curvilinear

material coordinate system are given by

SMNelastic = 2 c1 G
MN + 2 c2

(
I1 G

MN −GMOGNP COP
)
− J dCMN , (3.212)

where I1 = tr C = G : C = GOP C
OP and CMN = C−1

MN .

Besides, contraction of the cardiac tissue is driven by an active tension that impacts

the mechanical behavior of the tissue. Without caring about its physiological origin

for the time being, the active tension is taken into account by linearly superimposing

an active part to the pure elastic part (passive part), Selastic, of the PK2 stress tensor,

S, as follows [21, 68, 69, 70]:

S = Selastic + Sactive . (3.213)

Obviously, Sactive must be in the form of a PK2 stress tensor to be consistent with the

form used for the passive part. Note that Sactive may be superimposed to the pure elas-

tic part of the PK2 stress tensor in several different ways. The most straightforward

method of superimposition, which is used here, consists in adding a time-dependent

active tension, σactive, calculated from a cellular active tension model to the fiber com-

ponent of the pure elastic Cauchy stress tensor if an anisotropic approach is used or

to all the components if an isotropic approach is adopted. As a result, the following

13As shown in chapter 4, the assumption of compressibility is related to the formulation of SACs
assuming an isotropic material.
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relations can be written for the anisotropic and isotropic approaches, respectively:

SMNactive = J σactive C
MN δM1 δN1 (3.214)

and

SMNactive = J σactive C
MN . (3.215)

3.5.1 Mechanical equilibrium equation

The Cauchy’s first equation of motion must be satisfied for all times. Assuming a quasi-

static mechanical equilibrium14 and no body force acting on cardiac tissue, Eq. (3.144)

can be written, in terms of the microstructural curvilinear material coordinate system,

as follows:

(
FmM S

MN
)∣∣∣
N

= 0 (3.216)

for m = f, s, n. The assumption of quasi-static equilibrium comes from the fact that

the time scale on which the elastic force balances the active tension is negligible in

comparison with other time scales in the problem [71].

14A problem is called quasi-static if data depend on time and the acceleration is assumed to vanish
[51].



CHAPTER 4

Electromechanics and thermo-electric

coupling in cardiac tissue

Cardiac muscle is intrinsically a multiphysics and multiscale system. It involves sub-

cellular and cellular processes (e.g. actin-myosin interaction) as well as mechanisms at

the tissue level (e.g. propagation of action potentials [APs]). Both kinds of processes

interplay in a strong way such that microscopic phenomena at the subcellular level

generate properties at the macroscopic tissue level [72]. This work is mainly focused

on the macroscopic electromechanical behavior of the heart. However, some key ele-

ments of electromechanical cell models are briefly discussed to give an overview of the

microscopic modeling approach. The effects of a temperature variation on the electrical

activity and the electromechanical behavior, via the coupling between electrical and

mechanical phenomena, are also examined. For this purpose, modeling of these effects

are presented.
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4.1 Cardiomyocyte electromechanics: description

4.1.1 Active tension development

In a cardiomyocyte, the active tension development is physiologically initiated by the

electrical excitation of the cardiomyocyte itself. Following this excitation (namely the

depolarization of the cell membrane), the sarcolemmal1 voltage-gated L-type calcium

ion channels open and the resulting flow of calcium ions into the cell leads to a positive

feedback mechanism consisting in a calcium ion release from the sarcoplasmic retic-

ulum (SR) through sarcoplasmic calcium release channels gated by the cytoplasmic

calcium concentration. This subcellular process is referred to as Ca 2+-induced Ca 2+

release (CICR) [73]. Note that a small amount of calcium ions enter the cell through

sarcolemmal sodium-calcium exchangers as well.

This combination of the influx and the release from SR of calcium ions increases the

concentration of cytosolic calcium ions in a significant way. As a result, calcium ions

1Sarcolemma is an other word to refer to the cell membrane.
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can bind to the myofilament protein troponin C resulting in a shift in the troponin-

tropomyosin complex followed by structural changes of the tropomyosin-actin configu-

ration [74]. These changes allow the binding of myosin heads to the actin filament, the

so-called cross-bridge cycling [75], leading eventually to the active tension development

in the cell. Collectively, this process is termed excitation-contraction coupling (ECC)

[6, 75]. The relaxation then occurs when the concentration of cytosolic calcium ions

declines. This requires calcium ion transport out of the cytosol by different pathways

[28].

4.1.2 Mechano-electric feedback

As described in the previous section, the contraction of a cardiomyocyte is triggered by

its electrical excitation via the ECC process. Furthermore, cardiac electrophysiologi-

cal changes can also arise from mechanical changes via different processes collectively

referred to as mechano-electric feedback (MEF) [76]. This MEF is a constituent part

of the intrinsic electromechanical regulatory loop of the healthy heart. A contrario to

the ECC, it has only recently begun to be appreciated [5] and modeled [77, 78].

The MEF can be viewed as made up of two distinct contributions: the geometric

contribution and the physiological contribution. The geometric contribution is due

to direct geometric effects of tissue deformations on depolarization wave propagation.

Hitherto, two subcellular mechanisms are known to be the physiological contribution

to the MEF:

i. stretch-activated channels (SACs)2 [79]

ii. mechanical modulation of cellular Ca 2+ handling [80]

These mechanisms are now more precisely discussed.

4.1.2.1 SACs

SACs have been recognized in cardiac cells [81] and respond to stretch by increasing

the probability to be open. However, the underlying microscopic mechanisms leading

to this increase in open probability induced by stretching (macroscopic stimulus) are

2SACs do not have to be confused with volume-activated channels (VACs). These channels are
activated by changes in cell volume.
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not yet completely understood. Note that two different kinds of SACs can be found:

one is cation permeable [82] while the other is potassium-selective [83]. The potential

pathophysiological role of cardiac SACs is huge and, as a result, there is a consider-

able number of clinical observations related to the cardiac MEF [84, 85], ranging from

stretch-induced ectopic excitation to mechanical induction of tachycardia and fibril-

lation. From a physiological point of view, it is likely that cardiac SACs positively

contribute to chronotropic response of the heart3 to stretch [86].

4.1.2.2 Mechanical modulation of calcium handling

An increase in troponin C affinity for Ca 2+ is mechanically induced when cardiac tissue

is stretched leading to an initial rapid increase in twitch force [87]. This is followed

by a slower rise in force production, which is related to an increase in Ca 2+ transients

induced by stretching [88, 89]. In addition, stretching of cardiac cells or tissues implies

an increase in the diastolic free Ca 2+ concentration [90] and a decrease in the apparent

Ca 2+ storage capacity of the sarcoplasmic reticulum [91].

4.2 Cardiac tissue electromechanics: modeling

A very nice general framework for the modeling of cardiomyocyte electromechanics has

been described in [73] and is illustrated in Fig. 4.1. Actually, most models of cardiomy-

ocyte electromechanics are combinations of previously published models describing spe-

cific mechanisms involved in the electromechanical behavior of cardiomyocytes. These

subparts are coupled together via state variables including the membrane potential,

calcium concentration, sarcomere length, power of hydrogen (pH) and concentration

of adenosine triphosphate (ATP) (Fig. 4.1). Note that there is no single published

model including all these mechanisms but the scheme shown in Fig. 4.1 demonstrates

the feasibility of an integrated model of this type. Three main parts are needed for

such a complete model: an ECC model that mimics cardiomyocyte electrophysioplogy

and calcium handling, a myofilament model that accounts for actin-myosin interactions

and calcium-based activation events (in cardiac myofilaments) and a metabolic model

that describes metabolic processes.

3Chronotropic response of the heart is the fact that the heart rate over time may increase or
decrease in response to stimuli.
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At the tissue level, it is necessary to account for the propagation of APs by using

a monodomain or bidomain model, described in sections 2.2.2 and 2.2.3, as well as

mechanical deformations of the tissue controlled by the classical nonlinear theory of

elasticity introduced in chapter 3. As a result, cardiac electromechanical models at the

tissue level are essentially multiscale models: they incorporate some subcellular and

cellular processes (e.g. ionic currents and active tension development in myofilaments)

as well as some macroscopic mechanisms (e.g. propagation of APs and deformations

of the tissue). However, mainly for computational cost reasons, it is not possible to

account for all these subcellular and cellular processes when some numerical simulations

at the tissue level are performed. As a result, only the key elements required for the

purposes of this work will be retained.

Fig. 4.1 – General framework for the modeling of cardiomyocyte
electromechanics. Single arrows mean unidirectional couplings while
double-headed arrows represent bidirectional couplings. Abbreviations:
LCC is L-type Ca 2+ channel, RyRs are ryanodine receptors, SERCA
is sarcoplasmic reticulum Ca 2+-ATPase, PLB is phospholamban, NCX
is Na +/Ca 2+ exchanger, SACs are stretch-activated channels, TnC is
troponin C, XB is cross-bridge, ATP is adenosine triphosphate, ADP
is adenosine diphosphate, and pH is power of hydrogen [73].
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4.2.1 Active tension development

Section 3.5 described the way the active behavior of cardiac tissue is taken into account

by linearly superimposing an additional component to the ‘standard’ PK2 stress tensor.

The present section deals with the modeling of the scalar active tension, Sactive, intro-

duced on the right-hand side (RHS) of Eq. (3.214). There exists several approaches for

active tension modeling accounting for more or less details. The first model of the ac-

tive tension development that was specially designed for tissue-level electromechanical

models is the Hunter–McCulloch–ter Keurs (HMT) model [21].

4.2.1.1 HMT model

The HMT model, consisting of four components, is able to reproduce a number of

physiologically significant experimental observations. The four components are:

i. the passive elasticity of myocardial tissue

ii. the rapid binding of calcium ions to troponin C and the slower tension-dependent

release of calcium ions from troponin C

iii. the kinetics of tropomyosin movement and availability of cross-bridge binding

sites as well as the length dependence of this mechanism

iv. the kinetics of cross-bridge tension development under perturbations of myofila-

ment length

The concentration of calcium,
[
Ca 2+

]

b
, bound to the calcium-specific binding site on

troponin C, is assumed to be controlled by the following ordinary differential equation

(ODE):

d
[
Ca 2+

]

b

dt
= ρ0

[
Ca 2+

]

i

([
Ca 2+

]

b,max
−
[
Ca 2+

]

b

)
(4.1)

−ρ1

(
1− T

γ T0

) [
Ca 2+

]

b
,

where ρ0 and ρ1 represent the rate constants for binding and unbinding, respectively,
[
Ca 2+

]

i
is the concentration of free myoplasmic calcium, T is the tension, T0 is the

isometric tension, γ T0 is the maximum tension value, and
[
Ca 2+

]

b,max
is the maximum

value of
[
Ca 2+

]

b
that is reached at equilibrium when T = γ T0.
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Tropomyosin movement resulting from calcium binding to troponin C controls the avail-

abilty of actin sites for cross-bridge binding. The proportion of these sites available

for cross-bridge binding is taken into account in the HMT model by a dimensionless

parameter, z, ranging from 0 to 1. Based on the observation that tension increases

exponentially with a first-order rate constant depending on the level of calcium acti-

vation, Hunter, McCulloch, and ter Keurs proposed to describe the behavior of z by a

first-order kinetics mimicked by the following ODE:

dz
dt

= α0







[
Ca 2+

]

b

C50



n

(1− z)− z


 , (4.2)

where α0 is the rate constant of tropomyosin movement, C50 and n are the Hill param-

eters. C50 corresponds to the value of
[
Ca 2+

]

b
required to give zSS = 0.5 (zSS denotes

the value of z in steady state) and n governs the steepness of the curve. These two Hill

parameters are stretch-dependent and given by the following relations:

n = nref [1 + β1 (λ− 1)] , (4.3)

C50 = 106−pC50ref [1+β2 (λ−1)] . (4.4)

In Eqs (4.3) and (4.4), λ is the stretch ratio, and β1, β2, and pC50ref are other parame-

ters. Under steady state conditions, namely dz/dt = 0 and
[
Ca 2+

]

b
= const, Eq. (4.2)

gives the proportion, zSS, of actin sites available for cross-bridge binding:

zSS =

[
Ca 2+

]n
b[

Ca 2+
]n

b
+ Cn50

. (4.5)

Assuming that all available actin sites are used for cross-bridge binding, the isometric

tension, T0, is defined by

T0 = Tref [1 + β0 (λ− 1)] z , (4.6)

where Tref is the reference tension at λ = 1 and β0 = T−1
ref dT0/dλ. Note that, if the

increase in tension with length came about solely as a result of changing myofilament

overlap, β0 would be equal to 1. Therefore, β0 > 1 reflects myofilament cooperativity

[92, 93]. The developed tension, T , is determined by modulating the isometric tension,
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T0, by a nonlinear function of Q in the following way:

T = T0
1 + aQ

1−Q , (4.7)

where a is a curvature parameter and Q is given by

Q
(
T

T0

)
=

3∑

i=1

Ai

∫ t

−∞
e−αi (t−τ) dλ

dt
dτ , (4.8)

where Ai and αi are parameters determined by particular experiments [21].

4.2.1.2 Single ODE approach

The HMT model is too complex for the purposes of this work. In the present study,

the onset of the active tension is modeled by using a single ODE as initially introduced

in [69]. Using this approach, the biophysical details regarding the active tension de-

velopment are not described and a direct dependence with respect to the membrane

potential is assumed. Mathematically, it is modeled by the following ODE [69, 94, 95]:

dσactive

dt
= ε (Vm) (κσactive

Vm − σactive) , (4.9)

where κσactive
is a parameter that controls the amplitude of the active stress twitch and

ε (Vm) is a function that accounts for the delay in the development and recovery of the

active tension with respect to an AP. In the following, ε (Vm) = ε0 if Vm ≥ Vth (where

Vth has been introduced in section 2.1.3) and ε (Vm) = ε1, with ε1 > ε0, if Vm < Vth.

4.2.2 Mechano-electric feedback

In this work, the physiological contribution to the MEF is taken into account only via

SACs because these are the main physiological contribution to this MEF. Furthermore,

as shown later in this section, the geometric contribution to the MEF is naturally

embedded in the Laplacian operator when the monodomain equation is rewritten by

taking into account cardiac tissue deformations.

In section 2.2.3, the ‘standard’ monodomain equation [Eq. 2.92] has been established

assuming an undeformable cardiac tissue and, thus, without caring about deforma-
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tion. However, the cardiac tissue is actually subjected to deformations due to the

electromechanical coupling. When deformations are taken into account, new physical

assumptions must be introduced to describe the spatio-temporal behavior of the mem-

brane potential. A new monodomain equation which could be called the deformable

monodomain equation must be established. To avoid any confusion in the following,

two distinct functions, Vm (X, t) and vm (x, t), are introduced to describe the same

physical quantity, namely the membrane potential, but in terms of the material de-

scription and the spatial description, respectively. These two functions are related by

the motion, χ, as follows:

Vm
(
χ
−1 (x, t) , t

)
= vm (x, t) . (4.10)

As previously established in section 2.2.2.1, the total transmembrane current, made

up of a capacitive current, different ionic currents, and a possible applied current is

balanced by the diffusive current (Kirchhoff’s first law). Consider that:

i. Im and I0
m are the total transmembrane currents per unit deformed volume and

per unit undeformed volume, respectively;

ii. Idif and I0
dif are the diffusive currents per unit deformed volume and per unit

undeformed volume, respectively.

In the current configuration, Ω, Kirchhoff’s first law can then be written as

Im = Idiff (4.11)

In the present work, cellular mechanisms are assumed to be not altered by deformations

excepted SACs which are induced by stretching. As a result, the total transmembrane

current, Im dV , for a given infinitesimal material volume element of cardiac tissue,

dV ∈ Ω, is identical to the total transmembrane current, I0
m dV0, for the corresponding

volume element, dV0 ∈ Ω0:

Im dV = I0
m dV0 (4.12)

= J−1 I0
m dV , (4.13)

where J is the volume ratio [Eq. (3.70)] that maps dV0 in Ω0 onto dV in Ω. Therefore,
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from Eq. (4.13), Im and I0
m are related by

Im = J−1 I0
m . (4.14)

Thus, substituting Eq. (4.14) into Eq. (4.11), the following relation is obtained:

J−1 I0
m = Idif . (4.15)

Assuming that σ is the conductivity of the cardiac tissue per unit deformed length

and is homogeneous, isotropic, and stretch-independent, the diffusive current per unit

deformed volume is written, in terms of the spatial description, as

Idif = σ div grad vm (4.16)

=
σ√
g

∂

∂xm

(
√
g gmn

∂vm
∂xn

)
, (4.17)

where g = det g. In terms of the material description, this diffusive current is written

in the form

Idif =
σ√
C

∂

∂XM

(√
C CMN

∂Vm
∂XN

)
(4.18)

= σ CMN
(

∂2Vm
∂XM ∂XN

− ΓLMN
∂Vm
∂XL

)
, (4.19)

where C = det C = J2 [Eq. (3.91)] and ΓLMN are the Christoffel symbols of the second

kind (section 3.1.5). In Cartesian coordinates, all the Christoffel symbols are equal to

zero and Eq. (4.19) becomes

Idif = σ CMN
∂2Vm

∂XM ∂XN
. (4.20)

Substituting Eq. (4.18) into Eq. (4.15), the deformable monodomain equation is ob-

tained in the reference configuration, Ω0. This is written as

I0
m = σ

∂

∂XM

(√
C CMN

∂Vm
∂XN

)
, (4.21)
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where I0
m is given by

I0
m = χ0

(
C0
m

∂Vm
∂t

+ I0
ion + I0

sac + I0
app

)
, (4.22)

where χ0 is the undeformed surface to undeformed volume ratio, C0
m is the capacitance

per unit undeformed surface area, I0
ion is the total ionic current per unit undeformed

surface area, I0
sac represents the SACs per unit undeformed surface area4, and I0

app is a

possible applied current per unit undeformed surface area. The modeling of these SACs

is described in section 4.2.2.2. Substituting Eq. (4.22) into Eq. (4.21), the deformable

monodomain equation is eventually written as

∂Vm
∂t

= D0 ∂

∂XM

(√
C CMN

∂Vm
∂XN

)
− I0

ion

C0
m

− I0
sac

C0
m

− I0
app

C0
m

, (4.23)

where D0 = σ (χ0 C0
m)−1 is a diffusion coefficient often taken equal to 1 cm2 s−1 [94].

In addition, typical values for χ0 and C0
m are 2000 cm−1 and 1µF cm−2, respectively.

A typical value of σ is 2× 10−3 S cm−1 [96].

4.2.2.1 Geometric contribution to the MEF

The deformable monodomain equation naturally accounts for the geometric contribu-

tion to the MEF due to the first term on the RHS of Eq. (4.23). This term includes the

information about cardiac tissue deformations via the right Cauchy–Green deformation

tensor, C.

4.2.2.2 SACs modeling

The first attempt to simulate the effect of SACs on the AP was realized in [77] and

then used in [76, 81, 97]. The author of [77] proposed to model SACs by

I0
sac = γ ρ0 Vm − Esac

1 +K e−α0 (L−L0)
, (4.24)

where Vm is the membrane potential, Esac is the SAC reversal potential, L is the

length of sarcomere, L0 is the reference length, α0 is a parameter (per unit undeformed

4Note that these SACs only occur if the cardiac tissue is deformed. However, these SACs can be
described either in terms of the current configuration, Ω, or the reference configuration, Ω0.
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length) controlling stretch sensitivity, K is an equilibrium constant (dimensionless)

controlling the amount of current at L0, γ is the single channel conductance (pS), and

ρ0 is the channel density (per unit undeformed surface area). As shown in Eq. (4.24),

the sarcomere length was used as a measure of the strain. Note that Eq. (4.24) can be

reformulated in terms of the fiber stretch ratio, λ11, defined as the ratio of the current

length of the sarcomere to the reference length:

λ11 =
L

L0

. (4.25)

As a result, substituting Eq. (4.25) into Eq. (4.24), the following relation is obtained:

I0
sac = γ ρ0 Vm − Esac

1 +K e−α0 L0 (λ11−1)
. (4.26)

In this way, a subcellular mechanism (change in the length of sarcomere) can be taken

into account at the tissue level. Finally, Eq. (4.26) can be written as

I0
sac = G0

sac

Vm − Esac

1 +K e−α0 L0 (λ11−1)
, (4.27)

where G0
sac = γ ρ0 is the SAC conductance per unit undeformed surface area. As

suggested in [98], SACs may also be modeled by the following relation:

I0
sac = G0

sac (Vm − Esac)
(√

C11 − 1
)

Θ
(√

C11 − 1
)

, (4.28)

where C11 is related to λ11 by

C11 = λ2
11. (4.29)

Actually, Eq. (4.28) can be derived from Eq. (4.27) by making some assumptions and

approximations. First, assume that K = 1 [76, 99] and there are only SACs when

cardiac tissue is stretched [98, 100], namely λ11 > 1, Eq. (4.27) may be written as

I0
sac = G0

sac

Vm − Esac

1 + e−α0 L0 (λ11−1)
Θ (λ11 − 1) . (4.30)
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Given that L0 and α0 are positive, the exponential function has always a value ranging

in ]0, 1[. The Taylor expansion of
(
1 + e−α

0 L0 (λ11−1)
)−1

around λ11 = 1 is given by

(
1 + e−α

0 L0 (λ11−1)
)−1

= 1− α0 L0 (λ11 − 1) +
1
2

(
α0
)2
L2

0 (λ11 − 1)2 (4.31)

− O
[1
6

(
α0
)3
L3

0 (λ11 − 1)3
]

.

Assuming that α0 = 1/L0 and neglecting the terms of higher order than the first in

(λ11 − 1), Eq. (4.30) can be approximated by

I0
sac = G0

sac (Vm − Esac) (λ11 − 1) Θ (λ11 − 1) . (4.32)

Note that the smaller the deformations, the better the approximation provided by

Eq. (4.32). This formulation is valid for a mechanical model that accounts for the

(real) anisotropic response of the cardiac tissue. Substituting Eq. (4.29) into Eq. (4.32),

Eq. (4.28) is obtained.

In the present study, the material is considered isotropic for the reasons mentioned in

chapter 3. As a result, Eq. (4.32) must be slightly modified to mimic SACs assuming

an isotropic mechanical behavior. A measure of the stretching in such a case can be

taken as the volume ratio J . Therefore, SACs are described in terms of J as [98, 100]

I0
sac = G0

sac (Vm − Esac) (J − 1) Θ (J − 1) . (4.33)

4.3 Thermo-electric coupling in cardiomyocytes

As already mentioned in the introduction of this work, therapeutic hypothermia (TH) is

the most efficient treatment for reducing brain damage during post-resuscitation from a

cardiac arrest and has a protective effect on the myocardium as well. In this context, it

is interesting to examine how the temperature modulates the electromechanical behav-

ior of cardiac tissue in a qualitative way. For this purpose, two temperature-dependent

functions mimicking the thermo-electric coupling are introduced in the electromechan-

ical model.

First, the gating kinetics of ion channels is assumed to be temperature-dependent
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via temperature-dependent rates for the conformational transitions of the subunits

constituting the ion channels. This exponential dependence is taken into account by

multiplying the RHS of Eq. (2.36) in the FH model, Eq. (2.44) in the RM model, or

Eq. (2.50) in the AlP model (section 2.1.3) by the following nonlinear temperature-

dependent function [101, 102]:

ϕ (T ) = Q
T−T0

10

10 , (4.34)

where T is the absolute temperature, T0 is a reference temperature, and Q10 represents

the well-known 10-degree temperature coefficient that measures the change of rates

due to a temperature increase of ten degrees5 [25]. Due to the nature of Eq. (4.9),

which describes the dynamics of the active tension development, this active tension

development is also assumed to be modulated by a temperature change in a similar

way as the gating kinetics of ion channels. Therefore, the RHS of Eq. (4.9) is also

multiplied by ϕ (T ).

The second thermo-electric coupling is provided by a linear temperature dependence of

ionic conductances. This mechanism is modeled by multiplying the term mimicking the

total ionic current on the RHS of the monodomain equation by the linear temperature-

dependent function [101, 102]

η (T ) = 1 +B (T − T0) , (4.35)

where B is a constant parameter that describes the rate of change of conductance with

temperature. As in [101, 102], Q10 = 3 and B = 0.008 oC−1.

4.4 Summary of the thermo-electro-mechanical model

This section summarizes the complete set of equations used to describe the strong (bidi-

rectional) electromechanical coupling and the weak (unidirectional) thermo-electric

coupling.

As suggested in [98], the model that describes electrophysiological processes is chosen

5Actually, this coefficient can be linked to the Arrhenius activation energy which allows a more
physical description of temperature effects on rates.
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as a ‘combination’ of the RM and AlP models. In terms of the dimensionless membrane

potential6, labeled V̄ , this model is given by

dV̄
dt

= κv V̄
(
1− V̄

) (
V̄ − a

)
− V̄ v

︸ ︷︷ ︸

− I0
ion

Va C0
m

− iapp︸︷︷︸
I0

app

Va C0
m

, (4.36)

dv
dt

= ε
(
V̄
) (

κv V̄ − v
)

, (4.37)

where ε
(
V̄
)

= ε0 if V̄ ≥ a and ε
(
V̄
)

= ε1, with ε1 > ε0, if V̄ < a. Parameter κv

is similar to parameter k in the AlP model [Eqs (2.49)-(2.51)]. The active tension

development, initiated by the electrical excitation of cardiomyocytes, is provided by

the single ODE approach [Eq. (4.9)].

From a mechanical point of view, the pure elastic (passive) behavior of the cardiac

tissue is described by using a compressible Mooney–Rivlin model (thus, a hyperelas-

tic isotropic material), leading to a PK2 stress tensor given by Eq. (3.212) in terms

of components. The active behavior of the tissue is taken into account by linearly

superimposing additional stresses, resulting from the active tension generated in car-

diomyocytes, to the passive stresses induced by pure elastic deformations [Eq. (3.213)].

In terms of components, the active contribution to the PK2 stress tensor is given by

Eq. (3.215). Obviously, the Cauchy’s first equation of motion must be satisfied at any

time. Assuming quasi-static conditions, this equation can be written as Eq. (3.216).

SACs, namely the physiological contribution to the MEF, generated by stretching of

cardiac tissue are described by Eq. (4.33). Deformations also induce a geometric contri-

bution to this MEF. These two effects are taken into account by using the deformable

monodomain equation [Eq. (4.23)] to describe the spatio-temporal behavior of the

membrane potential.

Finally, the thermo-electric coupling is introduced as mentioned in section 4.3. As a

result, the complete model is given, in terms of the dimensionless membrane potential,

6The dimensionless membrane potential is given by V̄ = (Vm − Vr) /Va, where Vr and Va have
already been introduced in section 2.1.3.
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V̄ , by the following equations:

∂V̄

∂t
= D0 ∂

∂XM

(√
C CMN

∂V̄

∂XN

)
− f

(
V̄ , v, isac

)
η (T )−iapp , (4.38)

f
(
V̄ , v, isac

)
= κv V̄

(
V̄ − 1

) (
V̄ − a

)
+ V̄ v + isac , (4.39)

η (T ) = 1 +B (T − T0) , (4.40)
dv
dt

= ε
(
V̄
) (

κv V̄ − v
)
ϕ (T ) , (4.41)

ε
(
V̄
)

= ε0 Θ
(
V̄ − a

)
+ ε1 Θ

(
a− V̄

)
, (4.42)

ϕ (T ) = Q
T−T0

10

10 , (4.43)
dσactive

dt
= ε

(
V̄
) (

κσactive
V̄ − σactive

)
ϕ (T ) , (4.44)

0 =
(
FmN S

MN
)∣∣∣
M

, (4.45)

SMN = SMNelastic + SMNactive , (4.46)

SMNelastic = 2 c1 G
MN + 2 c2

(
tr CGMN −GMOGNP COP

)

− J dCMN , (4.47)

SMNactive = J σactive C
MN , (4.48)

isac = gsac

(
V̄ − esac

)
(J − 1) Θ (J − 1) , (4.49)

gsac =
G0

sac

C0
m

, (4.50)

esac =
1
Va

(Esac − Vr) . (4.51)

As suggested in [98, 103], esac = 1.



CHAPTER 5

Methods, results, and discussion

Arrhythmias in ventricles and atria have been shown to be notably caused by me-

chanical changes inducing several electrophysiological alterations via mechano-electric

feedback (MEF). In this context, the characterization of the MEF and the study of

the underlying mechanisms seem to be very important. For this purpose, the time-

dependent thermo-electro-mechanical model (time-dependent TEM model), which em-

beds the complexity and richness of the key mechanisms involved in the TEM activity

of the cardiac muscle tissue, has been developed in chapter 4.

This model is particularly complex because it takes into account different coupled

physical phenomena. Electrical and mechanical phenomena interplay in a bidirectional

way, via the excitation-contraction coupling (ECC) and the MEF, while electrical and

thermal phenomena are coupled in an unidirectional fashion. In this context, the

role played by the MEF on the TEM behavior of the cardiac muscle tissue and the

underlying fundamental mechanisms are not easy to characterize.

Due to the intrinsic complexity of this model, additional difficulties, arising from com-
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plex geometries or three-dimensional spatial configurations, must be avoided. In this

spirit, the first part of this chapter presents the development of a one-dimensional

time-dependent TEM model. The different assumptions regarding this one-dimensional

time-dependent TEM model are introduced in sections 5.1.1 and 5.1.2. This model may

correspond to different geometric situations such as a one-dimensional cardiac fiber,

or a two- or three-dimensional patch of cardiac tissue limited to a one-dimensional de-

formation by using appropriate experimental conditions. Although these experimental

angles are out of the scope of this work, it is practically conceivable to perform such

experimental studies leading to a one-dimensional deformation for a patch of cardiac

tissue.

A modified global coupling minimal model (modified GC minimal model) is then derived

by adding new restrictions to the one-dimensional time-dependent TEM model. Key

numerical elements needed to understand the methods used for solving the model

equations are introduced. The spatial discretization is described as well as numerical

schemes to perform time integrations. A comparison between the one-dimensional time-

dependent TEM model and the modified GC minimal model is made before inspecting

the differences between the Euler-forward scheme and the Cash–Karp Runge–Kutta

method for temporal integrations by running simulations with the modified GC minimal

model.

A general parametric study of the modified GC minimal model enabling to identify

the role played by the model parameters is conducted. A more quantitative exami-

nation regarding the key parameters of the mechano-electric feedback (MEF) was also

performed. An autonomous electrical activity (AEA) induced by cardiac tissue defor-

mations via the MEF has been highlighted for particular conditions. This AEA has

been characterized in detail. The effects of a temperature change on this AEA has also

been studied.

The second part of this chapter consists in a two-dimensional study of the AEA induced

by the MEF. This qualitative analysis must be viewed as a first extension of the one-

dimensional time-dependent TEM study described in the first part of this chapter.

This two-dimensional study is conducted in the spirit of paving the way for further

more extensive and quantitative studies. For this purpose, the finite-element method

(FEM) has been adopted.
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5.1 Part 1: one-dimensional time-dependent TEM model

5.1.1 Mechanical assumptions

Consider cardiac tissue subject to deformation only in one dimension. Two different

geometric cases (Fig. 5.1) may satisfy this assumption and are discussed below:

i. a patch of cardiac tissue subject to a one-dimensional deformation (displayed on

the top of Fig. 5.1)

ii. an idealized one-dimensional cardiac fiber of length L (displayed on the bottom

of Fig. 5.1)

5.1.1.1 Patch of cardiac tissue subject to a one-dimensional deformation

In this geometric situation (Fig. 5.1, top panel), the patch of cardiac tissue stands in

a three-dimensional space.

Fig. 5.1 – Two different cases leading to a one-dimensional deformation.

To restrict the deformation of this patch of cardiac tissue to one dimension (X-direction

in Fig. 5.1, top panel) and thus prevent deformation in the other two dimensions (Y -

and Z-directions) the borders of the three-dimensional patch parallel to the X−Y and

X − Z planes must be held fixed in the Z-direction and Y -direction, respectively, so
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that no friction is generated at these borders.

As previously introduced in section 3.5, when the structural features of the cardiac

tissue are taken into account, the mechanical behavior of this cardiac tissue is mathe-

matically described using a microstructural orthogonal curvilinear material coordinate

system (colored blue in Fig. 5.1, top panel), ΥM , and a microstructural curvilinear

spatial coordinate system, υm. However, in the present study, the cardiac tissue is as-

sumed to be homogeneous and isotropic. Thus, a classical Cartesian coordinate system

may be used.

Due to the configuration of the patch of cardiac tissue, the gradient deformation tensor,

F, and the right Cauchy–Green deformation tensor, C, can be described, in terms of

components, by the following two matrices:

[F ] =




F 1
1 (X) 0 0

0 1 0

0 0 1




(5.1)

and

[C] =




[F 1
1 (X)]2 0 0

0 1 0

0 0 1




. (5.2)

In this case, the volume ratio is equal to F 1
1 = ∂x/∂X and the trace of C is equal

to
(
[F 1

1]
2 + 2

)
. Given that there is only one relevant direction in each configuration

(X-direction and x-direction), superscripts and subscripts of components of vector and

tensor may be omitted. As a result, F 1
1 may simply be rewritten as F .

5.1.1.2 One-dimensional cardiac fiber

If the fiber stands in a ‘hypothetical’ one-dimensional space (Fig. 5.1, bottom panel),

the gradient deformation tensor, F, and the right Cauchy–Green deformation tensor,

C, are reduced to single scalar quantities:

F =
∂x

∂X
(5.3)
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and

C = F 2 . (5.4)

In Eq. (5.3), x and X are the coordinates along the cardiac fiber with respect to the

current configuration Ω and the reference configuration Ω0. In such a case, the volume

ratio, J , previously defined by Eq. (3.71), is identical to F , and the trace and the

determinant of the right Cauchy–Green deformation tensor are reduced to F 2.

5.1.1.3 Boundary conditions

In the case of the patch of cardiac tissue subject to a one-dimensional deformation

(top of Fig. 5.1), a no-displacement condition is applied to the gray-colored boundaries

referred to as ∂Ω1 and ∂Ω2. The other boundaries of the patch, parallel to the X − Y
and X − Z planes (non-colored on the top of Fig. 5.1), are held fixed without friction

as previously mentioned. In the case of the one-dimensional cardiac fiber (bottom of

Fig. 5.1), the same condition is applied to the left and right boundaries (also referred to

as ∂Ω1 and ∂Ω2). Mathematically, the no-displacement condition is written, in terms

of the displacement field, as follows:

u = 0 on ∂Ω1 ∪ ∂Ω2 (5.5)

for any time t.

5.1.1.4 Initial conditions

The patch and the fiber of cardiac tissue are initially (t = t0) assumed to be unde-

formed:

F (X, t)|t=t0 = 1 (5.6)

and

J (X, t)|t=t0 = 1 (5.7)

for any X ∈ [0, L].
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5.1.2 Electrical assumptions

5.1.2.1 Boundary conditions

The patch and the fiber of cardiac tissue are assumed to be surrounded by an electrical

insulator. As a result, a no-flux boundary condition (BC) for the membrane potential

is applied to all boundaries:

N̂ · (GradVm) = 0 on ∂Ω , (5.8)

where N̂ is the outward unit normal to the considered boundary and ∂Ω is the boundary

of the solving domain, Ω.

5.1.2.2 Initial conditions

From one simulation to another, initial conditions (ICs) for electrical variables may be

changed. For each simulation, the particular ICs used will be specified later on.

5.1.3 The modified global coupling minimal model

The modified global coupling minimal model (modified GC minimal model), which has

been developed in this work, consists in a modification of the global coupling minimal

model (GC minimal model) presented in [94]. The GC minimal model is a reduction

of a more complicated model, similar to the time-dependent thermo-electro-mechanical

model (time-dependent TEM model) (given by Eqs (4.38)-(4.49) without the thermal

component), arising from specific BCs and the assumption of small deformations. The

starting point of the modified GC minimal model is the time-dependent TEM model.

Two differences between the modified GC minimal model and the GC minimal model

may be underlined:

i. The modified GC minimal model includes the thermo-electric coupling (TEC) as

opposed to the GC minimal model.

ii. The linear superposition of the active part, derived from the active tension devel-

oped in cardiac cells, to the passive part of the PK2 stress tensor is not performed

in a similar way. The difference regarding this superposition will be detailed in
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section 5.1.4.

5.1.3.1 Assumptions and modified GC minimal model equations

To establish the modified GC minimal model, cardiac tissue deformations must be

assumed small and only occurring in one direction. Two different situations enable to

satisfy these hypotheses: a one-dimensional cardiac fiber or a patch of cardiac tissue

subject to a one-dimensional deformation as explained in section 5.1.1. The assumption

of small deformations implies

F (X) ≈ 1 . (5.9)

Using the relation

F =
∂U

∂X
+ 1 , (5.10)

Eq. (5.9) can also be rewritten as

∣∣∣∣∣
∂U

∂X

∣∣∣∣∣ << 1 . (5.11)

In addition, due to Eq. (3.212) corresponding to the assumptions made in this section,

the only relevant component, S11
elastic, or more simply Selastic, of the passive PK2 stress

tensor, Selastic, is

Selastic = 2 c1 + 2 c2

[
F 2 + (Dim− 1)

]
− 2 c2 F

2 − d

F
(5.12)

= 2 c1 + 2 c2 (Dim− 1)− d

F
, (5.13)

where Dim is the dimension of the space where the problem is examined. As a result, in

the case of the one-dimensional cardiac fiber, Dim−1 = 0 and for the three-dimensional

patch of cardiac tissue subject to a one-dimensional deformation, Dim− 1 = 2.

Assuming that the reference configuration is initially stress-free, and taking into ac-

count the ICs relative to the mechanics [Eqs (5.6) and (5.7)], d is given by

d = 2 [c1 + c2 (Dim− 1)] . (5.14)
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Substituting Eq. (5.14) into Eq. (5.13), Selastic may be written as

Selastic = d
(

1− 1
F

)
. (5.15)

Taking into account the active tension, σactive, leading to the active part of the PK2

stress tensor, Sactive, described in terms of components by Eq. (4.48), the full relevant

component, S11, or more simply1 S, of the PK2 stress tensor, S, is then given by

S = d
(

1− 1
F

)
+
σactive

F
. (5.16)

From Eq. (4.45), which can be written here as

∂(F S)
∂X

= 0 , (5.17)

F S is a constant, A. Therefore, Eq. (5.16) may be written as

d (F − 1) + σactive = A . (5.18)

Thus, F is given by

F = 1 +
1
d

(A− σactive) . (5.19)

As mentioned previously, the fiber of length L is held fixed at its two extremities:

∫ L

0
F (X) dX = L . (5.20)

As a result, substituting Eq. (5.19) into Eq. (5.20), the following relation is obtained:

∫ L

0

[
1 +

1
d

(A− σactive)
]

dX = L . (5.21)

Performing the integration and solving the resulting algebraic equation gives

A = σactive =
1
L

∫ L

0
σactive dX . (5.22)

1Superscripts may be omitted here for similar reasons as those explained in section 5.1.1.1.
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Taking into account Eq. (5.19), F becomes

F = 1 +
1
d

(σactive − σactive) . (5.23)

Due to Eq. (5.23), SACs modeled by Eq. (4.49) can be written, in terms of σactive, as

ĩsac =
gsac

d

(
V̄ − 1

)
(σactive − σactive) Θ (σactive − σactive) . (5.24)

From Eq. (4.41) and Eq. (4.44), it can be seen that v/κv and σactive/κσactive
obey the

same ODE. Assuming similar ICs for v and σactive, the following algebraic relation

between σactive and v is then found:

σactive =
κσactive

κv
v . (5.25)

Thus, Eq. (5.24) can be rewritten as

ĩsac = g̃sac

(
V̄ − 1

)
(v̄ − v) Θ (v̄ − v) , (5.26)

with

g̃sac =
gsac

d

κσactive

κv
(5.27)

and

v̄ =
1
L

∫ L

0
v dX . (5.28)

In the one-dimensional problem, Eq. (4.38) can be written in the following way:

∂V̄

∂t
= D

∂

∂X

(
1
F

∂V̄

∂X

)
− f

(
V̄ , v, ĩsac

)
η (T )−iapp . (5.29)

Note that the first term on the right-hand side (RHS) of Eq. (5.29) (the diffusive term)

can be expanded as follows:

∂

∂X

(
1
F

∂V̄

∂X

)
=

1
F

(
∂2V̄

∂X2
− 1
F

∂F

∂X

∂V̄

∂X

)
. (5.30)

Due to Eq. (5.9), Eq. (5.29) can be written at the lowest order with respect to the
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difference between F and 1 as follows:

∂V̄

∂t
= D

∂2V̄

∂X2
− f

(
V̄ , v, ĩsac

)
η (T )−iapp . (5.31)

In summary, the simplified one-dimensional time-dependent TEM model, also called

the modified GC minimal model, is given by the the following set of equations:

∂V̄

∂t
= D

∂2V̄

∂X2
− f

(
V̄ , v, ĩsac

)
η (T )−iapp , (5.32)

f
(
V̄ , v, ĩsac

)
= κv V̄

(
V̄ − 1

) (
V̄ − a

)
+ V̄ v + ĩsac , (5.33)

ĩsac = g̃sac

(
V̄ − 1

)
(v̄ − v) Θ (v̄ − v) , (5.34)

η (T ) = 1 +B (T − T0) , (5.35)
dv
dt

= ε
(
V̄
) (

κv V̄ − v
)
ϕ (T ) , (5.36)

ε
(
V̄
)

= ε0 Θ
(
V̄ − a

)
+ ε1 Θ

(
a− V̄

)
, (5.37)

ϕ (T ) = Q
T−T0

10

10 . (5.38)

Instead of two PDEs and two ODEs to solve in the complete model [Eqs (4.38)-(4.51)],

the modified GC minimal model requires the solution of only one PDE and one ODE.

From now on, it is important to keep in mind that all information regarding cardiac

tissue deformation is embedded in (v̄ − v) in Eq. (5.34) due to the relation

v̄ − v = d
κv

κσactive

(F − 1) . (5.39)

This Eq. (5.39) enables to compute F for the modified GC minimal model from v and

v̄, a posteriori. In addition, note that the assumption of small deformations, F ≈ 1,

made to establish this modified GC minimal model, implies

1
d

κσactive

κv
(v̄ − v) ≪ 1 . (5.40)

5.1.4 Digression regarding differences between the GC minimal

model and the modified GC minimal model

As already mentioned in section 5.1.3, two differences exist between the GC minimal

model and the modified GC minimal model. The first difference between these two
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models is the TEC, introduced in section 4.3. The second difference is more delicate

to introduce and is related to the way that the active part is linearly superimposed to

the passive part of the PK2 stress tensor.

5.1.4.1 Formulation of the active PK2 stress tensor used in this work

The active tension arising from the initial depolarization of the cell membrane, must

be considered as a physical quantity intrinsically defined on the current configuration,

namely the configuration corresponding to the ‘true’ world. As a result, the scalar

quantity σactive controlled by the ODE given by Eq. (4.44) may be viewed quite nat-

urally as a particular component of a Cauchy stress tensor (the ‘true’ stress tensor).

Assuming that the cardiac tissue behaves like an isotropic material from a mechanical

point of view, the active part, σactive, of the Chauchy stress tensor can be written as

σactive = σactive g , (5.41)

where g is the metric tensor with respect to the current configuration. Therefore,

using the relation given by Eq. (3.142), the corresponding active part, Sactive, of the

PK2 stress tensor is written, in terms of σactive, as follows:

Sactive = J σactive C−1 . (5.42)

This is the formulation used in Eq. (4.48).

5.1.4.2 Formulation of the active PK2 stress tensor used in the GC minimal

model

In [94], the active part of the PK2 stress tensor is directly written as follows:

Sactive = σactive C−1 (5.43)

without the volume ratio J as opposed to Eq. (5.42). This is not clearly explained but it

seems that the active tension, controlled by the ODE given by Eq. (4.44), is considered

as a quantity defined on the reference configuration. In such a case, from the point of
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view of this work, the active part of the PK2 stress tensor should be written as

Sactive = σactive G , (5.44)

where G is the metric tensor with respect to the reference configuration, as previously

introduced. Therefore, the formulation used in [94] seems to be ambiguous. Actually,

the formulation used in [94] is more like the active tension is considered as a quantity

defined in a similar way as a Kirchhoff stress tensor, κ, related to the Cauchy stress

tensor, σ, by [50]

κ = Jσ. (5.45)

5.1.5 Numerical methods

This section introduces key elements of the numerical methods developed to solve both

the one-dimensional time-dependent TEM model and the modified GC minimal model:

i. spatial discretization

ii. specific quadrature rule used in this study to numerically evaluate integrals

iii. discretization of the Laplacian operator

iv. two different schemes for the numerical temporal integrations

Note that the reader that is acquainted with these methods can safely skip this sec-

tion 5.1.5 and directly proceed to section 5.1.6.

5.1.5.1 Spatial discretization and numerical evaluation of the spatial mean value

of the gate variable

Spatial discretization

This section focuses on spatial discretization. Time is assumed to be continuous. The

spatial domain of length L (size of the cardiac fiber) is divided into M regular spatial

steps, ∆X. As a result, X ∈ [0, L] is discretized as follows:

Xm = m∆X , (5.46)
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with m = 0, 1, . . . , M − 1, M . Thus, XM = L = M ∆X.

Simpson’s rule

The modified GC minimal model involves the spatial mean of the gate variable, v, in

the expression of SACs (Eq. 5.34). Mathematically, the mean value is given by

v̄ (t) =
1
L

∫ L

0
v (X, t) dX . (5.47)

In terms of the discrete material points, Eq. (5.47) can be rewritten as

v̄ (t) =
1
L

∫ XM

X0

v (X, t) dX . (5.48)

Simpson’s rule enables numerical evaluation of the integral on the RHS of Eq. (5.48)

as follows:

∫ XM

X0

v (X, t) dX = ∆X
[1
3
v0 (t) +

4
3
v1 (t) +

2
3
v2 (t) +

4
3
v3 (t) +

· · ·+ 2
3
vM−2 (t) +

4
3
vM−1 (t) +

1
3
vM (t)

]

+ O
(
∆X4

)
, (5.49)

where M is an even number.

5.1.5.2 Discretization of the Laplacian operator and numerical temporal inte-

gration

Discretization of the Laplacian operator

The Laplacian operator applied to V̄ (second-order spatial derivative of V̄ ) is dis-

cretized, at a given discrete material point, Xm, using a second-order central difference

scheme:

(̃
∂2V̄

∂X2

)

m

=
V̄m+1 + V̄m−1 − 2 V̄m

∆X2
. (5.50)
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The Taylor series expansions of V̄m+1 = V̄ (Xm+1) and V̄m−1 = V̄ (Xm−1) around the

point Xm, are given by

V̄m+1 = V̄m + ∆X

(
∂V̄

∂X

)

m

+
∆X2

2

(
∂2V̄

∂X2

)

m

+
∆X3

6

(
∂3V̄

∂X3

)

m

+O
[

∆X4

24

(
∂4V̄

∂X4

)

m

]
(5.51)

and

V̄m−1 = V̄m −∆X

(
∂V̄

∂X

)

m

+
∆X2

2

(
∂2V̄

∂X2

)

m

− ∆X3

6

(
∂3V̄

∂X3

)

m

+O
[

∆X4

24

(
∂4V̄

∂X4

)

m

]
, (5.52)

respectively. Substituting Eqs (5.51) and (5.52) into Eq. (5.50) enables to emphasize

the truncation error resulting from the approximation [Eq. (5.50)] used to numerically

compute the Laplacian operator:

(̃
∂2V̄

∂X2

)

m

=

(
∂2V̄

∂X2

)

m

+O
[

∆X2

12

(
∂4V̄

∂X4

)

m

]

︸ ︷︷ ︸
truncation error

. (5.53)

Euler-forward scheme

This section focuses on time discretization. Therefore, space is supposed to be contin-

uous. Assume that the time of a given simulation, tsimu, is divided into N regular time

steps, ∆t. In this case, current time t ∈ [0, tsimu] is discretized as follows:

tn = n∆t , (5.54)

with n = 0, 1, . . . , N − 1, N . Thus, tN = tsimu = N ∆t. As a first approach to deal

with basic implementation issues of the different models, time derivatives of dependent

variables have been discretized using a classical first-order Euler-forward scheme. For

instance, the time derivative of V̄ , at a given discrete temporal point, tn, is discretized

as follows:

(̃
∂V̄

∂t

)n

=
V̄ n+1 − V̄ n

∆t
. (5.55)
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The Taylor series expansion of V̄ n+1 = V̄ (tn+1) around the point tn, is given by

V̄ n+1 = V̄ n + ∆t

(
∂V̄

∂t

)n
+O

[
∆t2

2

(
∂2V̄

∂t2

)n]
. (5.56)

Substituting Eq. (5.56) into Eq. (5.55) enables to highlight the truncation error due to

the approximation [Eq. (5.55)] used to numerically compute the time derivative:

(̃
∂V̄

∂t

)n

=

(
∂V̄

∂t

)n
+O

[
∆t
2

(
∂2V̄

∂t2

)n]

︸ ︷︷ ︸
truncation error

. (5.57)

Spatio-temporal numerical scheme

Using Eqs (5.50) and (5.55), the resulting finite difference approximation to Eq. (5.31)

is given by

V̄ n+1
m = V̄ nm +

D∆t
∆X2

(
V̄ nm+1 + V̄ nm−1 − 2 V̄ nm

)
−∆t

[
f
(
V̄ nm, v

n
m, v̄

n
)
η (T )+ (iapp)nm

]

+ O
[

∆t
2

(
∂2V̄

∂t2

)n

m

,
∆X2

12

(
∂4V̄

∂X4

)n

m

]
, (5.58)

where

f
(
V̄ nm, v

n
m, v̄

n
)

= κv V̄
n
m

(
V̄ nm − 1

) (
V̄ nm − a

)
+V̄ nm v

n
m

+ g̃sac

(
V̄ nm − 1

)
(v̄n − vnm) Θ (v̄n − vnm) . (5.59)

Applying the Euler-forward scheme to numerically compute the time derivative of v

at the discrete spatio-temporal point (Xm, tn), the finite difference approximation to

Eq. (5.36) is written as

vn+1
m = vnm + ∆t ε

(
V̄ nm
) (

κv V̄
n
m − vnm

)
ϕ (T ) +O

[
∆t
2

(
∂2v

∂t2

)n

m

]
. (5.60)

Stability condition of the spatio-temporal numerical scheme

When an explicit Euler-forward scheme is used to perform the temporal integration,

∆t cannot be chosen arbitrarily. The time step must satisfy a condition depending

on ∆X. This condition can be determined by performing a stability analysis of the

numerical scheme. For this purpose, the Von Neumann stability analysis is used. This
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method is based on Fourier modes. Rigorously, this analysis applies only to problems

without BCs and with constant coefficients but in practice, it is also used when these

restrictions are not satisfied. Regarding this heuristic approach, BCs are simply ignored

and coefficients are frozen in the linear difference scheme [104]. In the case where the

difference scheme is nonlinear, it is necessary to linearize it before applying the Von

Neumann stability analysis. The method consists in substituting V̄ nm with a single

discrete Fourier mode:

ξn ei km∆X , (5.61)

where ξn = ξn (k) is called the (complex) amplification factor for the mode correspond-

ing to the wave number k, into Eq. (5.58) after having neglected the last two terms on

the RHS (the nonlinear terms). This yields

ξn+1 ei km∆X = ξn ei km∆X

+
D∆t
∆X2

ξn
[
ei k (m+1) ∆X + ei k (m−1) ∆X − 2 ei km∆X

]
. (5.62)

In addition, dividing Eq. (5.62) by ξn ei km∆X , Eq. (5.62) can be written as

ξ (k,∆t,∆X) = 1 +
D∆t
∆X2

(
ei k∆X + e−i k∆X − 2

)

= 1 + 2
D∆t
∆X2

cos (k∆X)

= 1− 4
D∆t
∆X2

sin2
(1

2
k∆X

)
. (5.63)

The Von Neumann stability condition is given as [104]

|ξ| ≤ 1 +O (∆t) . (5.64)

Instead of Eq. (5.64), the simpler strict Von Neumann condition is often used:

|ξ| ≤ 1 . (5.65)

Therefore, the condition given by Eq. (5.65) is verified if

∆t ≤ 1
2D

∆X2 . (5.66)
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Runge–Kutta methods

As a second approach, without modifying the spatial discretization, temporal integra-

tion has been performed using a more accurate scheme from the explicit Runge–Kutta

methods (RKMs) family. More precisely, the method used in this work is known as the

Cash–Karp Runge–Kutta method (CKRKM) [105]. The method developed by Cash and

Karp is very suitable for initial value problems (IVPs) having rapidly varying solutions.

To introduce this method, assume a general system of ordinary differential equations

(ODEs) given by

d [y]
dt

= f (t, [y (t)]) , (5.67)

where [y (t)] = [y1 (t) , y2 (t) , . . . , ym−1 (t) , ym (t)]T is a column matrix with m un-

knowns, t is the independent variable, and f is an arbitrary function of t and [y] such

that f : R × Rm 7→ Rm. The IC, [y (0)] = [y0], of the system is known. Assume

that t is discretized as in Eq. (5.54). Applying the explicit Euler-forward scheme to

Eq. (5.67), [y]n+1 can be written as

[y]n+1 = [y]n + ∆t f (tn, [y]n) . (5.68)

As already mentioned, this scheme is a first-order scheme. To increase the accuracy

of the temporal integration, one approach is to include extra function evaluations in

the numerical procedure. In the case of explicit RKMs, the derivatives at several

points within a given integration interval [tn, tn+1] are evaluated and used to advance

the integration from tn to tn+1. The general form of a standard explicit RKM to

numerically solve Eq. (5.67) is written as follows:

[y]n+1 = [y]n + ∆t
s∑

j=1

bj kj , (5.69)

ki = f


tn + ci∆t, [y]n + ∆t

i−1∑

j=1

aij kj


 , (5.70)

ci =
i−1∑

j=1

aij , (5.71)

where i = 1, 2, . . . , s− 1, s with s that is the number of intermediate ‘stages’ and kj

are the corresponding slopes. This method gives an approximation of [y] at the discrete

temporal point tn+1 by evaluating s intermediate stages in the interval [tn, tn+1]. To



128 5.1. Part 1: one-dimensional time-dependent TEM model

specify a particular RKM, it is necessary to provide:

i. the number of stages, s

ii. the coefficients ci for i = 2, 3, . . . , s− 1, s

iii. the coefficients aij for 1 ≤ j < i ≤ s
iv. the coefficients bj for j = 1, 2, . . . , s− 1, s

A very convenient way to summarize data relative to a particular RKM is introduced

in [106]: the Butcher tableau, depicted in Tab. 5.1. The CKRKM used in this work is

a fifth-order method from the RKMs subfamily, called embedded RKMs. The Butcher

tableau corresponding to the fifth-order CKRKM is shown in Tab. 5.2.

0 0

c2 a21 0

c3 a31 a32 0
...

...
...

. . . . . .

cs as1 as2 · · · ass−1 0

b1 b2 · · · bs−1 bs

Tab. 5.1 – Typical Butcher tableau.

0 0

1
5

1
5

0

3
10

3
40

9
40

0

3
5

3
10

− 9
10

6
5

0

1 −11
54

5
2

−70
27

35
27

0

7
8

1631
55 296

175
512

575
13 824

44 275
110 592

253
4096

0

37
398

0
250
621

125
594

0
512
1771

Tab. 5.2 – Butcher tableau for the fifth-order CKRKM [105].
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5.1.6 One-dimensional time-dependent TEM model vs modified

GC minimal model

This section aims at underlining differences and similarities between the one-dimension-

al time-dependent TEM model and the modified GC minimal model. In this context,

the naive explicit Euler-forward scheme, with a time step, ∆t, equal to 0.04 ms, is

used to perform the temporal integration. The second-order central difference scheme

is adopted to discretize the Laplacian operator. As suggested in [107], a spatial step,

∆X, of 0.025 cm (250µm) is required to fully mimic spatio-temporal characteristics of

depolarization wave propagation. In this section, ∆X = 0.02 cm.

First, assume that gsac = 0 ms−1, meaning that the MEF is purely due to a geometric

factor (remind that this geometric MEF is not present in the modified GC minimal

model). With this assumption, SACs, which are the physiological contribution to the

MEF, are not taken into account. It is interesting to examine how a depolarization

wave (propagation of an action potential [AP]) behaves in such a case by running two

similar simulations with the two different models. ICs, BCs, and parameter values,

given in Tab. 5.3, are exactly the same for both simulations.

Parameter Value Units
a 0.05 dimensionless
D0 10−3 cm2 ms−1

ε0 3× 10−3 ms−1

ε1 90× 10−3 ms−1

κσactive
1 N cm−2

κv 2 ms−1

gsac 0 or 0.08 ms−1

d 0.8 N cm−2

L 5 cm

Tab. 5.3 – Parameter values for simulations with the one-dimensional
time-dependent TEM model and the modified GC minimal model. Note
that gsac = 0 ms−1 if SACs are not taken into account and gsac = 0.08 ms−1

otherwise.

Initially, an external current, iapp, is applied locally on a small region, which is 4×∆X

wide, in a cardiac fiber of length L = 5 cm and during a small time interval of 5 ms.

This current behaves with respect to the time (expressed in ms) as shown in Fig. 5.2.
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Mathematically, this current is written as follows:

iapp (t) = iapp,max [Θ(t)−Θ(t− 1)] t+ iapp,max [Θ(t− 1)−Θ(t− 5)] , (5.72)

where iapp,max = 0.06 ms−1 and Θ is the Heaviside function.
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Fig. 5.2 – Time-dependent external current, iapp (t), applied to the re-
gion from X = 0.46 cm to X = 0.54 cm.

Figs 5.3a and 5.3b seem to be very similar. However, the propagating AP, shown in

Fig. 5.3a, reaches the boundary of the fiber (X = 5 cm) a bit later than the propagating

AP in Fig. 5.3b.

To better visualize this behavior, the time course of both APs can be observed at some

specific spatial positions. The time courses of the dimensionless membrane potential,

V̄ , shown in Fig. 5.4, emphasize the rough observation already made on time-space

plots (Fig. 5.3). The further from the region of initial excitation the time course of

V̄ is examined, the more significant the difference between the two models becomes.

Red short dashed and solid lines are time-shifted, while black short dashed and solid

lines overlap (Fig 5.4). This difference can be explained by looking at the gradient

deformation, F , or the displacement gradient field, ∂U/∂X, shown in Fig. 5.5. In the

one-dimensional time-dependent TEM model, F is not assumed to be equal to one

in the diffusive term, given by Eq. (5.30), as in the modified GC minimal model. As

a result, it is not surprising that the spatio-temporal behavior of the dimensionless

membrane potential is different from one model to another.
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Fig. 5.3 – Time-space plots of the dimensionless membrane potential,
V̄ , with the one-dimensional time-dependent TEM model (a) and the
modified GC minimal model (b), without taking into account SACs.

The inspection of the time-space plot of the displacement gradient field, shown in

Fig. 5.5, reveals that the wavefront of the AP propagates, from X = 0.5 cm to X =

5 cm, on a stretched region of the fiber (colored red in Fig. 5.5). This stretching

gradually increases when the AP moves toward the boundary, X = 5 cm. As a result,

the effect of the stretching (via F ) on the diffusive term [Eq. (5.30)] gradually increases

when the AP moves toward the boundary X = 5 cm. This is the reason for that the
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time courses are more shifted for X = 4 cm than for X = 2 cm. In the case when the

changes of F are taken into account (one-dimensional time-dependent TEM model),

the AP, initially generated close to X = 0.5 cm, propagates on a larger part of the

fiber to reach the material point X = 4 cm in comparison with the case where F = 1

(modified GC minimal model). Therefore, as shown in Fig. 5.4, the AP simulated by

the one-dimensional time-dependent TEM model reaches X = 4 cm just after the AP

simulated by the modified GC minimal model.
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X = 2 cm with the 1D time-dependent TEM model

X = 2 cm with the modified GC minimal model

X = 4 cm with the 1D time-dependent TEM model

X = 4 cm with the modified GC minimal model

Fig. 5.4 – Time courses of the dimensionless membrane potential, V̄ ,
for two specific locations, X = 2 cm and X = 4 cm, with the two different
models. Parameter values are given in Tab. 5.3 with gsac = 0 ms−1.

As shown in Fig. 5.5, it is interesting to underline that stretching and shortening in the

fiber can reach more than 15 % and 20 %, respectively, with the set of parameter values

given in Tab. 5.3. A priori, theoretically, it seems delicate to simulate large deforma-

tions with the modified GC minimal model, which assumes small deformations. That

is precisely the reason for which results involving large deformations are emphasized

with the one-dimensional time-dependent TEM model in Figs 5.5, 5.6, and 5.7. How-

ever, as shown further in this section, from a pragmatic point of view, the modified GC

minimal model leads to results very similar to these obtained with the one-dimensional

time-dependent TEM model using the parameter values given in Tab. 5.3, although

rather large deformations are generated.
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Fig. 5.5 – Time-space plot of the displacement gradient field, ∂U/∂X =
F − 1, simulating by the one-dimensional time-dependent TEM model.
Stretched and shortened regions are colored red and blue, respectively.

Consider now the case for which gsac is not equal to zero anymore and take gsac =

0.08 ms−1. It means that the MEF is also taken into account via the physiological effect

due to a mechanical deformation in addition to the geometric effect. For gsac 6= 0 ms−1,

SACs occur for stretched regions of the fiber. As a result, these SACs can locally trigger

a new AP at a given material point, which is not in an ERS, if their accumulation

(integration) over time provides a supra-threshold stimulus leading to the onset of an

AP. It is very important to remind that the magnitude of the stimulus required to

exceed the threshold potential depends on the state of the cardiac tissue. When the

tissue is in a resting state, the stimulus required to exceed the threshold potential is

weaker than the one required whether the tissue is in a relative refractory state (RRS)

and stronger than the one required whether the tissue is in a supernormal state (SS).

If the cardiac tissue is in an effective or absolute refractory state (ERS/ARS), no AP

can be initiated, regardless of the strength of the stimulus (section 2.1.1).

As shown in Fig. 5.6a, an autonomous electrical activity (AEA) occurs in the fiber.

Given that all parameter values are exactly the same as those used in the previous

simulation except that gsac = 0.08 ms−1 as opposed to gsac = 0 ms−1 (Tab. 5.3), it can

be stated that the physiological MEF is essential to generate an AEA in the present

case. The propagation of the first AP toward the boundary X = 5 cm, induced by the

initial external current [Eq. (5.72)] applied close to X = 0.5 cm, generates an active
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tension (Fig. 5.6b) where the fiber undergoes an AP, with a slight time delay with

respect to the beginning of the local depolarization. As a result, these parts of the

fiber, subject to an active tension, are shortened (Fig. 5.7). At the same time, these

local shortenings gradually stretch the remaining part of the fiber that has not yet been

reached by the propagating AP (Fig. 5.7).
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Fig. 5.6 – Time-space plots of the dimensionless membrane potential,
V̄ (a), and the active tension in N cm−2, σactive (b), simulating by the
one-dimensional time-dependent TEM model with gsac = 0.08 ms−1.

.
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Fig. 5.7 – Time-space plot of the gradient displacement field, ∂U/∂X =
F − 1, simulating by the one-dimensional time-dependent TEM model
with gsac = 0.08 ms−1. Stretched and shortened regions are colored red
and blue, respectively.

As shown in Fig. 5.6a, at a specific material point, the AP can be triggered by two

different mechanisms:

i. As long as the AP propagates (part of the fiber characterized by a finite conduc-

tion velocity [CV]), the onset of the local AP occurs in a progressive way. This

process is mainly due to diffusive currents. In this part of the fiber, the stretching

generates SACs but these are not large enough to trigger an AP by themselves.

ii. On the other hand, the APs induced in the part of the fiber corresponding to a

CV→∞ on the time-space plot shown in Fig. 5.6a, are generated by SACs. For

all the material points of this part of the fiber, the integration of SACs over time

results in a sufficient stimulus to exceed the threshold value enabling to trigger

an AP. As a result, all the material points of this part of the fiber undergo an

AP at once.

The onset of the second AP occurs close to X = 0.5 cm, which corresponds to the part

of the fiber that has undergone first the AP (and thus, the first active tension and

shortening). Therefore, this part is also the first one to recover a non-ERS (Fig. 5.6a)

and to undergo a decrease of the active tension (Fig. 5.6b).

Due to the slight time delay between the behavior of the active tension and the dimen-
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sionless membrane potential, the part of the fiber in question is still in a contracted

state while the dimensionless membrane potential has already recovered its resting

state for a few milliseconds. After this time delay, the active tension begins to decrease

in a sharp way at this spatial location while the other parts of the fiber still undergo

a significant active tension. As a consequence, this part of the fiber is locally strongly

stretched and SACs are generated in a great amount enabling to trigger a new AP

after the integration of these SACs over a few milliseconds.

Obviously, material points which are at some distance from this part of the fiber are

also subject to the same mechanism (with a time delay) but the local stretching is less

strong in comparison with the one close to X = 0.5 cm and thus, SACs are generated in

a smaller amount for these material points. The AP that propagates from X = 0.5 cm

toward X = 5 cm reaches these points before the integration of local SACs over time

results in a sufficient stimulus enabling to exceed the threshold value leading to an AP.

However, when the AP reaches the region corresponding approximately to the material

point X = 4 cm, the SACs in the part of the fiber from X = 4 cm to X = 5 cm have

been integrated over a sufficient time enabling to generate an AP by themselves. As

for the first beat, these material points of the fiber undergo an AP at once. For the

next beats, the mechanisms are similar to the ones just explained.

Finally, as already mentioned in this section, the modified GC minimal model is not

originally designed to simulate cases involving large deformations. However, as shown

in Fig. 5.8, although ∂U/∂X exceeds 12 %, the time evolutions of the membrane po-

tential and of the displacement gradient field, at a specific material point in the fiber,

are very similar for both models. Note that ∂U/∂X for the modified GC minimal

model is computed, a posteriori, using Eq. (5.39). These results underline that, from

a pragmatic point of view, the modified GC minimal model may be used to simulate

cases involving rather large deformations which can be of the order of magnitude as

those obtained with the parameter values given in Tab. 5.3, even if Eq. (5.40) (assump-

tion of small deformations) is not strictly satisfied. Due to this observation, assuming

one-dimensional deformations, the modified GC minimal model can be considered as

suitable for gaining insight into the arrhythmogenic consequences of the MEF.
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Fig. 5.8 – Time courses of the dimensionless membrane potential, V̄
(a), and the displacement gradient field, ∂U/∂X (b), at X = 2.5 cm,
simulating by the one-dimensional time-dependent TEM model (solid
line) and the modified GC minimal model (short dashed line), with
parameter values given in Tab. 5.3.

In the following, it will be interesting to characterize this AEA induced by the MEF

in a quantitative way. Several questions arise from the first simulations. For instance,

without being exhaustive at this point, some interesting questions could be:

i. Does the AEA carry on for a long time or just for a few seconds?

ii. Does the length of the cardiac fiber influence the spatio-temporal behavior of the

AEA?

iii. Does the conductance of SACs influence the spatio-temporal properties of the
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AEA?

iv. Does the temperature of the cardiac fiber affect the characteristics of the AEA?

v. Does the ICs impact the spatio-temporal behavior of the AEA?

vi. Do the magnitudes of the active tension and deformation remain similar with

other ICs?

Before going deeper into the analysis of the model and answering to these questions,

the two different methods of temporal integration are compared in the next section.

5.1.7 Comparison of the Euler-forward scheme and the CKRKM

for temporal integration

This section aims at underlining the differences between the two methods developed

to perform temporal integration. As already mentioned, the Euler-forward scheme

is a first-order method while the CKRKM is a fifth-order method. The choice to

use one or the other method is primarily controlled by the goals of the study and the

constraints associated with it. In the present work, temporal accuracy is of a paramount

importance, especially for the Floquet stability analysis conducted in section 5.1.12.

To compare the two methods, a simulation of the modified GC minimal model taking

into account the physiological MEF (gsac = 0.08 ms−1), and with the same parameter

values as those given in Tab. 5.3, is performed by using the CKRKM and the Euler-

forward scheme.

As shown in Fig. 5.9, 20 s from the beginning of the simulation, the time delay between

the two time courses of the dimensionless membrane potentials is not negligible (10 ms

and 12 ms in the beginning and the end of the time window shown in Fig. 5.9, respec-

tively). As a consequence, the difference can become significant for a long simulation

time. From this point forward, the CKRKM will be used for all simulations.
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Fig. 5.9 – Time courses at X = 4 cm, from 18970 ms to 20000 ms, of the
dimensionless membrane potential, V̄ , integrated over time with the
Euler-forward scheme (short dashed line) and the CKRKM (solid line).

5.1.8 Parametric study of the modified GC minimal model

This section aims at identifying the main effects of each parameter of the modified GC

minimal model on the one-dimensional physical system for L = 5 cm and T = 37oC.

For this purpose, each parameter value is changed while other parameter values are

unchanged from values given in Tab. 5.3, taken as a reference for this parametric

study. The role played by the length of the fiber and by the temperature value will be

extensively discussed later on.

As shown in Eq. (5.27), g̃sac depends on gsac, κσactive
, and d. These three parameters

do not appear explicitly in the modified GC minimal model contrary to κv. Thus,

the value of g̃sac can be modified by changing indifferently the values of gsac, κσactive
,

or d, though each of these parameters plays a particular role in the one-dimensional

time-dependent TEM model from which the modified GC minimal model comes from.

However, a given variation of one of these three parameters induces a logical effect on

g̃sac, which can be physically interpreted. For example, a decrease in the value of d

physically results in an increase of the stiffness of the cardiac fiber. As a consequence,

shortening and stretching generated by a given active tension are lower for high values

of d than for small values. And thus, the higher the value of d, the lower the SACs,

which is reflected by a decrease of the value of g̃sac in the modified GC minimal model.
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5.1.8.1 Parameter D0

The higher the value of D0, the higher the CV of the AP (Fig. 5.10).
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Fig. 5.10 – Time-space plots of the dimensionless membrane potential,
V̄ , for D = 1 cm2 s−1 (a) and D = 1.6 cm2 s−1 (b).

In addition, the time period is also altered by a change of the value of D0: the higher the

diffusion coefficient, the higher the time period. This is barely visible in Fig. 5.10 but

clearly shown by picking out the values of the time periods. These are equal to approx-

imately 162.8 ms, 163.2 ms, 163.8 ms, and 167.3 ms for D = 1 cm2 s−1, D = 1.2 cm2 s−1,
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D = 1.4 cm2 s−1, and D = 1.6 cm2 s−1, respectively. Besides, when D = 1.8 cm2 s−1,

the propagation of the initial depolarization does not occur and the electrical activity

vanishes without even experiencing one AP (Fig. 5.11).
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Fig. 5.11 – Time-space plot of the dimensionless membrane potential,
V̄ , for D = 1.8 cm2 s−1.

The increase of the CV of the AP resulting from an increase of the value of D0 is due

to the fact that the stimulus, necessary to trigger the excitation process, is provided

earlier at a given site in an non-ERS close to a particular site undergoing an AP as this

with a smaller value of D0. Regarding the propagation block occurring when D0 is too

large (Fig. 5.11), it is due to the fact that the initial stimulus is too quickly diffused

to adjacent regions leading to a local decrease of the initial stimulus. Therefore, the

membrane potential does not reach the threshold value enabling the onset of an AP

and the propagation is blocked.

5.1.8.2 Parameters ε0 and ε1

These two parameters appear in the function ε
(
V̄
)

[Eqs (4.41) and (4.44)]. When ε0

is changed, the CV of the AP is very slightly altered: the higher the value of ε0, the

higher the CV of the AP (barely visible in Fig. 5.12a). When ε1 is raised, the CV of

the AP decreases (Fig. 5.12b). This variation is more significant as the variation of

the CV due to a change of ε0. From these observations, the CV of the AP is slightly

decreased/increased if both ε0 and ε1 are increased/decreased at once by a factor two
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for instance.
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Fig. 5.12 – Spatial distribution in the cardiac fiber of the dimensionless
membrane potential, V̄ , after 80 ms from the beginning of the simulation,
for three different values of ε0 with ε1 = 0.090 ms−1 (a) and for three
different values of ε1 with ε0 = 0.003 ms−1 (b).

Another important property of the AP, namely the action potential duration (APD), is

more significantly altered by a change of the values of ε0 and ε1. As shown in Fig. 5.13a,

the APD is dramatically decreased when ε0 is raised. A decrease of the APD resulting

from an increase of ε1 is also observed (Fig. 5.13b) but in a very weak way. As a

consequence of these facts, the APD is terribly decreased/increased if both ε0 and ε1

are increased/decreased at once by a factor two for instance.
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Fig. 5.13 – Time courses at X = 2.5 cm, from 50 ms to 220 ms, of the di-
mensionless membrane potential, V̄ , for three different values of ε0 with
ε1 = 0.090 ms−1 (a) and three different values of ε1 with ε0 = 0.003 ms−1

(b).

The lengthening of the APD can be physically explained by the fact that the dynamics

of the gate variable, v, which controls the recovery process, is slower when the values

of ε0 and ε1 are raised.

Thinking ahead, increasing the temperature, T , with respect to a reference tempera-

ture, T0, is equivalent to increase the values of ε0 and ε1 by a given factor depending

on the value of the function ϕ (T ) [Eq. 5.36], which itself depends on (T − T0). Al-
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though a temperature variation also affects ionic conductances via the function η (T )

[Eq. 5.32], similar effects on the dynamics of the system as those observed in Figs 5.12

and 5.13 should occur when the temperature is changed. This is due to the fact that

ionic conductances are impacted by a temperature change in a linear way while the

gating kinetics of ion channels are altered in an exponential way.

5.1.8.3 Parameter κv

As shown in Figs 5.14 and 5.15, the higher the value of κv, the higher the CV of the AP.

This observation is not easy to interpret physically because κv explicitly appears both in

Eqs (5.33) and (5.36) and is hidden in g̃sac [Eq.( 5.27)]. However, each individual effect

on the CV of the AP resulting from an increase of the value of κv can be examined:

i. In Eq. (5.33), from the one hand, an increase of the value of κv induces, at a given

site in the fiber, a faster increase of the ionic currents, which are triggered by a

perturbation arising from the AP that propagates toward this site. This leads to

a faster excitation at this site. This behavior contributes to increase the CV of

the AP. On the other hand, the increase of the value of κv yields a decrease of

the value of g̃sac leading to a slower excitation at a given site in the fiber. This

effect contributes to decrease the CV of the AP.

ii. In Eq. (5.36), an increase of the value of κv is almost similar to a rise in the

values of ε0 and ε1. Due to the conclusions made in section 5.1.8.2, the increase

of the value of κv in Eq. (5.36) should thus contribute to decrease the CV of the

AP but in a very weak way.

From these three effects, the increase of the ionic currents seems to be the predominant

phenomenon since the CV of the AP is increased when the value of κv is raised (Figs 5.14

and 5.15).

As shown in Fig. 5.14, by changing the value of κv from 2 ms−1 (Fig. 5.14a) to 4 ms−1

(Fig. 5.14b), the AEA does not occur anymore because SACs are not large enough

to generate a supra-threshold stimulus enabling the onset of a new AP or the cardiac

tissue is in an ERS. The time-space plot for κv = 8 ms−1 is similar to the one shown

in Fig. 5.14b inasmuch as no AEA is induced by the initial excitation that propagates

(from X = 0.5 cm toward the boundaries of the fiber) with a higher CV than for
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κv = 4 ms−1. On the other hand, for κv = 1 ms−1, the membrane potential directly

recovers its resting state without experiencing an AP.
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Fig. 5.14 – Time-space plots of the dimensionless membrane potential,
V̄ , for κv = 2 ms−1 (a) and κv = 4 ms−1 (b).

.
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Fig. 5.15 – Spatial distribution in the cardiac fiber of the dimensionless
membrane potential, V̄ , after 80 ms from the beginning of the simulation,
for three different values of κv.

5.1.8.4 Parameter a

As shown in Fig. 5.16, the higher the value of a, the smaller the CV of the AP. Thus,

the effect on the CV of the AP resulting from an increase of the value of a is opposite

to this arising from an increase of the value of κv. Physically, increasing the value of a

leads to a cardiac tissue that is less excitable. As a result, the excitation process at a

given site in the fiber is slower and the CV of the AP is then decreased.
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Fig. 5.16 – Spatial distribution in the cardiac fiber of the dimensionless
membrane potential, V̄ , after 80 ms from the beginning of the simulation
for three different values of a.

Before going deeper into the analysis of the role played by parameter a, some concepts

must be introduced. First, when an AEA is induced by the MEF and lasts indefinitely,
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it is referred to as a perpetual AEA. In the case when the AEA occurs only for a finite

time interval, it is referred to as a finite AEA. Due to computational cost reasons, it is

important to underline that a criterion must be chosen to determine whether the AEA

is perpetual or not. For this parametric study, the AEA is considered as perpetual if

it persists after a time interval larger than 20 s. Otherwise, the AEA is not considered

as perpetual. Second, in the case when a perpetual AEA occurs, the penultimate and

last wavefronts will correspond in the entire section 5.1.8 to the penultimate and last

wavefronts inside the 20 s time window. In the case when a finite AEA is observed, the

penultimate and last wavefronts denote the penultimate and last wavefronts inside the

time window for which the AEA occurs, namely just before the vanishing of the AEA.

With the set of parameter values given in Tab. 5.3, perpetual AEAs occur only for

specific values of a (Fig. 5.17): a small region between boundaries 1 and 2 and a large

region between boundaries 3 and 5. Note that:

i. a-boundary 1 is located at approximately2 0.047;

ii. a-boundary 2 is located at approximately a = 0.047 812 5;

iii. a-boundary 3 is located at approximately a = 0.048 062 5;

iv. a-boundary 4 is located at approximately a = 0.0605;

v. a-boundary 5 is located at approximately a = 0.0615.

For values of a smaller than approximately 0.0475 (on the left side of boundary 1,

shown in Fig. 5.17) and for values of a larger than approximately 0.061 (on the right

side of boundary 5, shown in Fig. 5.17), the AEAs are not indefinitely sustained (the

AEAs vanish before 20 s).

To obtain a first information about the spatio-temporal behavior of the AEAs as func-

tions of parameter a, the spatial average over all the material points of the fiber, T̄l, of

the local time interval (namely at a specific material point, Xm, of the fiber) between

the penultimate and last wavefronts, referred to as Tl (Xm), is examined at the end of

the simulations to avoid transitory solutions. The same physical quantities, referred to

as T̄p and Tp (Xm), are noted between the antipenultimate and penultimate wavefronts.

In addition, looking at the spatial variances of Tl (Xm) and Tp (Xm), referred to as σ2
s,l

and σ2
s,p, respectively, enables to get some information about the spatial dispersion of

2The term ‘approximately’ is used because the location of this boundary is not exactly known due
to the a-step used to discretize a.
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Tl (Xm) and Tp (Xm). Due to the chosen spatial discretization given by Eq. (5.46), σ2
s,l

and σ2
s,p are given by

σ2
s,l =

1
M + 1

M∑

m=0

[Tl (Xm)]2 − T̄ 2
l , (5.73)

σ2
s,p =

1
M + 1

M∑

m=0

[Tp (Xm)]2 − T̄ 2
p . (5.74)

The inspection of the temporal variance of T̄l and T̄p, referred to as σ2
t , enables to get

some information about the temporal variation between T̄l and T̄p. This variance is

given by

σ2
t =

1
2

(
T̄ 2

l + T̄ 2
p

)
−
[1
2

(
T̄l + T̄p

)]2

=
1
4

(
T̄l − T̄p

)2
. (5.75)

Combining Eqs (5.73)-(5.75), a spatio-temporal variance can be defined as

σ2 = σ2
s,l + σ2

s,p + σ2
t . (5.76)

The corresponding standard deviation is then given by

σ =
√
σ2

s,l + σ2
s,p + σ2

t . (5.77)

The simultaneous examination of T̄p, T̄l, and σ, shown in Fig. 5.17, as functions of

parameter a, enables to underline that the lack of perpetual AEAs (denoted by symbol

‘×’ in Fig. 5.17) seems to be associated with two different mechanisms depending on

the considered a-region:

i. For values of a smaller than approximately 0.0475 (on the left side of boundary

1) and larger than approximately 0.061 (on the right side of boundary 5), the

lack of perpetual AEAs is characterized by two significantly different values of

T̄l and T̄p and a large value of σ. For these two a-regions, σt/σ is close to one

or, equivalently, σs/σ =
(√

σ2
s,l + σ2

s,p

)
/σ is close to zero. Thus, this information

seems to reveal that the AEA essentially ends due to a temporal mechanism.

ii. For the small a-window between boundaries 2 and 3, close to 0.048 125, the lack
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of perpetual AEAs is characterized by two slightly different values of T̄l and T̄p

and a large value of σ. For this a-region, σs/σ is close to one. Thus, this feature

seems to reveal that the AEA mainly ends due to a spatial mechanism.
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Fig. 5.17 – Spatial averages of the local time interval between the an-
tipenultimate and penultimate wavefronts, T̄p, and the penultimate and
last wavefronts, T̄l, as a function of a (a). Average (over time) of T̄p and
T̄l with error bars in terms of the standard deviation σ (b). Symbol ‘×’
denotes an a-region for which there are finite AEAs or no AEAs. Other
regions correspond to different kinds of periodic AEAs. Vertical lines
and corresponding labels 1 to 5 define boundaries which are discussed
in the text.

For values of a leading to a perpetual AEA, three different cases, corresponding to

three different a-regions, are clearly distinguishable as shown in Fig. 5.17:
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i. The a-region between boundaries 3 and 4, ranging from approximately 0.048 75

to 0.06, is characterized by T̄l = T̄p (Fig. 5.17a) and a very tiny spatial standard

deviation3 (Fig. 5.17b), which corresponds to periodic AEAs. These periodic

AEAs are described by different solutions with period-1 cycles. Two time-space

plots for two different values of a for which the AEA is characterized by a period-1

solution are shown in Fig. 5.18.
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Fig. 5.18 – Time-space plots of the dimensionless membrane potential,
V̄ , for a = 0.055 (a) and a = 0.048 75 (b).

3Theoretically, this spatial standard deviation should be zero.
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ii. The a-region between boundaries 1 and 2, close to 0.0475, corresponds to period-2

solutions, which are characterized by two slightly different values of T̄l and T̄p

(Fig. 5.17a) and a small spatio-temporal standard deviation (Fig. 5.17b). In par-

ticular4, T̄l = 171 ms, T̄p = 172.3 ms, and σ = 0.22 ms for a = 0.0475. Given

that σt = 0.20 ms and σt/σ = 0.90, the main contribution to the spatio-temporal

standard deviation is generated by a temporal phenomenon. This seems to cor-

respond to quasi-spatially synchronized alternans5. A typical time-space plot of

this behavior is shown in Fig. 5.19 (note that the phenomenon of alternans is not

easily seen in Fig. 5.19 since the two period are very close to each other).
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Fig. 5.19 – Time-space plot of the dimensionless membrane potential,
V̄ , for a = 0.0475.

iii. The a-region between boundaries 4 and 5, close to 0.061, corresponds to period-2

solutions, which are characterized by two significant different values of T̄l and

T̄p (Fig. 5.17a) and a large spatio-temporal standard deviation (Fig. 5.17b). In

particular, T̄l = 183.5 ms, T̄p = 166.9 ms, and σ = 10.05 ms for a = 0.061.

Given that σt = 8.29 ms and σt/σ = 0.82, the main contribution to the spatio-

temporal standard deviation is still induced by a temporal phenomenon, namely

the alternans. However, these alternans are less spatially synchronized than those

described in the previous item. A Typical time-space plot of this phenomenon is

4In the whole of this work, the values of T̄p and T̄l are displayed with one significant decimal while
the values of σ with two significant decimals.

5Cardiac alternans rhythms are characterized by an alternation of the timing or morphology of the
electrical activity in cardiac tissue from one beat to the next [108].



152 5.1. Part 1: one-dimensional time-dependent TEM model

shown in Fig. 5.20.
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Fig. 5.20 – Time-space plots of the dimensionless membrane potential,
V̄ , for a = 0.061.

The inspection of the time-space plot of the dimensionless membrane potential for

a = 0.048 125 (Fig. 5.21), namely in the region between boundaries 2 and 3 for which

there are no perpetual AEAs, reveals that the end of the AEA corresponds to an

abrupt change in the spatio-temporal pattern as expected due to the large value of the

spatio-temporal standard deviation for this value of a (Fig. 5.17b).
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Fig. 5.21 – Time-space plots of the dimensionless membrane potential,
V̄ , for a = 0.048 125.
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It is interesting to note that the spatio-temporal patterns before this abrupt change

are similar to those for a = 0.048 75 (Fig. 5.18b) while the spatio-temporal distribution

of the last wavefront, after this abrupt change, looks like the spatio-temporal patterns

observed for a = 0.0475 (Fig. 5.19).

From these results, different interesting phenomena can be emphasized:

i. Perpetual AEAs occur only for particular values of a.

ii. The spatial average of the time period significantly changes when the value of a

is modified.

iii. The excitatory source seems to be attracted to a specific location in the fiber

depending on the value of a.

iv. The spatial width of the excitatory source changes as a function of a.

v. Two different kinds of periodic solutions, namely period-1 solutions and period-2

solutions, are observed for different values of a.

vi. For the a-regions where there are no perpetual AEAs, the end of the AEA seems

to be induced by two different kinds of mechanisms.

5.1.8.5 Parameter g̃sac

This section aims at emphasizing the role played by g̃sac in the modified GC minimal

model. As already mentioned, there are three possibilities to change the value of g̃sac

while κv is held fixed [Eq. (5.27)] at the value given in Tab. 5.3:

i. change the value of gsac

ii. change the value of κσactive

iii. change the value of d

Here, the value of g̃sac is changed by modifying the value of gsac around the reference

value given in Tab. 5.3 (gsac = 0.08 ms−1 corresponds to g̃sac = 0.05 for parameter

values in Tab. 5.3). The choice to change gsac in place of κσactive
or d is completely

arbitrary.

As shown in Fig. 5.22, the higher the value of gsac, the higher the CV of the propa-

gating AP. This feature can be explained in the following way. When SACs occur in

a particular site in the fiber, they generate a depolarization whose the magnitude is
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proportional to the magnitude of these SACs, which is also proportional to the value of

gsac. Therefore, the higher the value of gsac, the weaker the required contribution from

an external stimulus to reach the threshold membrane potential. In other words, the

larger the SACs, the easier the tissue is excited. This behavior explains the increase of

the CV of the propagating AP when the value of gsac is raised.
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Fig. 5.22 – Spatial distribution in the cardiac fiber of the dimensionless
membrane potential, V̄ , after 80 ms from the beginning of the simulation,
for three different values of gsac.

As shown in Fig. 5.23, perpetual AEAs occur only for specific values of gsac: a large

region between boundaries 1 and 4, a small region between boundaries 5 and 6, and a

small region between boundaries 7 and 8. Note that:

i. gsac-boundary 1 is located at approximately6 0.044 25 ms−1;

ii. gsac-boundary 2 is located at approximately 0.046 625 ms−1;

iii. gsac-boundary 3 is located at approximately 0.048 15 ms−1;

iv. gsac-boundary 4 is located at approximately 0.084 25 ms−1;

v. gsac-boundary 5 is located at approximately 0.086 325 ms−1;

vi. gsac-boundary 6 is located at approximately 0.086 375 ms−1;

vii. gsac-boundary 7 is located at approximately 0.086 925 ms−1;

viii. gsac-boundary 8 is located at approximately 0.086 975 ms−1.

6The term ‘approximately’ is used because the location of this boundary is not exactly known due
to the gsac-step used to discretize gsac.
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Fig. 5.23 – Spatial averages of the local time interval between the an-
tipenultimate and penultimate wavefronts, T̄p, and the penultimate and
last wavefronts, T̄l, as a function of gsac. General behavior (a) and local
behavior for large values of gsac (b). Symbol ‘×’ denotes a gsac-region
for which there are finite AEAs or no AEAs. Other regions correspond
to different kinds of periodic AEAs. Vertical lines and corresponding
labels 1 to 5 define boundaries which are discussed in the text.

For the following values of gsac, there are no perpetual AEAs (the AEAs vanish before

20 s):

i. values smaller than approximately 0.0445 ms−1 (on the left side of boundary 1);

ii. values ranging from approximately 0.084 ms−1 to 0.0863 ms−1 (between bound-
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aries 4 and 5);

iii. values ranging from approximately 0.086 35 ms−1 to 0.0869 ms−1 (between bound-

aries 6 and 7);

iv. values larger than approximately 0.086 95 ms−1 (on the right side of boundary 8).
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Fig. 5.24 – General behavior of the spatio-temporal standard deviation,
σ, as a function of gsac (a) and local behavior of σ for large values of gsac

(b). Symbol ‘×’ denotes a gsac-region for which there are finite AEAs
or no AEAs. Other regions correspond to different kinds of periodic
AEAs.

The simultaneous inspection of T̄p, T̄l, and σ, shown in Figs 5.23 and 5.24, as functions

of parameter gsac, enables to emphasize that the lack of perpetual AEAs (denoted

by symbol ‘×’ in Figs 5.23 and 5.24) seems to be characterized by three different
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mechanisms depending on the considered gsac-region:

i. For values of gsac smaller than approximately 0.0445 ms−1 (on the left side of

boundary 1), the lack of perpetual AEAs is characterized by two significantly

different values of T̄l (211 ms) and T̄p (235.3 ms) and a large value of σ (11.98 ms).

In addition, the ratio σt/σ is close to one meaning that the AEA mainly ends

due to a temporal mechanism.

ii. For values of gsac larger than approximately 0.084 ms−1 (on the right side of

boundary 4), for values of gsac larger than approximately 0.086 35 ms−1 (on the

right side of boundary 6), for values smaller than approximately 0.086 95 ms−1

(on the left side of boundary 7), and for values of gsac larger than approximately

0.086 95 ms−1 (on the right side of boundary 8), the lack of perpetual AEAs is

characterized by two slightly different values of T̄l (182.6 ms, 182.6 ms, 184.3 ms,

and 182.5 ms, respectively) and T̄p (182.1 ms, 181.3 ms, 181.7 ms, and 181.1 ms,

respectively) and a large value of σ (4.80 ms, 5.38 ms, 7.29 ms, and 5.48 ms, re-

spectively). In these four cases, the ratio σs/σ is close to one. Thus, the AEA

seems to essentially vanish due to a spatial mechanism.

iii. For values of gsac smaller than approximately 0.08635 ms−1 (on the left side of

boundary 5), the lack of perpetual AEAs is characterized by two different values

of T̄l (186.7 ms) and T̄p (180.4 ms) and a large value of σ (6.26 ms). In this case,

the ratio σt/σ is close to 1/2. Therefore, it seems that the AEA mainly vanishes

due to a spatio-temporal mechanism.

For values of gsac leading to a perpetual AEA, different kinds of solution, corresponding

to different gsac-regions, can be highlighted as shown in Figs 5.23 and 5.24:

i. The gsac-region between boundaries 1 and 2, ranging from approximately 0.0445

ms−1 to 0.0465 ms−1, is mainly characterized by T̄l = T̄p and σ close to zero. The

time-space plot of the dimensionless membrane potential for gsac = 0.0445 ms−1,

shown in Fig. 5.25, enables to observe the period-1 phenomenon. However, by

scanning this region, a point (gsac = 0.045 ms−1) leading to a different behavior

has been observed. This point seems to be associated with a non-periodic solu-

tion as depicted in Fig. 5.26 and a quite large value of σ, namely σ = 3.06 ms

(Fig. 5.24a). The corresponding time-space plot of the dimensionless membrane

potential is shown in Fig. 5.26. Note that no satisfactory explanation has been
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found to interpret this singular behavior.

ii. The gsac-region between boundaries 2 and 3, ranging from approximately 0.046 75

ms−1 to 0.0475 ms−1, is characterized by two different values of T̄l and T̄p and a

relatively large value of σ depending on the considered point in this region. For

instance, for gsac = 0.047 ms−1, T̄l = 206.8 ms, T̄p = 196.6 ms, and σ = 5.44 ms.

Since σt = 2.56 ms and σt/σ = 0.47, the period-2 phenomenon seems to corre-

spond to spatially desynchronized alternans. The spatio-temporal behavior of the

dimensionless membrane potential is depicted as a time-space plot in Fig. 5.27.

iii. The gsac-region between boundaries 3 and 4, ranging from approximately 0.048 75

ms−1 to 0.084 ms−1, is characterized by T̄l = T̄p and σ close to zero. This gsac-

region correspond to different types of period-1 solutions. The time-space plot of

the dimensionless membrane potential is shown in Fig. 5.28 for gsac = 0.06 ms−1.

iv. The gsac-region between boundaries 5 and 6, close to 0.086 35 ms−1, leads to

period-1 phenomenons, characterized by T̄l = T̄p and σ close to zero. The time-

space plot of the dimensionless membrane potential for gsac = 0.086 35 ms−1 is

depicted in Fig. 5.29.

v. The gsac-region between boundaries 7 and 8, close to 0.086 95 ms−1, also leads

to period-1 phenomenons (Fig 5.30). However, the spatio-temporal patterns of

these solutions are very different from those observed for gsac = 0.086 35 ms−1.
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Fig. 5.25 – Time-space plot of the dimensionless membrane potential,
V̄ , for gsac = 0.0445 ms−1.
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Fig. 5.26 – Time-space plot of the dimensionless membrane potential (a)
and spatial average, T̄ , of the local time interval between two wavefronts
as a function of the wavefront-to-wavefront interval number (b), for
gsac = 0.045 ms−1.

From these results, similar interesting phenomena as those emphasized in section 5.1.8.4

relative to the parameter a can be highlighted:

i. Perpetual AEAs occur only for particular values of gsac.

ii. The spatial average of the time period significantly changes when the value of

gsac is modified.

iii. The excitatory source seems to be attracted to a specific location in the fiber

depending on the value of gsac.
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iv. The spatial width of the excitatory source changes as a function of gsac.

v. Two different kinds of periodic solutions, namely period-1 solutions and period-2

solutions, are observed for different values of gsac.

vi. For the gsac-regions where there are no perpetual AEAs, the end of the AEA

seems to be induced by two different kinds of mechanisms.
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Fig. 5.27 – Time-space plot of the dimensionless membrane potential,
V̄ , for gsac = 0.047 ms−1.

Time (ms)

X
(c

m
)

 

 

1.9 1.925 1.95 1.975 2

x 10
4

0

1

2

3

4

5

0.2 0.4 0.6 0.8

Fig. 5.28 – Time-space plot of the dimensionless membrane potential,
V̄ , for gsac = 0.06 ms−1.
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Fig. 5.29 – Time-space plot of the dimensionless membrane potential,
V̄ , for gsac = 0.086 35 ms−1.

Time (ms)

X
(c

m
)

 

 

1.9 1.925 1.95 1.975 2

x 10
4

0

1

2

3

4

5

0.2 0.4 0.6 0.8

Fig. 5.30 – Time-space plot of the dimensionless membrane potential,
V̄ , for gsac = 0.086 95 ms−1.

5.1.9 Map in the (L, g̃sac) space of the persistence of the AEA

induced by the MEF

In essence, the cardiac MEF is a spatio-temporal phenomenon. It needs a spatially

extended system to occur because it is induced by stretchings in the cardiac tissue.

From a geometrical point of view, these stretchings affect the propagation of APs in
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the tissue. This is the geometric MEF. In addition to this geometric effect, these

stretchings can generate additional currents, namely stretch-activated currents, when

stretch-activated channels are found in the tissue. This is the physiological MEF. From

a modeling point of view, the existence of these channels is intrinsically related to the

parameter g̃sac: setting the SAC conductance to zero is similar to consider that there

are no SACs in the tissue. From these facts, it is obvious that L and g̃sac are the key

parameters regarding the MEF phenomenon.

As a consequence, this section aims at examining in great detail the influence of L and

g̃sac on the AEA for a given temperature value. All other parameter values used in this

section are given in Tab. 5.4.

Parameter Value Units
a 0.05 dimensionless
D0 10−3 cm2 ms−1

ε0 3× 10−3 ms−1

ε1 90× 10−3 ms−1

κσactive
0.5 N cm−2

κv 2 ms−1

d 1.6 N cm−2

Tab. 5.4 – Parameter values used for systematic scanning of the (L, g̃sac)
space with the modified GC minimal model.

For this purpose, the (L, g̃sac) space is scanned in a systematic way for L ranging from

2 cm to 13.96 cm and g̃sac ranging from 0 to 0.12 with increment steps of 0.04 cm and

0.0005, respectively. As a result, 72 300 numerical simulations have to be performed

to scan all the (L, g̃sac) space. Moreover, six different temperature values (31oC, 33oC,

35oC, 37oC, 39oC, and 41oC) have been studied and five different ICs have been tested

(time-dependent external current, shown in Fig. 5.2, is applied to the fiber regions

centered on X = L/10, X = L/5, X = L/3, X = 2L/5, and X = L/2). As a

consequence, 2 169 000 different numerical simulations have been run for this systematic

parametric study7.

7To run this huge amount of simulations, the divide-and-conquer strategy has been adopted as
needed for this kind of time-consuming study. For a given IC and a given temperature value, the
(L, gsac) space has been split into four parts:

i. part 1 is constituted by the ‘parametric area’ that is spanned by g̃sac ∈ [0, 0.12] and L ∈
[2 cm, 4.96 cm]

ii. part 2 is constituted by the ‘parametric area’ that is spanned by g̃sac ∈ [0, 0.12] and L ∈
[5 cm, 7.96 cm]
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In addition, several points of the computational code have been adapted to enable the

further Floquet stability analysis (section 5.1.12):

i. The Heaviside functions have been substituted by appropriate hyperbolic tangent

functions. These functions are less tricky to handle numerically than Heaviside

functions.

ii. The hyperbolic tangent functions have been substituted by suitable lookup table

functions to reduce the computational time.

For the interested reader, these two technical points are discussed in some detail below.

Hyperbolic tangent functions substitute Heaviside functions

The first adaptation consists in the substitution of ε
(
V̄
)

into Eq. (5.36) by

f 1
(
V̄
)

= ε0 + (ε1 − ε0)
[1
2

(
1 + tanh

[
ξ1

(
a− V̄

)])]
, (5.78)

where ξ1 is a parameter that enables to control the width of the transition region

between the two asymptotic values (−1 and +1) of the hyperbolic tangent function.

The second adaptation consists in the substitution of Θ (v̄ − v) into Eq. (5.26) by

f 2 (v̄, v) =
1
2

(1 + tanh [ξ2 (v̄ − v)]) , (5.79)

where ξ2 is a parameter that plays a similar role as ξ1. These two functions, given

by Eqs (5.78) and (5.79), are continuous contrary to those, which involve Heaviside

functions, used previously. In the case where ξ1 → ∞ and ξ2 → ∞, Eqs (5.78)

and (5.79) behave as the original functions, which involve Heaviside functions.

The values of ξ1 and ξ2 have been chosen by comparing several results from simulations

performed with Heaviside functions and hyperbolic tangent functions for different val-

iii. part 3 is constituted by the ‘parametric area’ that is spanned by g̃sac ∈ [0, 0.12] and L ∈
[8 cm, 10.96 cm]

iv. part 4 is constituted by the ‘parametric area’ that is spanned by g̃sac ∈ [0, 0.12] and L ∈
[11 cm, 13.96 cm]

Each part has been run either on a specific core from the computer cluster of the department of
physics and applied mathematics from the University of Navarra (Spain) or on a specific core from
the computing server (32 cores) of the laboratory of thermodynamics of irreversible processes from
the University of Liège (Belgium). Four nodes are needed to scan the whole (L, g̃sac) space for a given
temperature value and a given IC. Proceeding in this way significantly reduces the computational
time.
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ues of ξ1 and ξ2. From that comparison, the values of ξ1 and ξ2 have been set to 5000

and 500, respectively. Note that the role played by ξ1 and ξ2 is emphasized in Fig. 5.31.
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Fig. 5.31 – Heaviside functions are mimicked by using hyperbolic tan-
gent functions; α represents the value of the argument of a given Heav-
iside function.

Lookup table functions

To reduce the computational time, the functions defined by Eqs (5.78) and (5.79) are

approximated by using two lookup table functions, which consist of the couples (αi, f 1
i )

and
(
βj, f

2
j

)
where f 1

i = ε0 + (ε1 − ε0) [0.5 (1 + tanhαi)] and f 2
j = 0.5 (1 + tanh βj),

with αi and βj represent the available discretized values (in the two lookup tables) of

the arguments of the hyperbolic functions from Eqs (5.78) and (5.79), respectively.

From a practical point of view,
(
a− V̄

)
is assumed to range from −1.5 to 0.5 and

(v̄ − v) is assumed to range from −1 to 1. Therefore, ξ1

(
a− V̄

)
∈ [−7500, 2500]

and ξ2 (v̄ − v) ∈ [−500, 500]. The two lookup table functions are built with 100 001

and 10 001 breakpoints. Therefore, αi = −7500 + 0.1 i and βj = −500 + 0.1 j, with

i = 0, 1, . . . , 100 000 and j = 0, 1, . . . , 10 000.

The values of the two ideal functions (hyperbolic tangent functions) at a given point

(which does not match a point of the lookup tables) are approximated by linearly in-

terpolating between the two breakpoints closest to the point. Mathematically, consid-

ering the hyperbolic tangent function f 1 and assuming that the value of the argument
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is α⋆ ∈ [αi, αi+1], f 1 (α⋆) is approximated by the following expression:

f̂ 1 (α⋆) = f 1
i +

f 1
i+1 − f 1

i

αi+1 − αi
(α⋆ − αi) . (5.80)

Criterion used to determine the perpetual persistence of the AEA

For computational cost reasons, a similar criterion as the one used in section 5.1.8.4

has been adopted in this section to determine whether the AEA lasts indefinitely or

not: the AEA is considered as perpetual if it lasts more than 200 s. Otherwise, the

AEA only occurs for a finite time interval.

Physiological case: T = 37 oC

The first case for which the persistence is examined corresponds to a temperature

value of 37 oC (physiological value) with an initial excitation (external current shown

in Fig. 5.2), applied to the region of the fiber ranging from L/10− 0.04 cm to L/10 +

0.04 cm.
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Fig. 5.32 – Persistence of the AEA induced by the MEF as a function
of parameters L and g̃sac for T = 37 oC.

As shown in Fig. 5.32, the area in which the AEA is perpetual, which is referred to as

the main dark red spot (main DRS) in this work, is surrounded by regions in which the

AEA is not sustained even for a short time interval (dark blue regions) and by regions
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in which the AEA is sustained for a finite time interval (all other colored regions). The

transitions between the regions in which the AEA is indefinitely sustained and those in

which the AEA does not occur at all are very sharp on the left and lower boundaries

of the main DRS in Fig. 5.32. The end of the AEA on the left side of the main DRS

and below the main DRS can be explained quite readily as follows:

i. For values of L smaller than those corresponding to the left boundary of the

main DRS, the APD is too long to enable the SACs to generate an AP. After

the propagation of the first AP due to the initial excitation, all the fiber is in an

ERS; therefore, even if the SACs are very large (large value of g̃sac), the electrical

activity ends.

ii. For values of g̃sac smaller than those corresponding to the lower boundary of the

main DRS, SACs are not large enough to trigger a new AP after the propagation

of the first one induced by initial excitation applied to the fiber. Thus, no AEA

occurs in this region.

For the upper boundary of the main DRS, the transitions are different. These transi-

tions are defined by switches from a perpetual AEA to a finite AEA. Further in this

work, the Floquet stability analysis, conducted in section 5.1.12, will corroborate that

the transitions at the lower and upper boundaries of the main DRS are intrinsically dif-

ferent. The underlying spatio-temporal mechanisms associated with these transitions

will also be highlighted in the aforesaid section.

As depicted in Fig. 5.32, the AEA is sustained above the main DRS for different finite

time intervals depending on the values of g̃sac and L. Fig. 5.32 also shows that the

persistence of the AEA does not have a monotonic behavior with respect to g̃sac for a

given L. There are even a few dark red isolated points above the main DRS.

The inspection of time-space plots of the AEA occurring in the main DRS, not ‘too’

close to its boundaries, reveals that the AEA behaves in a periodic way with period-1

cycles. A typical spatio-temporal pattern, corresponding to L = 3.2 cm and g̃sac =

0.0435, is depicted in Fig. 5.33. Other points (L, g̃sac) inside the main DRS, not ‘too’

close to its boundaries, also correspond to similar periodic AEAs.



5. Methods, results, and discussion 167

Time (ms)

X
(c

m
)

 

 

1.978 1.9835 1.989 1.9945 2

x 10
5

0

0.64

1.28

1.92

2.56

3.2

0.2 0.4 0.6 0.8

Fig. 5.33 – Time-space plot of the dimensionless membrane potential,
V̄ , for L = 3.2 cm and g̃sac = 0.0435, and with T = 37 oC.

Quite far from the upper boundary of the main DRS, with for instance g̃sac = 0.0680

and L = 3.2 cm, Fig. 5.34 shows that the AEA occurs only for a finite time interval

while no AEA occurs for L = 3.2 cm and for values of g̃sac slightly below or above

0.0680 (in the blue area in Fig. 5.32).
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Fig. 5.34 – Time-space plot of the dimensionless membrane potential,
V̄ , for L = 3.2 cm and g̃sac = 0.0680, and with T = 37 oC.

Continuing to increase the value of g̃sac for the same length of the fiber, L = 3.2 cm, the

AEA disappears for a large window of values regarding g̃sac before occurring again in
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a perpetual way for g̃sac = 0.0745. The spatio-temporal behavior of the dimensionless

membrane potential, corresponding to the point (3.2 cm, 0.0745) in the (L, g̃sac) space,

is shown in Fig. 5.35. This Fig. 5.35 indicates that the AEA is periodic with a period-11

cycle. Shortly after this point toward larger values of g̃sac, the AEA disappears again.
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Fig. 5.35 – Time-space plot of the dimensionless membrane potential,
V̄ , for L = 3.2 cm and g̃sac = 0.0745, and with T = 37 oC.

The non-monotonic behavior with respect to a control parameter (in the present case,

the parameter g̃sac) is reminiscent of particular phenomena, observed in dynamical

systems, which consist in different regular solutions existing in different small win-

dows of values of the control parameter, interspersed with chaotic solutions [109, 110].

However, this analogy must be handle very carefully because the spatial component,

intrinsic to the modified GC minimal model, adds an additional ingredient to the prob-

lems examined with dynamical systems. By the way, the spatial component could be

the reason for which the AEA disappears above the main DRS in large windows of

the control parameter value before occurring again in short windows. Contrary to dy-

namical systems for which a chaotic solution is able to survive, it seems that the AEA

needs to be spatially structured to be sustained.

Effects of an increase in the temperature value

When the temperature is raised by 2 oC, the AEA is significantly affected. The effect

on the persistence of AEA as a function of parameters L and g̃sac can be observed by

comparing Figs 5.32 and 5.36.



5. Methods, results, and discussion 169

L (cm)

g̃ s
a
c

(d
im

en
si
on

le
ss

)

Duration (s)

 

 

3 5 7 9 11 13

0

0.03

0.06

0.09

0.12

1 50 100 150 200

Fig. 5.36 – Persistence of the AEA induced by the MEF as a function
of parameters L and g̃sac for T = 39 oC.

The main differences between Figs 5.32 and 5.36 are:

i. The area in which the AEA is indefinitely sustained is larger for T = 39 oC than

for T = 37 oC.

ii. There are more dark red regions and points above the main DRS for T = 39 oC

than for T = 37 oC.

iii. There are more non dark blue regions and points in which the AEA is sustained

for a finite time interval above the main DRS for T = 39 oC than for T = 37 oC.

iv. The left boundary of the main DRS is shifted left.

v. The global slopes of the lower and upper boundaries of the main DRS are larger

for T = 39 oC than for T = 37 oC.

Some similarities can also be noted:

i. The transitions between the regions in which the AEA is indefinitely sustained

and those in which the AEA does not occur at all are still very sharp for T = 39 oC

(left and lower boundaries of the main DRS in Fig. 5.36).

ii. The lower critical value of g̃sac for which the AEA is indefinitely sustained is very

similar for T = 37 oC and T = 39 oC.

Before physically interpreting these observations, some features already highlighted
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must be reminded and developed:

i. A temperature increase induces a linear increase of ionic conductances (sec-

tion 4.3). This effect is taken into account in the modified GC minimal model

by multiplying the reaction term in Eq. (5.32) with the linear function η (T )

[Eq. (5.35)]. Regarding g̃sac, this multiplication is equivalent to slightly increase

its value and leads to particular effects described previously in detail in sec-

tion 5.1.8.5.

ii. A temperature increase also affects the dynamics of the two-dependent variables,

V̄ and v. This effect is taken into account in the modified GC minimal model by

multiplying the RHS of Eq. (5.36) by the exponential function ϕ (T ) [Eq. (5.38)].

This multiplication is equivalent to increase the values of ε0 and ε1 involved in

the function ε
(
V̄
)
, which controls directly the dynamics of v and indirectly the

one of V̄ due to the coupling between these two variables. The effects resulting

from an increase in the values of ε0 and ε1 have been shown and discussed in

detail in section 5.1.8.2: the APD and the time period (if an AEA occurs) are

shortened when the values of ε0 and ε1 are raised; as a consequence, increasing

the temperature shortens the APD and the time period (if an AEA occurs).

The left shift of the left boundary, which corresponds to a smaller value of the length of

the fiber, on the main DRS induced by a temperature increase of 2 oC (Fig. 5.36) can be

mainly explained by the shortening of the APD induced by the temperature increase of

2 oC (ε0 and ε1 are multiplied by a factor of approximately 1.25). In these conditions,

the part of the fiber in which the first AP has been triggered has recovered a non-ERS,

enabling the onset of a new AP, when a supra-threshold stimulus is generated by the

accumulation of the SACs induced by the propagation of the first AP.

The increase of the global slope of the lower boundary of the main DRS arising from a

temperature increase can be physically explained by breaking down the phenomenon

into two phenomena:

i. the shift towards larger g̃sac of the lower boundary for a given length of the fiber

ii. the higher the length of the fiber, the larger the magnitude of the shift of the

lower boundary

The first item can be explained by the shortening of the APD and its consequences
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on the magnitude of the SACs. By examining Eq. (5.34), describing the SACs in the

modified GC minimal model, these ones can be seen to be proportional to g̃sac and

(v̄ − v), where v̄ is given by Eq. (5.28). In the following, it is important to remind

that, in the modified GC minimal model, the quantity v̄ − v essentially represents

the gradient displacement field, ∂U/∂X = F − 1, in the cardiac tissue: v̄ − v > 0

represents a stretching whereas v̄ − v < 0 means that the cardiac tissue is tightened.

From Eqs (5.23) and (5.25), the relation between v̄ − v and F − 1 can be written as

v̄ − v = d
κv

κσactive

(F − 1) . (5.81)

Given that v locally follows the behavior of V̄ with a time delay [Eq. (5.36)], the short-

ening of the APD (thus, the shortening of the spatial extension of the depolarization

wave) induces a decrease of the value of the integral on the RHS of Eq. (5.28). There-

fore, the contribution to the SACs of (v̄ − v) at T = 39 oC is weaker than the one in

the case where T = 37 oC. Therefore, the value of g̃sac must be larger to counterbalance

the effect on v̄ and enabling to induce a supra-threshold stimulus leading to the onset

of an AP.

The second item can be explained in the following way. Assume a first case in which

an AP characterized by a spatial extension, WAP , propagates in a fiber of length L⋆

such that WAP < L⋆. Assume then a second case where the same AP (with the same

spatial extension) propagates in a fiber of length L⋆⋆ = S L⋆ where S > 1 represents

a given factor. In both situations, the value of the integral on the RHS of Eq. (5.28)

is mainly driven by the spatial extension of the AP. In other words, the value of the

aforesaid integral increases less than linearly with the length of the fiber. Thus, the

following relation may be written:

L⋆⋆

L⋆
>>

∫ L⋆⋆

0
v dX

∫ L⋆

0
v dX

(5.82)

or, similarly,

1
L⋆

∫ L⋆

0
v dX >>

1
L⋆⋆

∫ L⋆⋆

0
v dX . (5.83)

Due to the relation given by Eqs (5.34) and (5.83), it is obvious that the magnitude
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of g̃sac must be larger for L = L⋆⋆ than the one for L = L⋆ to get a supra-threshold

stimulus with the same magnitude enabling the onset of an AP. This explains why the

global slope of the lower boundary of the main DRS is increased when the temperature

is raised. Note that similar arguments may be used to explain the increase of the global

slope of the upper boundary of the main DRS induced by a temperature increase.

Effects of a decrease in the temperature value

The effect of a temperature decrease of 2 oC is then examined. As shown in Fig. 5.37,

some differences and similarities with the physiological case can be underlined. As

expected, the differences that can be noted are exactly opposite to those for T = 39 oC

in comparison with the physiological case:

i. The area in which the AEA is indefinitely sustained is smaller for T = 35 oC than

for T = 37 oC.

ii. There are less dark red regions and points above the main DRS for T = 35 oC

than for T = 37 oC.

iii. There are less regions in which the AEA is sustained for a finite time interval

above the main DRS for T = 35 oC than for T = 37 oC.

iv. The global slopes of the lower and upper boundaries of the main DRS are smaller

for T = 35 oC than for T = 37 oC.
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Fig. 5.37 – Persistence of the AEA induced by the MEF as a function
of parameters L and g̃sac for T = 35 oC.
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Therapeutic hypothermia and hyperthermia

The target temperature value for therapeutic hypothermia is close to 33 oC. The repre-

sentation of the persistence of the AEA induced by the MEF for T = 33 oC is shown in

Fig. 5.38. For T = 41 oC (hyperthermia), the corresponding plot is shown in Fig. 5.39.
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Fig. 5.38 – Persistence of the AEA induced by the MEF as a function
of parameters L and g̃sac for T = 33 oC.
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Fig. 5.39 – Persistence of the AEA induced by the MEF as a function
of parameters L and g̃sac for T = 41 oC.
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As expected, comparing Figs 5.37 and 5.38, the phenomena induced by a tempera-

ture decrease of 2 oC from the physiological case are even more accentuated for the

therapeutic hypothermia.

Looking at the hyperthermia case, the same conclusions can be made in the opposite

direction. Without physically interpreting, it can be underline that for these later two

extreme cases, the upper boundary of the main DRS is less smooth than the ones for

the other cases. This observation can be made mainly for large values of L.

5.1.10 Effects of the spatial location of the initial excitation: qual-

itative and systematic approaches

5.1.10.1 Qualitative approach

As a first approach, the influence of the spatial location of the initial excitation on the

persistence of the AEA induced by the MEF by testing five different ICs for T = 39 oC.

The initial excitation is successively applied to the regions of the fiber ranging from:

i. L/10− 0.04 cm to L/10 + 0.04 cm;

ii. L/5− 0.04 cm to L/5 + 0.04 cm;

iii. L/3− 0.04 cm to L/3 + 0.04 cm;

iv. 2L/5− 0.04 cm to 2L/5 + 0.04 cm;

v. L/2− 0.04 cm to L/2 + 0.04 cm.

The first case, for which the external current is applied to the region of the fiber ranging

from L/10 − 0.04 cm to L/10 + 0.04 cm, has already been depicted in Fig. 5.36. The

four other plots of the persistence of the AEA, corresponding to the four other ICs,

are shown in Figs 5.40, 5.41, 5.42, and 5.43.

The five plots of the persistence of the AEA are heavily dependent on ICs as observed

by comparing Figs 5.36, 5.40, 5.41, 5.42, and 5.43:

i. The five main DRSs are significantly different. The lower critical value relative

to L, under which the AEA is not indefinitely sustained, is larger when the

initial excitation is applied close to the boundaries of the fiber. The closer to the

boundary the initial excitation, the smaller the lower critical value.
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ii. The left and the lower boundaries of the main DRSs are very sharp for all the

different ICs except the upper part of the left boundary of the main DRS for the

case corresponding to Fig. 5.41.

iii. For all the different ICs, the transitions relative to the upper boundary of the

main DRS correspond to switches from a perpetual AEA to a finite AEA. For

all the ICs, there are different regions above the main DRS for which the AEA

is indefinitely sustained. However, the number, the size, and the distribution of

these regions are very different.

iv. From the five different cases regarding the influence of the ICs on the persistence

of the AEA, one of them is very singular. This is the case for which the external

current is applied to the region of the fiber ranging from L/3− 0.04 cm to L/3 +

0.04 cm, corresponding to Fig. 5.41. The main DRS is significantly larger than

those for the other cases. In addition, a large region for which the AEA is

sustained for a finite time interval occurs close to the ‘north-west’ part of the

main DRS.

Contrary to the effects of a change of temperature on the key features of the persistence

on the AEA, the influence of the ICs is less readily established. Therefore, it is quite

reasonable to perform a systematic scanning for all the possible locations of the initial

excitation to go further into the role played by the ICs.
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Fig. 5.40 – Persistence of the AEA induced by the MEF as a function
of parameters L and g̃sac for T = 39 oC and an initial excitation applied
to X ∈ [L/5− 0.04 cm, L/5 + 0.04 cm].
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Fig. 5.41 – Persistence of the AEA induced by the MEF as a function
of parameters L and g̃sac for T = 39 oC and an initial excitation applied
to X ∈ [L/3− 0.04 cm, L/3 + 0.04 cm].
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Fig. 5.42 – Persistence of the AEA induced by the MEF as a function
of parameters L and g̃sac for T = 39 oC and an initial excitation applied
to X ∈ [2L/5− 0.04 cm, 2L/5 + 0.04 cm].

.... ....
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Fig. 5.43 – Persistence of the AEA induced by the MEF as a function
of parameters L and g̃sac for T = 39 oC and an initial excitation applied
to X ∈ [L/2− 0.04 cm, L/2 + 0.04 cm].

5.1.10.2 Systematic approach

To perform this systematic scanning, the length of the fiber is chosen equal to 7 cm.

All other model parameters are held fixed except the temperature value that ranges

from 36.5 oC to 39 oC with a step of 0.5 oC. In this way, the influence of a temperature

change on the AEA will be highlighted. The model parameter values have been chosen

to generate an AEA indefinitely sustained by the MEF for the six different temperature

values: D0 = 0.001 cm2 ms−1, ε0 = 0.003 ms−1, ε1 = 0.090 ms−1, g̃sac = 0.045, a = 0.05,

and κv = 2 ms−1. With the chosen parameter values, only period-1 solutions occur:

T̄l = T̄p and the spatio-temporal variance [Eq. (5.76)] is equal to zero. In this case,

T̄l = Tl (Xm) ∀ Xm ∈ [0, L].

In addition to T̄l, other features may be interesting to observe to characterize the AEA:

i. the spatial width of the excitatory source

ii. the final location, Xend, of the center of the excitatory source

In the following, the influence of the location of the initial excitation, whose the center

is referred to as Xini, on the following three features of the AEA occurring in a fiber of

7 cm long is examined in a systematic way:
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i. the time period, T̄l

ii. Xend (after 200 s of simulation)

iii. the spatial width of the excitatory source

Using the spatial discretization introduced in section 5.1.5.1, with ∆X = 0.02 cm, and

the symmetry of the problem with respect to the middle of the fiber, 176 different

locations (nodes) are possible for the center of the initial excitation with a fiber of 7 cm

long. Since six different temperature values are examined, 1056 (176× 6) simulations

must be performed to scan all the possible locations and temperature values.

Due to the aforesaid symmetry, results are presented from 0 cm (or 0 with a normalized

length) to 3.5 cm (or 0.5 with a normalized length). In addition, for the clarity of the

plots, the results are depicted only for three temperatures. However, these three values

encapsulate all the possible cases8 observed for the six temperature values actually

tested.
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Fig. 5.44 – Location of the center of the excitatory source as a function
of the location of the center of the initial excitation in terms of the
normalized length of the fiber for three different temperature values
(37 oC, 38 oC, and 39 oC). General behavior (a) and local behavior for
Xini ranging from 0.1485 to 0.1595 (b).

8From a qualitative point of view, two different behaviors are observed. For 36.5 oC and 37 oC,
three attractors are found whereas for T ranging from 37.5 oC to 39 oC, only two attractors are found.
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As shown in Fig. 5.44, for a given temperature value, Xend is very dependent on the

location of the initial excitation in the fiber. Different attractors are observed in the

fiber. The number of attractors depends on the temperature value. Their locations

and the sizes of their basins of attraction also change (in a very slight way for the sizes)

due to a temperature variation.

For T = 37 oC, three attractors are found. In terms of the normalized length, the first

attractor is close to the boundary, at 9.52×10−3, and the size of its basin of attraction

is 8.86×10−2 (region of the fiber ranging from 0 to 8.86×10−2, referred to as ‘region 1a’

for T = 37 oC). The second attractor is found at 4.19×10−2 and its basin of attraction

has a size of 1.26× 10−1 (region of the fiber ranging from 9.14 × 10−2 to 2.17× 10−1,

referred to as ‘region 1b’ for T = 37 oC). The third attractor is observed at 2.81×10−1

and the size of its basin of attraction is equal to 3.43×10−2 (region of the fiber ranging

from 2.20 × 10−1 to 2.54 × 10−1, referred to as ‘region 2’ for T = 37 oC). For Xini

ranging from 2.57× 10−1 to 5× 10−1, referred to as ‘region 3’ for T = 37 oC, there is

no attractor since the excitatory source stays at the location of the initial excitation.

For T = 38 oC, only two attractors are found (red lines depicted in Fig. 5.44). The

first one is located at 3.71 × 10−2 (red line shown in Fig. 5.44b) with a large basin

of attraction, characterized by a size of 2.23 × 10−2 (‘region 1’ , ranging from 0 to

2.23× 10−1 for T = 38 oC). The second one is located at 2.252× 10−1 and has a size of

3.14× 10−2 (‘region 2’ , ranging from 2.26× 10−1 to 2.57× 10−1 for T = 38 oC). From

2.6 × 10−1 to 5 × 10−1, referred to as ‘region 3’ for T = 38 oC, the excitatory source

stays at the location of the initial excitation.

For T = 39 oC, two attractors are found as for T = 38 oC. The first one is located at

3.62×10−2 with a basin of attraction characterized by a size of 2.26×10−2 (‘region 1’ ,

ranging from 0 to 2.26×10−1 for T = 39 oC). This is a bit larger than the corresponding

attractor for T = 38 oC. The second one is located at 2.18 × 10−1 and has a size of

2.85× 10−2 (‘region 2’ , ranging from 2.29× 10−1 to 2.57× 10−1 for T = 39 oC). From

2.6 × 10−1 to 5 × 10−1, referred to as ‘region 3’ for T = 39 oC (as for T = 38 oC),

no attractor is found and the excitatory source stays at the location of the initial

excitation.

Finally, three remarks may be added to the previous comments:
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i. Whether the number of attractor is the same (e.g. for T = 38 oC and T = 39 oC),

the location of the attractor close to the boundary of the fiber is very similar for

different temperatures while the location of the attractor characterized by the

smallest basin of attraction and corresponding to region 2 is different.

ii. Whether the number of attractor is different (e.g. for T = 37 oC and T = 38 oC),

the location of the attractor with the smallest basin of attraction is different. By

comparing the cases corresponding to T = 37 oC and T = 38 oC, the two basins of

attraction (regions 1a and 1b) relative to the two attractors close to the boundary

for T = 37 oC can be seen to merge due to a temperature increase (T = 38 oC).

This merging leads to a new single attractor with a larger basin of attraction,

which is located very close to the second attractor (by scanning the fiber from

the boundary toward the center) of the case corresponding to T = 37 oC.

iii. The size of the different basins of attraction is very similar for all the temperature

values. In other words, the size of these basins of attraction is not very sensitive

to a temperature change. Note that for T = 37 oC, the size of the sum of region

1a and region 1b is similar (a tiny bit smaller) to the size of region 1 for T = 38 oC

and T = 39 oC.
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Fig. 5.45 – Time period as a function of the location of the center of
the initial excitation in terms of the normalized length of the fiber for
three different temperature values (37 oC, 38 oC, and 39 oC).
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As shown in Fig. 5.45, for a given temperature value, the time period significantly

depends on the location of the initial excitation. For T = 37 oC, the time periods

corresponding to an initial excitation applied to regions 1a and 1b are equal to 166.3 ms

and 169.6 ms, respectively. The largest time period of 187 ms characterizes an initial

excitation applied to region 2. Finally, the time period corresponding to an initial

excitation applied to region 3 ranges from 167.5 ms to 170.2 ms. Regarding this region

3, the time period is non-monotonic with respect to Xini.

For T = 38 oC the time periods relative to an initial excitation applied to regions 1 and

2 are equal to 154.8 ms and 170.8 ms, respectively. The time period corresponding to

an initial excitation applied to region 3 ranges from 152.7 ms to 153.9 ms. Anew, the

behavior of the time period with respect to Xini for this region is non-monotonic.

For T = 39 oC, the time periods regarding initial excitations applied to regions 1 and 2

are equal to 141.7 ms and 156.4 ms, respectively. An initial excitation applied to region

3 is characterized by a time period that ranges from 139.7 ms to 141.2 ms and this time

period behaves in a non-monotonic fashion with respect to Xini.

Several key elements may be underlined from theses simulations:

i. The time period significantly decreases when the temperature increases every-

where in the fiber.

ii. The time period, for a given Xini, behaves as a nonlinear function of the tem-

perature. The variations of the time period, for a given Xini, resulting from an

increment (decrement) of 1 oC, are not similar depending on whether the incre-

ment (decrement) is performed from 38 oC (39 oC) to 39 oC (38 oC) or from 37 oC

(38 oC) to 38 oC (37 oC).

iii. The largest variation of the time period, arising from an increment or a decrement

of 1 oC from any temperature value tested, is found in the ‘same’ region, namely

region 2.

iv. The larger the temperature value, the flatter the time period with respect to Xini

in region 3 for T = 37 oC, T = 38 oC, and T = 39 oC.

Spatial width of the excitatory source

This section shows the dependence of the spatial width of the excitatory source with

respect to Xini.
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Fig. 5.46 – Spatial width of the excitatory source as a function of the
location of the center of the initial excitation in terms of the normalized
length of the fiber for three different temperature values (37 oC, 38 oC,
and 39 oC).

As shown in Fig. 5.46, for T = 37 oC, the excitatory source has a width of 2.29× 10−2

(approximately 0.16 cm) when the initial excitation is applied to region 1. For an initial

excitation applied to region 2, the width of the excitatory source is approximately equal

to 8.76×10−2 (approximately 0.61 cm). The largest width, 3.16×10−1 (approximately

2.21 cm), occurs for an initial excitation applied to region 3. By contrast, the smallest

width of the excitatory source, 2.19 × 10−2 (approximately 0.15 cm), occurs for an

initial excitation applied to region 4.

For T = 38 oC, the width of the excitatory source is equal to 7.71×10−2 (approximately

0.54 cm) for an initial excitation applied to region 1. The largest width of the excita-

tory source is equal to 4.4 × 10−1 (approximately 3.08 cm) and is shown for an initial

excitation applied to region 2. Regarding the smallest width of the excitatory source,

2.38× 10−2 (approximately 0.17 cm), it is observed for an initial excitation applied to

region 3.

For T = 39 oC, the widths of the excitatory source corresponding to the three different

regions are very similar as for T = 38 oC. For an initial excitation applied to region 1,

the width is equal to 7.76 × 10−2 (approximately 0.54 cm). The largest and smallest

widths of the excitatory source are equal to 4.41 × 10−1 (approximately 3.09 cm) and

2.10× 10−2 (approximately 0.15 cm), respectively.

.
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5.1.11 Effects of the magnitude of the initial excitation: a system-

atic approach

This section deals with the dependence of the behavior of the AEA with respect to

the magnitude of the external current applied initially for triggering the first action

potential in the fiber. For this purpose, the magnitude of this current is changed from

0.06 ms−1 to 0.1 ms−1 with an increment step of 0.005 ms−1. Its time-dependence is the

same as the one depicted in Fig. 5.2. Results with different magnitudes are compared

with the results from the previous section for the same parameter values and the specific

case corresponding to a temperature value of 37 oC. As in the previous section and for

similar reasons, results for only three different values of the magnitude are depicted in

figures.

5.1.11.1 Final location of the excitatory source

First, as shown in Fig 5.47a, the maximal magnitude of the external current, Is,max,

applied initially to the fiber does not influence the size of the four different regions.

Second, Xend does not change for region 1a and region 3 whether Is,max is increased.

On the other hand, Xend for region 1b is slightly altered while Xend for region 2 is very

different for Is,max = 0.1 ms−1.
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Fig. 5.47 – Location of the center of the excitatory source as a func-
tion of the location of the center of the initial excitation in terms of
the normalized length of the fiber for three different magnitude val-
ues (0.06 ms−1, 0.08 ms−1, and 0.1 ms−1). General behavior (a) and local
behavior for Xini ranging from 0.1485 to 0.1595 (b).
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5.1.11.2 Time period

The time period seems to be not dependent on the maximal magnitude of the external

current. As shown in Fig. 5.48, all the lines are similar.
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Fig. 5.48 – Time period as a function of the location of the initial exci-
tation in terms of the normalized length of the fiber for three different
magnitude values (0.06 ms−1, 0.08 ms−1, and 0.1 ms−1).

5.1.11.3 Spatial width of the excitatory source

Finally, as shown in Fig. 5.49, the spatial width of the excitatory source is similar for

Is,max = 0.06 ms−1 and Is,max = 0.08 ms−1 while a significant change is observed for

Is,max = 0.1 ms−1 in region 2 and region 3 (for T = 37 oC).

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

Xini (dimensionless)

W
id

th
(d

im
en

si
on

le
ss

)

 

 

0.06 ms−1

0.08 ms−1

0.1 ms−1

Fig. 5.49 – Spatial width of the excitatory source as a function of the
location of the initial excitation in terms of the normalized length of
the fiber for three different magnitude values (0.06 ms−1, 0.08 ms−1, and
0.1 ms−1).
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5.1.12 Floquet stability analysis

The Floquet theory consists in a linear stability analysis of periodic phenomena. This

theory enables to determine how a periodic solution of a dynamical system becomes

unstable. Assume an autonomous system

ẋ(t) = f (x(t)) , (5.84)

where x ∈ Rn and f ∈ Rn. The latter is a time-independent vector-valued vector

function. Eq. (5.84) has a reference periodic solution, xr (t), with

xr (t+ T ) = xr (t) . (5.85)

To examine the stability of the periodic solution xr (t), the time evolution of a small

perturbation, x̃ (t), is studied. Consider x (t) = xr (t) + x̃ (t). Therefore, inserting the

latter relation into Eq. (5.84), the following relation may be written:

˙̃x (t) = ẋ (t)− xr (t)

= f (xr (t) + x̃ (t))− f (xr (t)) . (5.86)

Moreover, f (xr (t) + x̃ (t)) may be expanded in a Taylor series around xr (t):

f (xr (t) + x̃ (t)) = f (xr (t)) +
∂f

∂x

∣∣∣∣∣
xr(t)

·x̃ (t) +O
(
x̃ (t)2

)
. (5.87)

As a result, substituting Eq. (5.87) into Eq. (5.86), the following relation may be

written:

˙̃x (t) =
∂f

∂x

∣∣∣∣∣
xr(t)

·x̃ (t) . (5.88)

Thus, the perturbation x̃ (t) satisfies the relation

˙̃x (t) = D (t) ·x̃ (t) , (5.89)
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with

D (t) =
∂f

∂x

∣∣∣∣∣
xr(t)

. (5.90)

D (t) is periodic due to the periodicity of xr (t). The basic idea of the Floquet stability

theory is the assumption that the periodicity of D (t) enables to reduce the system

given by Eq. (5.89) to a system with constant coefficients if the system is observed

at discrete points in time t = 0, T, 2T, 3T, . . . From a geometric point of view, this

corresponds to a Poincarré section [110].

The system given by Eq. (5.89) is characterized by the n linearly independent solutions

ϕ1 (t), ϕ2 (t), . . . , ϕn (t) which can be represented by n× 1 matrices9 [ϕ1 (t)], [ϕ2 (t)],

. . . , [ϕn (t)]. The fundamental matrix, [Φ (t)], of the system [Eq. (5.89)] is obtained

by assembling [ϕ1 (t)], [ϕ2 (t)], . . . , [ϕn (t)], with [Φ (0)] = [I]. As a result,
[
Φ̇
]

=

[D (t)] [Φ (t)]. Using the fundamental matrix, any solution [x̃ (t)] of Eq. (5.89) may be

written in the following form:

[x̃ (t)] = [Φ (t)] [x̃0] , (5.91)

where [x̃0] represents the IC. As [D (t)] is a periodic matrix, [x̃ (t+ T )] is also a solution

of Eq. (5.89) and, thus,

[x̃ (t+ T )] = [Φ (t)] [x̃ (T )] . (5.92)

Due to Eq. (5.91), the following relation may be written:

[x̃ (T )] = [Φ (T )] [x̃0] , (5.93)

[x̃ (t+ T )] = [Φ (t+ T )] [x̃0] . (5.94)

Substituting Eq. (5.93) into Eq. (5.92), [x̃ (t+ T )] may be written as

[x̃ (t+ T )] = [Φ (t)] [Φ (T )] [x̃0] . (5.95)

9Any quantity written as [•] describes a matrix.
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Comparing Eqs (5.94) and (5.95), it can be observed that

[Φ (t+ T )] = [Φ (t)] [Φ (T )]

= [Φ (T )] [Φ (t)] . (5.96)

The matrix [Φ (T )] is called the monodromy matrix. The eigenvalues, λj, of this matrix

are known as the Floquet multipliers. It can be shown that the monodromy matrix

always has one eigenvalue equal to one, associated with the eigenvector [ẋr (0)] [110].

This Floquet multiplier is also called the trivial Floquet multiplier. The eigenvalues of

[Φ (T )], different from one, determine the stability of the periodic solution (also called

limit cycle), [xr (t)]. A periodic solution is stable if all the Floquet multipliers except

the trivial Floquet multiplier are strictly smaller than one in modulus. When one or

more Floquet multipliers cross the unit circle in the complex plane, bifurcations occur.

In other words, if λ1 = 1, the limit cycle will be stable if |λj| < 1 for j ≥ 2 and unstable

if |λj| > 1 at least for one value of j ≥ 2.

In addition, a periodic orbit can lose its stability in three different ways:

i. λj = 1 and Im (λj) = 0

ii. λj = −1 and Im (λj) = 0

iii. |λj| = 1 and Im (λj) 6= 0 (a pair of complex conjugate eigenvalues)

Each of these three cases is the sign of a particular type of bifurcation. The case

(i), which corresponds to a crossing of the unit circle in the complex plane at +1,

is associated with a saddle-node bifurcation, a transcritical bifurcation, or a pitchfork

bifurcation (subcritical or supercritical). The case (ii), which corresponds to a crossing

of the unit circle at−1, is associated with a flip bifurcation (subcritical or supercritical),

also called period-doubling bifurcation. The case (iii), which corresponds to a crossing

of the unit circle in the complex plane at exp (i θ) (i =
√
−1 and θ is the argument of

the complex number), is associated with a Neimark–Sacker bifurcation (subcritical or

supercritical) [110].

Shortly after a saddle-node bifurcation, a subcritical Neimark–Sacker bifurcation, or a

subcritical flip bifurcation, the system can undergo an intermittency phenomenon. As

mentioned in [110], there is no precise standard definition of the concept of intermit-

tency. A signal is generally designated intermittent if its temporal evolution appears
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regular (laminar) over long periods of time, yet is interrupted now and again by short

irregular (turbulent) intervals with amplitudes of higher intensity [110]. In accordance

with the path the eigenvalues take when crossing the unit circle, intermittency is clas-

sified in three groups:

i. Type I intermittency is generated by a saddle-node bifurcation corresponding to

a Floquet multiplier crossing the unit circle at +1.

ii. Type II intermittency is generated by a subcritical Neimark–Sacker bifurcation

corresponding to a pair of complex conjugate Floquet multipliers crossing the

unit circle at exp (i θ).

iii. Type III intermittency is generated by a subcritical flip bifurcation corresponding

to a Floquet multiplier crossing the unit circle at −1.

In addition, shortly after a supercritical Neimark–Sacker bifurcation and shortly after

a supercritical flip bifurcation, the system can be characterized by a quasi-periodic

solution and by period-2 solution, respectively. These different phenomena which may

be observed shortly after these particular bifurcations are summarized in Tab. 5.5.

Crossing Bifurcation Phenomenon
+1 saddle-node type I intermittency

exp (i θ) subcritical Neimark–Sacker type II intermittency
exp (i θ) supercritical Neimark–Sacker quasi-periodicity
−1 subcritical flip type III intermittency
−1 supercritical flip periodicity

Tab. 5.5 – Behavior of dynamical systems as a function of the type of
bifurcation.

The Floquet theory, briefly discussed above, is suitable for studying the linear stability

of dynamical systems describing periodic phenomena (systems of ODEs). In this work,

the system relative to the modified GC minimal model, constituted by one PDE and

one ODE [Eqs (5.32)-(5.38)], is a spatially extended dynamical system. The dependent

variables, V̄ and v, of the modified GC minimal model are time- and space-dependent.

However, the spatial discretization of the problem leads to a dynamical system of

dimension 2× (M + 1), which corresponds to twice the number of spatial points (two

ODEs for each spatial point). Therefore, as a first approach, it can be reasonably

assumed that the study of the linear stability of the dynamical system, resulting from
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the discretization of the real spatially extended system examined in this work, can

provide significant information about the linear stability of this real spatially extended

system.

It is important to keep in mind that the conclusions summarized in Tab. 5.5 are theo-

retically valid for (non-spatially extended) dynamical systems. As a consequence, the

conclusions established in the following must be handled with care and taken as a first

characterization of the real spatially extended system.

5.1.12.1 Computation of the eigenvalues of the monodromy matrix

From a numerical point of view, there are different algorithms enabling to compute the

eigenvalues of a matrix. The monodromy matrix is characterized by a dimension of

(2M + 2) × (2M + 2). For instance, assuming that the cardiac fiber has a length of

7 cm, the spatial discretization described in section 5.1.5.1, with ∆X = 0.02 cm, leads

to M = 350. Thus, the monodromy matrix has a dimension of 702× 702.

A first approach would be to compute the entire eigenspectrum of the monodromy

matrix with a direct approach. However, the Floquet stability analysis enables to

know how the periodic solution becomes unstable only with the eigenvalues of the

monodromy matrix with the largest magnitudes. For this particular case, a suitable

approach, which reduces the computational cost, is used: the Arnoldi iteration [111].

This method is based on an iterative procedure that relies on Krylov subspaces.

Krylov subspaces

Assume a nonsingular matrix [A] ∈ Cn×n and [v] 6= [0] ∈ Cn×1. The Krylov subspace

of order p, Kp, generated by [A] from [v] is

Kp ([A] , [v]) = span
{
[v] , [A] [v] , [A]2 [v] , . . . , [A]p−1 [v]

}
. (5.97)

Basically, the Arnoldi iteration is an orthonormal projection of [A] onto a Krylov

subspace of order p, Kp ([A] , [v]), usually with p≪ n [112]. In other words, the Arnoldi

iteration is the standard Gram-Schmidt orthonormalization procedure [112] applied to

the Krylov subspace Kp ([A] , [v]). As a result, the Arnoldi iteration reduces the initial

matrix [A] ∈ Cn×n to a smaller upper Hessenberg matrix [H] ∈ Cp×p. The Arnoldi
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method is very useful because it enables to generate accurate eigenvalue approximations

from a partial rather than a full upper Hessenberg factorization of the matrix [A].

From a pragmatic point of view, p is taken equal to 40 to approximate the 20 eigenvalues

of the monodromy matrix with the largest magnitudes: |λ1| ≥ |λ2| ≥ . . . ≥ |λ19| ≥
|λ20| ≥ . . . ≥ |λn−1| ≥ |λn|. The determination of the value of p has been performed by

a trial-and-error method to obtain the 20 eigenvalues with the largest magnitudes in an

accurate way. The computation of the 20 eigenvalues with the largest magnitudes from

the upper Hessenberg matrix [H40] ∈ C40×40 is performed by using the QZ eigensolver

implemented in the MATLABr environment.

5.1.13 Tracking of the solution with respect to g̃sac

The purpose of this section is to determine, for a given length of fiber, the values of g̃sac

for which the branch of period-1 solutions is stable and unstable. Moreover, when the

aforesaid branch becomes unstable, the Floquet multipliers enable to know the type of

instability that occurs.

As shown in section 5.1.9, the simulations have highlighted that for a given IC and

a specific temperature value, the AEA induced by the MEF occurs only for specific

values of g̃sac and L, and is sustained either for a finite time interval or in a perpetual

fashion.

The solution has been tracked with respect to g̃sac for six different length of the fiber:

3.5 cm, 5 cm, 6.5 cm, 8 cm, 9.5 cm, and 11 cm. Following the length of the fiber, the

starting solution (depicted by a white point in Fig. 5.68), is characterized by different

values of g̃sac:

i. for L = 3.5 cm, L = 5 cm, or L = 6.5 cm, g̃sac = 0.04

ii. for L = 8 cm, g̃sac = 0.045

iii. for L = 9.5 cm, g̃sac = 0.05

iv. for L = 11 cm, g̃sac = 0.055

Note that these particular period-1 solutions have been obtained with T = 37 oC and

an initial excitation applied to the region of the fiber ranging from L/10− 0.04 cm to

L/10 + 0.04 cm.
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The tracking is performed in both directions (as depicted by doubleheaded arrows in

Fig. 5.68) by progressively increasing and decreasing the value of g̃sac. The increment

and decrement steps are similar and equal to 10−6. After each increment (or decrement)

of the value of g̃sac, the new solution is obtained by a continuation method (simple

shooting approach) [113]. For computational cost reasons, rather than computing the

Floquet multipliers (time-consuming) for each increment (or decrement) step of the

value of g̃sac, the computation is performed every 50 increment (or decrement) steps.

The computational code developed for tracking the period-1 solutions and studying

the stability of the solution is robust until the solution becomes unstable. It does not

enable to track the unstable solutions (after an eigenvalue of the monodromy matrix

has crossed the unit circle in the complex plane). In other words, the computational

code ends a bit before an eigenvalue crosses the unit circle in the complex plane. This

is due to some stopping criteria used by the continuation method developed in this

work. Nevertheless, the computational code enables to determine the way the Floquet

multipliers cross the unit circle in the complex plane.

5.1.13.1 Type of bifurcation as a function of L

Different types of bifurcations may be associated with each length of the fiber. The

purpose of this section is precisely to highlight these bifurcations. Moreover, this

section also determines, for each L, the range of g̃sac for which the branch of period-1

solutions is stable. Note that the size of this range is slightly underestimated due to

stopping criteria used by the continuation method as already mentioned. To visualize

the state of the system, the Floquet multiplier with the largest magnitude, λmax =

|λmax| exp (i θmax), is depicted in terms of its magnitude, |λ|max, and its phase, θmax, as

a function of g̃sac. If θmax = 0, when the Floquet multiplier crosses the unit circle in

the complex plane, this means that the crossing occurs at +1. When θmax = π, the

Floquet multiplier crosses the unit circle at −1. And finally, when θ 6= 0 and θ 6= π,

the two complex conjugate Floquet multipliers cross the unit circle at exp (±i θmax).

Length of the fiber: 3.5 cm, 5 cm, and 6.5 cm

For L = 3.5 cm, the value of g̃sac is decreased from 4 × 10−2 to 3.255 × 10−2 (lower

critical value of the stability window of g̃sac with respect to the branch of period-1

solutions) and increased from 4 × 10−2 to 4.845 × 10−2 (upper critical value of the
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stability window of g̃sac with respect to the branch of period-1 solutions). Fig. 5.50

shows the magnitude, |λ|max, and the phase, θmax, of the Floquet multiplier with the

largest magnitude with respect to g̃sac. The Floquet multiplier λmax crosses the unit

circle at −1 for the lower critical value of g̃sac and at +1 for the upper critical value of

g̃sac (Fig. 5.50). Therefore, this result highlights that the type of bifurcation leading

to the loss of stability, for L = 3.5 cm, is different depending on whether the system

leaves the stability range of g̃sac with respect to the branch of period-1 solutions at the

bottom or top.
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Fig. 5.50 – Magnitude and phase of the Floquet multiplier with the
largest magnitude, in terms of g̃sac and for L = 3.5 cm.
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Fig. 5.51 – Time-space plot of the dimensionless membrane potential,
V̄ , for g̃sac = 0.0305 and L = 3.5 cm, showing a period-2 cycle.
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Fig. 5.52 – Time-space plots of the dimensionless membrane potential,
V̄ , for g̃sac = 0.05195 and L = 3.5 cm. Regular spatio-temporal behaviors
[(a) and (c)] are interrupted by irregular spatio-temporal behaviors dur-
ing short time intervals (b).
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Shortly after the bifurcation corresponding to λmax crossing the unit circle at −1,

the AEA is characterized by a periodic spatio-temporal pattern with a period-2 cycle

(Fig. 5.51). The spatially averaged time periods of these alternans are equal to 197.3 ms

and 180.8 ms. As a result, the loss of stability of the branch of period-1 solutions is

induced by a supercritical flip bifurcation.

Shortly after the bifurcation corresponding to λmax crossing the unit circle at +1, the

AEA is characterized by a regular spatio-temporal pattern (Figs 5.52a and 5.52c) inter-

rupted by irregular spatio-temporal patterns during short time intervals (Fig. 5.52b).

This type of phenomenon is typical of intermittency. Due to the path λmax takes when

crossing the unit circle, the intermittency is probably a type I intermittency induced

by a saddle-node bifurcation.

For L = 5 cm, as shown in Fig. 5.53, the loss of stability of the branch of period-1

solutions at the lower critical value of the stability range of g̃sac is associated with

λmax that crosses the unit circle at −1. Therefore, the destabilization of this branch is

induced by a flip bifurcation. Regarding the upper critical value of the stability range

of g̃sac, the loss of stability of the branch of period-1 solutions corresponds to λmax that

crosses the unit circle at +1. Thus, the destabilization of this branch is generated by

a saddle-node bifurcation.
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Fig. 5.53 – Magnitude and phase of the Floquet multiplier with the
largest magnitude, with respect to g̃sac and for L = 5 cm.



5. Methods, results, and discussion 195

(a)

Time (ms)

X
(c

m
)

7.985 7.9875 7.99 7.9925 7.995

x 10
5

0

1

2

3

4

5

(b)

Time (ms)

X
(c

m
)

7.9855 7.988 7.9905 7.993 7.9955

x 10
5

0

1

2

3

4

5

Fig. 5.54 – Time-space plots of the dimensionless membrane potential,
V̄ , for L = 5 cm. Period-3 cycle for g̃sac = 0.02830 (a) and period-2 cycle
for g̃sac = 0.02775 (b).

Shortly after the bifurcation (g̃sac = 0.02830) corresponding to λmax that crosses the

unit circle at −1, the AEA is characterized by a spatio-temporal behavior with a

period-3 cycle (Fig. 5.54a). The characteristic spatially averaged time periods are

approximately equal to 216.5 ms, 214.6 ms, and 206.3 ms. Continuing to decrease the

value of g̃sac, the AEA is then characterized by a period-2 solution as shown in Fig. 5.54b

(g̃sac = 0.02775). The spatially averaged time periods of these alternans are equal to

225.2 ms and 219.2 ms.

.
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Fig. 5.55 – Time-space plots of the dimensionless membrane potential,
V̄ , for g̃sac = 0.0514 and L = 5 cm. Regular spatio-temporal behaviors [(a)
and (c)] are interrupted by irregular spatio-temporal behaviors during
short time intervals (b).
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Due to the path λmax takes when crossing the unit circle, the loss of stability of the

branch of period-1 solutions is associated with a flip bifurcation. However, it is tricky

to determine whether this flip bifurcation is subcritical or supercritical because typical

phenomena induced by such bifurcations (intermittency and period doubling) are not

directly observed in the present case.

The inspection of the AEA, shortly after the saddle-node bifurcation (λmax crossing the

unit circle at +1), highlights regular spatio-temporal patterns (Figs 5.55a and 5.55c)

interrupted by irregular patterns during short time intervals (Fig. 5.55b). This intermit-

tency phenomenon, seems again to be a type I intermittency induced by a saddle-node

bifurcation.

Finally, it can be noted that the stability window of g̃sac with respect to the branch of

period-1 solutions is a bit larger than this for L = 3.5 cm, and it ranges from 3.03×10−2

to 5.03× 10−2 (Fig. 5.53).

For L = 6.5 cm, the stability window of g̃sac with respect to the branch of period-1

solutions ranges from 3.215× 10−2 to 4.91× 10−2. As shown in Fig. 5.56, the destabi-

lization of the branch of period-1 solutions at the lower and upper critical values of the

stability range of g̃sac is associated with a flip bifurcation and a saddle-node bifurcation,

respectively.
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Fig. 5.56 – Magnitude and phase of the Floquet multiplier with the
largest magnitude, in terms of g̃sac and for L = 6.5 cm.
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Fig. 5.57 – Time-space plot of the dimensionless membrane potential,
V̄ , for g̃sac = 0.0315 and L = 6.5 cm, showing a period-2 cycle.

Shortly after the flip bifurcation, corresponding to λmax crossing the unit circle at −1,

the AEA appears to be characterized by a period-2 cycle (Fig. 5.57). Thus, the flip

bifurcation is supercritical. The spatially averaged time periods of these alternans are

equal to 227.3 ms and 194.5 ms.

Shortly after the saddle-node bifurcation, corresponding to λmax crossing the unit cir-

cle at +1, the AEA is characterized by regular spatio-temporal patterns (Figs 5.58a

and 5.58c) interrupted by irregular patterns during short time intervals (Fig. 5.58b).

Therefore, the AEA seems to undergo an intermittency phenomenon, which is probably

a type I intermittency due to the nature of the bifurcation.

.
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Fig. 5.58 – Time-space plots of the dimensionless membrane potential,
V̄ , for g̃sac = 0.0542125 and L = 6.5 cm. Regular spatio-temporal behav-
iors [(a) and (c)] are interrupted by irregular spatio-temporal behaviors
during short time intervals (b).



200 5.1. Part 1: one-dimensional time-dependent TEM model

Length of the fiber: 8 cm and 9.5 cm

For L = 8 cm, the stability window of g̃sac with respect to the branch of period-1

solutions ranges from 3.205 × 10−2 to 5.69 × 10−2 (Fig. 5.59). The loss of stability of

the branch of period-1 solutions is induced by a flip bifurcation at the lower critical

value of the stability range of g̃sac (λmax crossing the unit circle at −1). At the upper

critical value of the stability range of g̃sac, the destabilization of the branch of period-1

solutions corresponds to a Neimark–Sacker bifurcation (two complex conjugate Floquet

multipliers cross the unit circle at exp (±i θ) with θ ≈ 6.58o).
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Fig. 5.59 – Magnitude and phase of the Floquet multiplier with the
largest magnitude, with respect to g̃sac and for L = 8 cm.
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Fig. 5.60 – Time-space plot of the dimensionless membrane potential,
V̄ , for g̃sac = 0.03005 and L = 8 cm, showing a period-2 cycle.
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Fig. 5.61 – Time-space plots of the dimensionless membrane potential,
V̄ , for g̃sac = 0.057105 and L = 8 cm. Regular spatio-temporal behaviors
[(a) and (c)] are interrupted by irregular spatio-temporal behaviors dur-
ing short time intervals (b).
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Shortly after the flip bifurcation, an AEA characterized by a period-2 cycle (Fig. 5.60)

is generated. As a result, this flip bifurcation is supercritical. The spatially averaged

time periods of these alternans are equal to 194.3 ms and 188.6 ms.

Shortly after the Neimark–Sacker bifurcation, the AEA is characterized by regular

spatio-temporal patterns interrupted by irregular patterns during short time intervals

(Fig. 5.61). In other words, an intermittency phenomenon seems to occur. Since this

phenomenon is induced by a Neimark–Sacker bifurcation, a type II intermittency can

be assumed and, thus, the bifurcation is subcritical.

For L = 9.5 cm, the stability window of g̃sac relative to the period-1 solution ranges

from 3.145 × 10−2 to 6.105 × 10−2. As shown in Fig. 5.62, the destabilization of the

branch of period-1 solutions is characterized by a Floquet multiplier that crosses the

unit circle at −1 at the lower critical value of the stability range of g̃sac. Therefore,

a flip bifurcation occurs. At the upper critical value of the stability range of g̃sac, the

loss of stability of the branch of period-1 solutions is associated with a Neimark–Sacker

bifurcation because two complex conjugate Floquet multipliers cross the unit circle at

exp (±i θ) with θ ≈ 10.71o.
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Fig. 5.62 – Magnitude and phase of the Floquet multiplier with the
largest magnitude, with respect to g̃sac and for L = 9.5 cm.

.
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Fig. 5.63 – Time-space plot of the dimensionless membrane potential,
V̄ , for g̃sac = 0.0296 and L = 9.5 cm, showing a period-2 cycle.

As shown in Fig. 5.63, shortly after the flip bifurcation (λmax crossing the unit circle

at −1), the AEA behaves in a periodic way with a period-2 cycle. The spatially

averaged time periods of these alternans are equal to 202.7 ms and 193 ms. Due to this

phenomenon, the flip bifurcation can be assumed to be supercritical.

Shortly after the Neimark–Sacker bifurcation, an intermittency phenomenon seems to

occur. Regular spatio-temporal patterns (Figs 5.64a, 5.64c, and 5.64f) are interrupted

by irregular patterns (Figs 5.64b, 5.64d, and 5.64e) during short time periods. Due to

the path the two complex conjugate Floquet multipliers take when crossing the unit

circle, the phenomenon is probably a type II intermittency and, thus, the Neimark–

Sacker bifurcation is subcritical.

.
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Fig. 5.64 – Time-space plots of the dimensionless membrane potential,
V̄ , for g̃sac = 0.06170 and L = 9.5 cm. Regular spatio-temporal behaviors
[(a), (c), and (f)] are interrupted by irregular spatio-temporal behaviors
during short time intervals [(b), (d), and (e)].
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Fig. 5.64 – Time-space plots of the dimensionless membrane potential,
V̄ , for g̃sac = 0.06170 and L = 9.5 cm. Regular spatio-temporal behaviors
[(a), (c), and (f)] are interrupted by irregular spatio-temporal behaviors
during short time intervals [(b), (d), and (e)].
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Length of the fiber: 11 cm

The stability window of g̃sac with respect to the branch of period-1 solutions ranges

from 3.5×10−2 to 6.405×10−2. Contrary to all previous cases, the loss of stability of the

branch of period-1 solutions seems to be characterized by a Neimark–Sacker bifurcation

(two complex conjugate Floquet multipliers cross the unit circle) both at the lower and

upper critical values of the stability range of g̃sac. As shown in Fig. 5.65, the two pairs

cross the unit circle at exp (±i θ) with θ ≈ 24.55o and θ ≈ 11.33o, respectively.
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Fig. 5.65 – Magnitude and phase of the Floquet multiplier with the
largest magnitude, with respect to g̃sac and for L = 11 cm.
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Fig. 5.66 – Time-space plot of the dimensionless membrane potential,
V̄ , for g̃sac = 0.03015 and L = 11 cm, characterized by a periodic or a
quasi-periodic solution with a period-2 cycle.



5. Methods, results, and discussion 207

Shortly after the Neimark–Sacker bifurcation at the lower critical value of g̃sac (pair

of complex conjugate Floquet multipliers crossing the unit circle at exp (±i θmax) with

θmax ≈ 24.55o), the AEA is characterized by a period-2 solution (Fig. 5.66). This type

of phenomenon is not expected to be induced by a Neimark–Sacker bifurcation.

A very plausible explanation is that the loss of stability of the branch of period-1

solutions is actually associated with a supercritical flip bifurcation leading to a new

periodic solution with a period-2 cycle. In this case, λmax should cross the unit circle at

−1. As shown in Fig. 5.65, the tracking algorithm has ended quite far from |λmax| = 1.

If the tracking algorithm had not ended so far from |λmax| = 1, the phase of λmax would

likely have switched to π rad as in the situation depicted in Fig. 5.62.

Shortly after the Neimark–Sacker bifurcation at the upper critical value of g̃sac (pair

of complex conjugate Floquet multipliers crossing the unit circle at exp (±i θmax) with

θmax ≈ 11.33o), the AEA is characterized by an intermittency as shown in Fig. 5.67.

Due to the path the two complex conjugate Floquet multipliers cross the unit circle,

this phenomenon is probably a type II intermittency and, thus, the Neimark–Sacker

bifurcation is probably subcritical.

...

...

...
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Fig. 5.67 – Time-space plots of the dimensionless membrane potential,
V̄ , for g̃sac = 0.06405 and L = 11 cm. Regular spatio-temporal behaviors
[(a) and (c)] are interrupted by irregular spatio-temporal behaviors dur-
ing short time intervals [(b), (d), (e), and (f)].
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Fig. 5.67 – Time-space plots of the dimensionless membrane potential,
V̄ , for g̃sac = 0.06405 and L = 11 cm. Regular spatio-temporal behaviors
[(a) and (c)] are interrupted by irregular spatio-temporal behaviors dur-
ing short time intervals [(b), (d), (e), and (f)].
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5.1.13.2 Summary of the Floquet stability analysis

In summary, this Floquet stability analysis has emphasized that the loss of stability of

the branch of period-1 solutions is induced by different types of bifurcations depending

on the length of the fiber and whether the system leaves the stability range of g̃sac with

respect to the branch of period-1 solutions at the bottom or top (Fig. 5.68).

In addition, the analysis of the spatio-temporal behavior of the AEA, shortly after a

particular type of bifurcation, has highlighted that specific spatio-temporal patterns

are induced by specific types of bifurcations.

Fig. 5.68 – Bifurcations leading to the loss of stability of the branches of
period-1 solutions at the upper and lower boundaries of the main DRS
for six different length of the fiber, L: 3.5 cm, 5 cm, 6.5 cm, 8 cm, 9.5 cm,
and 11 cm. A flip bifurcation is denoted by F, a saddle-node bifurcation
is denoted by SN, and a Neimark–Sacker bifurcation is denoted by NS.
The white points correspond to the initial solutions used to track the
branches of period-1 solutions and the doubleheaded arrows mean that
the branches are tracked in both directions.

In particular, for all the examined lengths of the fiber, the following observations can

be made:

i. Shortly after the bifurcation occurring at the upper critical value of the stability

range of g̃sac with respect to the branch of period-1 solutions, an intermittency

phenomenon (type I resulting from a saddle-node bifurcation and type II resulting

from a Neimark–Sacker bifurcation) is induced and eventually leads to the end
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of the AEA, which corresponds to the region above the main DRS in Fig. 5.68.

ii. Shortly after the bifurcation occurring at the lower critical value of the stability

range of g̃sac with respect to the branch of period-1 solutions, a period doubling,

namely a new periodic solution with a period-2 cycle (and period-3 cycle for

L = 5 cm), is induced by a flip bifurcation and eventually leads to the end of the

AEA (region under the main DRS in Fig. 5.68).

To go further into the understanding of the destabilization mechanisms and to corrob-

orate the conclusions drawn from this work about the linear stability of the spatially

extended system relative to the modified GC minimal model, a Floquet theory spe-

cially designed for PDEs should be used [114]. It could also be interesting to develop

a tracking algorithm able to follow the solutions after that Floquet multipliers have

crossed the unit circle. However, these two extensions have not been considered in this

work.

5.2 Part 2: two-dimensional time-dependent TEM

model

This section aims at studying the arrhythmogenic effects of the MEF within a TEM

framework considering a two-dimensional geometry. This study must be thought as

a first extension of the quantitative examination of the consequences of the MEF on

arrhythmogenesis conducted in the one-dimensional case. In particular, it can be in-

teresting to inspect whether the AEA induced by the MEF is characterized by similar

features as those regarding the one-dimensional case:

i. Does the AEA depend on the SAC conductance and the size of the solving do-

main?

ii. Does the AEA depend on the location of the initial excitation applied to the

cardiac muscle tissue?

iii. Does the temperature influence the spatio-temporal behavior of the AEA?
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In addition, in a two-dimensional configuration, re-entrant spiral waves may occur10.

In cardiac muscle tissue, these waves are life-threatening because they act as high fre-

quency sources of waves that generate tachycardia, an abnormal rapid heart beat that

is not controlled by the sino-atrial node. In ventricular tissue, tachycardia usually

decays within a few seconds into ventricular fibrillation (VF) [119], which consists in

an electrical activity which is completely spatio-temporally disorganized. This phe-

nomenon leads to sudden cardiac death. In many cases, VF has been shown to be

a consequence of several wandering spiral waves [120, 119, 121, 122, 123, 124]. As a

result, it has been suggested that VF can be associated with the break of a spiral wave

into multiple offsprings [125, 126].

In this context, it is interesting to qualitatively examine such phenomena within a

TEM framework.

5.2.1 Mechanical assumptions

The two-dimensional configuration adopted in this work consists in a square-shaped

slice of cardiac muscle tissue of side length L subject to the well-known plane strain

state assumption. Mathematically, it means that the deformation gradient tensor, F,

can be represented in a given system of coordinates by a matrix, [F ], with a form

[F ] =




F 1
1 F 1

2 0

F 2
1 F 2

2 0

0 0 1




. (5.98)

10A re-entry can be defined as a depolarization wave that repeatedly travels along a closed path.
Re-entries are approximately periodic phenomena with respect to time and their frequencies exceed
by far that of the sino-atrial node. In a two-dimensional context, re-entrant waves take the form of
spiral waves [115]. These may be induced by both anatomical and functional causes.

Anatomical re-entry can occur when a depolarization wave is blocked by an obstacle in the tissue
which is not able to conduct the depolarization wave. For instance, this obstacle may be made up of
the orifice of a blood vessel, a region of unexcitable scar tissue, or a poorly excitable region induced
by previous myocardial infarctions. The depolarization wave breaks when it strikes the aforesaid
obstacle [116]. This wave then propagates around the obstacle and remains pinned to it. Note that
the period of the spiral wave is defined by the CV and the size of the obstacle [117].

Functional re-entry does not need anatomic obstacles or local inhomogeneities to occur. This kind
of phenomenon may be induced in a healthy cardiac tissue by functional conduction blocks. These
can be generated by two causes:

i. a non-uniform dispersion of repolarization
ii. unidirectional blocks caused by stimuli at different sites [118]
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Considering this assumption, the volume ratio, previously defined in Eq. (3.71), is now

given by

J = F 1
1 F

2
2 − F 2

1 F
1
2 . (5.99)

Assuming a plane strain state, the material constitutive laws in a two-dimensional case

are provided by three-dimensional models, introduced in section 3.4, in which strains

are simply set to zero in the third (irrelevant) direction, which is the direction normal to

the plane of deformation. In addition, the cardiac tissue is assumed to passively behave

like a compressible isotropic hyperelastic material. In particular, the strain-energy, Ψ,

is described by a function, Ψ∗,MR
⋆ , of I1 (C) and I2 (C) [69, 98]:

Ψ = Ψ∗,MR
⋆ [I1 (C) , I2 (C)]

= c1 (I1 − 3) + c2 (I2 − 3) . (5.100)

5.2.1.1 Boundary conditions

A no-displacement is applied on each boundary of the square-shaped slice of cardiac

muscle tissue (the solving domain, Ω), respectively referred as to ∂Ω1, ∂Ω2, ∂Ω3, and

∂Ω4 to mechanically fix it. Mathematically, this condition is written as

u = 0 on ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4 (5.101)

for any time t.

5.2.1.2 Initial conditions

Cardiac tissue is assumed to be initially (t = t0) undeformed:

F 1
1

(
X1, X2, t

)∣∣∣
t=t0

= 1 , (5.102)

F 1
2

(
X1, X2, t

)∣∣∣
t=t0

= 0 , (5.103)

F 2
1

(
X1, X2, t

)∣∣∣
t=t0

= 0 , (5.104)

F 2
2

(
X1, X2, t

)∣∣∣
t=t0

= 1 , (5.105)
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and

J
(
X1, X2, t

)∣∣∣
t=t0

= 1 (5.106)

for any (X1, X2) ∈ [0, L]× [0, L].

5.2.2 Electrical assumptions

5.2.2.1 Boundary conditions

In a similar way as in the one-dimensional time-dependent TEM model, the domain Ω

is assumed to be surrounded by an electrical insulator. Therefore, a no-flux boundary

condition is applied on each boundary of the domain for the membrane potential.

Mathematically, this condition is written as

N̂ · (GradVm) = 0 on ∂Ω , (5.107)

where N̂ is the outward unit normal to the considered boundary and ∂Ω is the boundary

of the solving domain, Ω (the square-shaped slice of cardiac muscle tissue).

5.2.2.2 Initial conditions

From one simulation to another, ICs for electrical variables may be changed. Conse-

quently, the particular ICs used will be specified for each simulation.

5.2.3 Weak forms of the Cauchy’s first equation of motion and

the monodomain equation

Some numerical methods for solving partial differential equations (PDEs) require the

formulation of these PDEs in a weak form. The finite-element method (FEM), based

on the weak form of PDEs, is a convenient, powerful, and popular numerical method

to solve multi-dimensional problems. In the present work, this method has been used

to solve the equations of the two-dimensional time-dependent TEM model. Therefore,

the weak forms of the Cauchy’s first equation of motion and the monodomain equation,
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involved in this model, must be established. This is precisely the purpose of this section.

5.2.3.1 Weak form of the Cauchy’s first equation of motion

The well-known principle of virtual work (PVW) is a particular weak form of the

Cauchy’s first equation of motion. Assuming a quasi-static case (appendix A.2.1), the

PVW is written, in the current configuration, Ω, as

∫

Ω
[σ : δe] dV =

∫

Ω
ρb · δu dV +

∫

∂Ωσ

t̄ · δu dS , (5.108)

with

δe =
1
2

(
gradT δu + grad δu

)
. (5.109)

Note that all details relative to the PVW are presented in appendix A.2.1. In Eq. (5.108),

ρb, t̄, and σ represent the body force, the prescribed Cauchy traction vector, and

the Cauchy stress tensor, previously introduced in Eqs (3.119) and (3.122). δe and

δu represent the first variation of the Euler–Almansi strain tensor, e (section 3.2.6),

and the virtual displacement, which satisfies some specific assumptions detailed in ap-

pendix A.2.1.1, respectively.

The weak form given by Eq. (5.108) can also be written in terms of the PK2 stress ten-

sor, S, introduced in section 3.3.2 and related to the Cauchy stress tensor by Eq. (3.142).

In the reference configuration, Ω0, the PVW is written as

∫

Ω0

S : δE dV0 =
∫

Ω0

ρ0 B · δU dV0 +
∫

∂Ω0 σ

T̄⋆ · δU dS0 , (5.110)

with

δE =
1
2

[(
FT ·Grad δU

)T
+ FT ·Grad δU

]
. (5.111)

Note that δE is related to δe by the following relation:

δE = FT · δe · F . (5.112)
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In terms of components, Eq. (5.110) can be written as

∫

Ω0

SMN F m
N δUm|M dV0 =

∫

Ω0

Bm δUm dV0

+
∫

∂Ω0 σ

SMN F m
N NM δUm dA0 , (5.113)

where δUm|M represents the covariant derivative (section 3.1.6) with respect to the

XM -coordinate. In addition, the last term on the RHS in Eq. (5.113) can be rewritten

in terms of a volume integral by using the divergence theorem:

∫

∂Ω0 σ

SMN F m
N NM δUm dA0 =

∫

Ω0

(
SMN F m

N

)∣∣∣
M
δUm dV0

+
∫

Ω0

SMN F m
N δUm|M dV0 . (5.114)

Substituting Eq. (5.114) into Eq. (5.113), the weak form of the Cauchy’s first equation

of motion can be rewritten, in terms of the reference configuration, Ω0, as follows:

∫

Ω0

[
∂

∂XM

(
SMN F m

N

)
− ΓmkM

(
SMN F k

N

)
+Bm

]
δUm dV0 = 0 , (5.115)

where ΓmkM represent the Christoffel symbols of the second kind (section 3.1.5).

5.2.3.2 Weak form of the monodomain equation

The strong form of the monodomain equation has been firstly established in sec-

tion 2.2.3. Taking into account cardiac muscle tissue deformations, the monodomain

equation has been rewritten in the reference configuration, Ω0, as shown in Eq. (4.23).

As already mentioned, the FEM approach requires the weak form of PDEs. As a result,

the corresponding weak form to Eq. (4.23) must be established. Adopting a weighted

residual form to describe the membrane potential, Vm, over the reference configuration,

Ω0, and using an arbitrary weighting function, λ, the weak form of the monodomain

equation may be written as

∫

Ω0

[
∂Vm
∂t

+
1
C0
m

(
I0

ion + I0
sac + I0

app

)
−D0 ∂

∂XM

(√
C CMN

∂Vm
∂XN

)]
λ dV0 = 0 .

(5.116)
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5.2.4 Two-dimensional time-dependent simulations

The two-dimensional time-dependent simulations conducted in this work have been

performed by using the finite-element software COMSOL Multiphysicsr to solve the

complete model given by Eqs (4.38)-(4.51). In these two-dimensional studies, all the

model parameters (Tab. 5.6) and variables are made dimensionless in a similar way as in

[98, 103] except the parameters relative to the temperature effects. The characteristic

time, the characteristic length, and the characteristic pressure used here are equal to

10 ms, 0.1 cm, and 1 kPa, respectively. These values are consistent with those suggested

in [23, 50].

Parameter Value Units
a 0.05 dimensionless
D̄0 1 dimensionless
ε̄0 0.1 dimensionless
ε̄1 1 dimensionless

κ̄σactive
simulation-dependent dimensionless

κ̄v 8 dimensionless
ḡsac simulation-dependent dimensionless
c̄1 2 dimensionless
c̄2 6 dimensionless
T0 37 oC
T simulation-dependent oC
Q10 3 dimensionless
B 0.008 oC−1

L̄ simulation-dependent dimensionless

Tab. 5.6 – Parameter values for simulations with the two-dimensional
time-dependent TEM model. All the parameters written as (•̄) are the
parameters made dimensionless for the two-dimensional simulations.

5.2.4.1 Numerical aspects

The two-dimensional geometry is discretized by using a mapped mesh of linear quadri-

lateral finite elements. Quantities characterized by large spatial gradients are approx-

imated by using Bicubic Hermite shape functions (appendix B.2.5) whereas bilinear

Lagrange shape functions (appendix B.2.4) are used to approximate quantities that do

not vary spatially in an abrupt way.

It is well known that many biological fields are characterized by nonlinear and C1-
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continuous variations with respect to space. Therefore, bicubic Hermite shape functions

seem to be suitable for representing this kind of fields [127, 128]. In this work, all the

electrophysiological variables (V̄ , v, σactive) are represented by using bicubic Hermite

shape functions and the displacement field is represented by using bilinear Lagrange

shape functions.

The time-dependent solver used to solve the nonlinear differential-algebraic system

resulting from the FE disretization is the IDA solver [129], a modernized implemen-

tation of the DAE solver DASPK [130], which uses variable-order variable-step-size

backward differentiation formulas (first-order to fifth-order formulas are allowed). The

IDA solver includes a Newton solver to solve the nonlinear system of equations. This

Newton solver uses a particular linear solver for the resulting linear systems. Here, a

direct solver is adopted: the PARDISO solver [131, 132]. Note that all these methods

correspond to the versions implemented in COMSOL Multiphysicsr.

5.2.4.2 Map in the
(
L̄, ḡsac

)
space of the persistence of the AEA induced by the

MEF

The purpose of this section is essentially twofold:

i. Examine whether an AEA can be induced by the MEF in a two-dimensional

configuration as observed in the previous one-dimensional study.

ii. Examine the conditions in terms of the values of L̄ and ḡsac under which the AEA

may be perpetual.

Existence of an AEA induced by the MEF in a two-dimensional configuration

To examine this issue, the following parameter values are adopted: L̄ = 28.8, ḡsac = 1,

κ̄σactive
= 20, and T = 37 oC. All the other parameter values are given in Tab. 5.6. The

initial excitation consists in a depolarization applied to a circular region at the center

of the square with a radius length equal to 2.4 (dimensionless space units).

As shown in Fig. 5.69, there is a finite AEA induced by the MEF. After a few oscilla-

tions, the AEA vanishes: no electrical activity survives shortly after the instant t̄ = 59

(Fig. 5.69l).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.69 – Snapshots of the spatial distribution of the dimensionless
membrane potential, V̄ , at t̄ = 7 (a), t̄ = 13 (b), t̄ = 25 (c), t̄ = 37 (d),
t̄ = 39 (e), t̄ = 43 (f), t̄ = 48 (g), t̄ = 51 (h), t̄ = 53 (i), t̄ = 55 (j), t̄ = 57 (k),
and t̄ = 59 (l). The black arrows depict the direction of the gradient of
V̄ and are proportional to its magnitude. Parameter values: Tab. 5.6
with L̄ = 28.8, ḡsac = 1, κ̄σactive

= 20, and T = 37 oC.
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(g) (h)

(i) (j)

(k) (l)

Fig. 5.69 – Snapshots of the spatial distribution of the dimensionless
membrane potential, V̄ , at t̄ = 7 (a), t̄ = 13 (b), t̄ = 25 (c), t̄ = 37 (d),
t̄ = 39 (e), t̄ = 43 (f), t̄ = 48 (g), t̄ = 51 (h), t̄ = 53 (i), t̄ = 55 (j), t̄ = 57 (k),
and t̄ = 59 (l). The black arrows depict the direction of the gradient of
V̄ and are proportional to its magnitude. Parameter values: Tab. 5.6
with L̄ = 28.8, ḡsac = 1, κ̄σactive

= 20, and T = 37 oC.
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In the beginning of the simulation, the AEA is induced by a single excitatory source,

namely at the center of the square-shaped slice of cardiac tissue. This situation, charac-

terized by a single excitatory source, lasts until the oscillation corresponding to t̄ = 43

(Fig. 5.69f). Then, the excitatory source is split into multiple excitatory sources due

to the break of the propagating wave (Fig. 5.69g) as shown in Figs 5.69h and 5.69i.

These multiple excitatory sources are actually spiral waves. These spirals are barely

visible because they are not able to spatially develop in this situation but their tip can

be clearly observed in Fig. 5.69i. Shortly after the onset of these spirals, they collide

two by two while an AP is triggered at the center of the square-shaped slice of cardiac

tissue (Fig. 5.69j). The propagation of this AP is quickly blocked because the tissue is

still in an ERS; thus, the AEA ends (Figs 5.69k and 5.69l).

It is also interesting to note that, in the beginning of the simulation, the AP propagates

from the center to the boundaries as a circular-like wave (Fig. 5.69a). This is due to

the deformations occurring in the cardiac tissue. Without taking into account these

deformations, the AP would propagate in a circular way (Fig. 5.70).

.

(a) (b)

Fig. 5.70 – Snapshots of the spatial distribution of the dimensionless
membrane potential, V̄ , at t̄ = 2 (a) and t̄ = 7 (b) for a purely electrical
simulation. The black arrows depict the direction of the gradient of V̄
and are proportional to its magnitude. The situation at t̄ = 7 (b) must
be compared to Fig. 5.69a, which corresponds to the same instant.

.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.71 – Snapshots of the spatial distribution of the dimensionless
membrane potential, V̄ , at t̄ = 7 (a), t̄ = 13 (b), t̄ = 25 (c), t̄ = 37 (d),
t̄ = 39 (e), t̄ = 43 (f), t̄ = 48 (g), t̄ = 51 (h), t̄ = 53 (i), t̄ = 55 (j), t̄ = 168 (k),
and t̄ = 172 (l). The black arrows depict the direction of the gradient of
V̄ and are proportional to its magnitude. Parameter values: Tab. 5.6
with L̄ = 28.8, ḡsac = 1, κ̄σactive

= 15, and T = 37 oC.
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(g) (h)

(i) (j)

(k) (l)

Fig. 5.71 – Snapshots of the spatial distribution of the dimensionless
membrane potential, V̄ , at t̄ = 7 (a), t̄ = 13 (b), t̄ = 25 (c), t̄ = 37 (d),
t̄ = 39 (e), t̄ = 43 (f), t̄ = 48 (g), t̄ = 51 (h), t̄ = 53 (i), t̄ = 55 (j), t̄ = 168 (k),
and t̄ = 172 (l). The black arrows depict the direction of the gradient of
V̄ and are proportional to its magnitude. Parameter values: Tab. 5.6
with L̄ = 28.8, ḡsac = 1, κ̄σactive

= 15, and T = 37 oC.
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Decreasing the value of ḡsac or κ̄σactive
should slow down the excitation process triggered

by the SACs in the center of the square-shaped slice of cardiac tissue. For instance,

assume that all the parameters are unchanged except that κ̄σactive
is set to 15. This

means that the local active tension induced by the propagating wave will be smaller

as the one occurring for κ̄σactive
= 20. Thus, local stretchings will be smaller leading to

smaller SACs [Eq. (4.49)].

Fig. 5.71 shows that an AEA occurs and is still sustained by the MEF in these con-

ditions after more than 172 dimensionless time units. The spatio-temporal behavior

of the dimensionless membrane potential depicted in Figs 5.71a-5.71j must be com-

pared with the one depicted in Figs 5.69a-5.69j, which correspond exactly to the same

moments.

The main difference between these two behaviors can be observed after approximately

48 dimensionless time units by comparing Fig. 5.69g with Fig. 5.71g. In the first

situation (Fig. 5.69g), the depolarization wave is broken and multiple excitatory sources

are induced by this phenomenon leading to complex spatial patterns and eventually to

the end of the AEA. In the second situation (Fig. 5.71g), the depolarization wave does

not break, which enables the excitatory source to remain single and the AEA to be

sustained by the MEF for a longer period than the one observed in the first situation.

Conditions leading to a perpetual AEA

For reasons similar to those described in the one-dimensional study, a criterion must

be chosen to determine whether the AEA is indefinitely sustained by the MEF or not.

In this two-dimensional framework, the AEA will be considered as perpetual if the

latter still occurs after 200 dimensionless time units. To determine the conditions in

terms of L̄ and ḡsac under which the AEA is perpetual, the
(
L̄, ḡsac

)
space is scanned

for L̄ ∈ [28.8, 72] and ḡsac ∈ [0, 1.5] with increment steps of 7.2 and 0.125, respectively.

For all the simulations, the same ICs as those introduced previously are used.

From these simulations, a qualitative map in the
(
L̄, ḡsac

)
space of the persistence of

the AEA induced by the MEF can be drawn (Fig. 5.72).
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Fig. 5.72 – Qualitative map in the
(
L̄, ḡsac

)
space of the persistence of the

AEA induced by the MEF for T = 37 oC. The dark red spot encapsulates
all the situations corresponding to perpetual AEAs. The blue region
encapsulates all the situations different from perpetual AEAs (no AEA
at all or an AEA vanishing before 200 dimensionless time units).

Contrary to the one-dimensional case studied before, this map (Fig. 5.72) does not show

the duration of the persistence of the AEA for each particular points in the
(
L̄, ḡsac

)

space. This map consists in a dichotomy between the points
(
L̄, ḡsac

)
corresponding to

perpetual AEAs (red region) and the points which do not correspond to such behaviors

(blue region). In other words, the blue region in Fig. 5.72 encapsulates all the situations

different from perpetual AEAs. It means that some points in this region correspond

to finite AEAs vanishing before 200 dimensionless time units or no AEA at all.

Spatio-temporal patterns of perpetual AEAs

In Fig. 5.72, the red region highlights the points in the
(
L̄, ḡsac

)
space corresponding

to AEAs. It could be interesting to examine the spatio-temporal patterns of the di-

mensionless membrane potential associated with these points. Typical spatio-temporal

patterns of particular points in the
(
L̄, ḡsac

)
space are shown successively below (see

labeled black circles in Fig. 5.72):

i. point 1 (L̄ = 28.8, ḡsac = 0.625) and point 2 (L̄ = 28.8, ḡsac = 0.875)

ii. point 3 (L̄ = 43.2, ḡsac = 0.375) and point 4 (L̄ = 43.2, ḡsac = 1.25)

iii. point 5 (L̄ = 57.6, ḡsac = 0.5) and point 6 (L̄ = 57.6, ḡsac = 1.25)

iv. point 7 (L̄ = 72, ḡsac = 0.625) and point 8 (L̄ = 72, ḡsac = 1.375)
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(a) (b)

Fig. 5.73 – Point 1. Snapshots of the spatial distribution of the di-
mensionless membrane potential, V̄ , at t̄ = 192 (a) and t̄ = 200 (b).
Parameter values: Tab. 5.6 with L̄ = 28.8, ḡsac = 0.625, κ̄σactive

= 20, and
T = 37 oC.

(a) (b)

Fig. 5.74 – Point 2. Snapshots of the spatial distribution of the di-
mensionless membrane potential, V̄ , at t̄ = 188 (a) and t̄ = 194 (b).
Parameter values: Tab. 5.6 with L̄ = 28.8, ḡsac = 0.875, κ̄σactive

= 20, and
T = 37 oC.

.
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(a) (b)

Fig. 5.75 – Point 3. Snapshots of the spatial distribution of the di-
mensionless membrane potential, V̄ , at t̄ = 175 (a) and t̄ = 186 (b).
Parameter values: Tab. 5.6 with L̄ = 43.2, ḡsac = 0.375, κ̄σactive

= 20, and
T = 37 oC.

(a) (b)

(c) (d)

Fig. 5.76 – Point 4. Snapshots of the spatial distribution of the dimen-
sionless membrane potential, V̄ , at t̄ = 32 (a), t̄ = 64 (b), t̄ = 136 (c),
and t̄ = 189 (d). Parameter values: Tab. 5.6 with L̄ = 43.2, ḡsac = 1.25,
κ̄σactive

= 20, and T = 37 oC.
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(a) (b)

Fig. 5.77 – Point 5. Snapshots of the spatial distribution of the di-
mensionless membrane potential, V̄ , at t̄ = 180 (a) and t̄ = 185 (b).
Parameter values: Tab. 5.6 with L̄ = 57.6, ḡsac = 0.5, κ̄σactive

= 20, and
T = 37 oC.

(a) (b)

Fig. 5.78 – Point 6. Snapshots of the spatial distribution of the di-
mensionless membrane potential, V̄ , at t̄ = 196 (a) and t̄ = 200 (b).
Parameter values: Tab. 5.6 with L̄ = 57.6, ḡsac = 1.25, κ̄σactive

= 20, and
T = 37 oC.

.
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(a) (b)

Fig. 5.79 – Point 7. Snapshots of the spatial distribution of the di-
mensionless membrane potential, V̄ , at t̄ = 189 (a) and t̄ = 195 (b).
Parameter values: Tab. 5.6 with L̄ = 72, ḡsac = 0.625, κ̄σactive

= 20, and
T = 37 oC.

(a) (b)

(c) (d)

Fig. 5.80 – Point 8. Snapshots of the spatial distribution of the dimen-
sionless membrane potential, V̄ , at t̄ = 45 (a), t̄ = 62 (b), t̄ = 114 (c),
and t̄ = 189 (d). Parameter values: Tab. 5.6 with L̄ = 72, ḡsac = 1.375,
κ̄σactive

= 20, and T = 37 oC.
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As shown in Figs 5.73-5.80, the perpetual AEAs are characterized by different spatio-

temporal patterns. These seem to be dependent on the values of L̄ and ḡsac. For small

values of ḡsac and L̄ ∈ [28.8, 72], the AEAs seem to be associated with circular-like

waves (Figs 5.73, 5.75, 5.77, and 5.79). However, it seems that the larger the value of

L̄, the lesser circular the depolarization wave. Similar patterns are also observed for

larger values of ḡsac when L̄ = 28.8 and L̄ = 57.6 (Figs 5.74 and 5.78, respectively).

For larger values of ḡsac when L̄ = 43.2 and L̄ = 72 (Figs 5.76 and 5.80, respectively),

the AEAs correspond to spatio-temporal patterns characterized by multiple excitatory

sources (concomitant spiral waves and circular-like waves). In the beginning of the

simulation, these patterns seem to be spatially organized. Then, this organization is

progressively broken and fibrillation-like patterns seem to occur.

5.2.4.3 Effects of the spatial location of the initial excitation

So far, all the simulations have been performed by applying an initial depolarization

to the center of the square-shaped slice of cardiac tissue. Now, the influence of the

spatial location of the initial excitation is examined.

As shown previously in Fig. 5.69, for L̄ = 28.8, ḡsac = 1, κ̄σactive
= 20, and T = 37 oC,

an initial excitation applied to the center of the square-shaped slice of cardiac tissue

leads to a finite AEA which vanishes shortly after 59 dimensionless time units.

Now, the initial depolarization is applied to a similar circular region (radius length

equal to 2.4 dimensionless space units) but centered at X = L̄/4 and Y = L̄/4. In this

case, the AEA is perpetual. Thus, the spatial location of the initial excitation is clearly

a determining factor in the appearance of AEAs as in the one-dimensional study.

In addition, the excitatory source seems to drift in the direction of the center of the

square-shaped slice and stay at a particular site on the diagonal as shown in Fig. 5.81.

Therefore, the two-dimensional configuration seems to be characterized by attractors as

in the one-dimensional case. The corresponding spatio-temporal pattern to the green

line depicted in Fig. 5.81 is shown in Fig. 5.82a. The spatio-temporal pattern a few

dimensionless time units after is displayed in Fig. 5.82b.
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Fig. 5.81 – Spatial distribution along the diagonal of the square of the di-
mensionless membrane potential, V̄ , with L̄ = 28.8, ḡsac = 1, κ̄σactive

= 20,
and T = 37 oC at four different instants expressed in terms of dimen-
sionless time units.

(a) (b)

Fig. 5.82 – Spatial distribution of the dimensionless membrane poten-
tial, V̄ , with L̄ = 28.8, ḡsac = 1, κ̄σactive

= 20, and T = 37 oC at t̄ = 247.6 (a)
and t̄ = 254 (b).

It could be interesting to examine how this drift phenomenon behaves as a function

of the length of the square. For this purpose, the same parameter values as those

used in the previous simulation are adopted except that L̄ is equal to 43.2 instead of

28.8. As shown in Fig. 5.83, there is also a drift phenomenon for L̄ = 43.2. In this

case, the attractor corresponds to the center of the square-shaped slice of cardiac tissue

(magenta line in Fig. 5.83). Note that the drift of the excitatory source seems to slow

down as the latter moves to the center (Fig. 5.83).
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Fig. 5.83 – Spatial distribution along the diagonal of the square of the
dimensionless membrane potential, V̄ , with L̄ = 43.2, ḡsac = 1, κ̄σactive

= 20,
and T = 37 oC at five different instants expressed in terms of dimension-
less time units.

The corresponding spatial pattern to the green line and the magenta line depicted in

Fig. 5.83 are shown in Figs 5.84a and 5.84b, respectively.

(a) (b)

Fig. 5.84 – Spatial distribution in the square-shaped slice of cardiac
tissue of the dimensionless membrane potential, V̄ , with L̄ = 43.2, ḡsac =
1, κ̄σactive

= 20, and T = 37 oC at t̄ = 79.2 (a) and t̄ = 595 (b).

Two other values of L̄ have also been examined: a value slightly smaller than 28.8

and a value slightly larger than 28.8, namely 27.36 (95 % of 28.8) and 31.68 (110 %

of 28.8), respectively. For L̄ = 27.36, there is no AEA whereas for L̄ = 31.68, a drift

phenomenon similar to the one observed for L̄ = 43.2 occurs: the excitatory source

moves along the diagonal towards the center of the square-shaped slice of cardiac tissue.

From these last four results, it can be stated that the drift phenomenon depends on L̄,



5. Methods, results, and discussion 233

for all the other parameter values hold fixed. A similar phenomenon was also observed

in [98]. In fact, for a given set of parameter values, it seems that there exists a critical

length, L̄uc, above which the excitatory source moves along the diagonal towards the

center of the square. Slightly below this critical value (see results for L̄ = 27.36 and

L̄ = 28.8), there is probably a small range of values of L̄ for which the attractor is

located at a particular site along the diagonal of the square.

Note that another critical length, L̄dc, could also exist under which the excitatory source

would drift in the direction of the corner of the square. For instance, in this situation,

this critical length could be somewhere between 27.36 and 28.8. To better characterize

and to corroborate this first analysis of the drift phenomenon, a systematic approach

for scanning a large number of values of L̄, as the one used in the one-dimensional

study, should be used.

5.2.4.4 Effects of a temperature change

In the one-dimensional study, AEA has been observed to be significantly influenced by

a temperature change. A priori, the temperature must also play a significant role in

the spatio-temporal behavior of AEAs in a two-dimensional configuration. To corrob-

orate the influence of a temperature change on AEA, several simulations for different

temperature values are performed with the same parameter values and the same IC.

For all the simulations, the IC consists in a depolarization applied to a circular region,

characterized by a radius length equal to 2.4 dimensionless space units, centered at

X = 15 and Y = 15. The side length of the square-shaped slice of cardiac tissue is

equal to 28.8. All the other parameter values are given in Tab. 5.6 with ḡsac = 1 and

κ̄σactive
= 20.

Physiological case: T = 37 oC

First, the temperature value is set to 37 oC. After a small transitory phase, the AEA

is characterized by a periodic phenomenon with a period approximately equal to 12.4

dimensionless time units. As shown in Fig. 5.85, two concomitant spiral waves are

implied in this periodic phenomenon. Note that the spatial pattern of the dimensionless

membrane potential corresponding to t̄ = 545.2, which is not represented, is exactly

the same as the one depicted in Fig. 5.85a.
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(a) (b)

(c) (d)

Fig. 5.85 – Snapshots of the spatial distribution of the dimensionless
membrane potential, V̄ , at t̄ = 532.8 and t̄ = 545.2 (a), t̄ = 536 (b), t̄ = 539
(c), and t̄ = 542.2 (d). Parameter values: Tab. 5.6 with L̄ = 28.8, ḡsac = 1,
κ̄σactive

= 20, and T = 37 oC.

Therapeutic hypothermia: T = 33 oC

Now, the effects of a decrease in the temperature value are examined. The temperature

is set to 37 oC from 0 to 90 dimensionless time units. It is then progressively decreased

and reaches 33 oC at approximately t̄ = 91. As shown in Fig. 5.86, the spatio-temporal

behavior of the dimensionless membrane potential is characterized by a similar periodic

phenomenon as the one observed for 37 oC implying two concomitant spiral waves.

However, in this case, the time period is equal to approximately 14.6 dimensionless

time units instead of 12.4. As a consequence, it can be stated that a decrease in the

temperature value induces a decrease in the time period. Note that the spatial pattern

of the dimensionless membrane potential corresponding to t̄ = 568.6 is exactly the

same as the one depicted in Fig. 5.86a.
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(a) (b)

(c) (d)

Fig. 5.86 – Snapshots of the spatial distribution of the dimensionless
membrane potential, V̄ , at t̄ = 564 and t̄ = 578.6 (a), t̄ = 567.6 (b),
t̄ = 571.4 (c), and t̄ = 575 (d). Parameter values: Tab. 5.6 with L̄ = 28.8,
ḡsac = 1, κ̄σactive

= 20, and T = 33 oC.

Hyperthermia: T = 41 oC

Here, the effects of an increase in the temperature value are examined. The temperature

is set to 37 oC from 0 to 90 dimensionless time units. It is then progressively increased

and reaches 41 oC at approximately t̄ = 91. As shown in Fig. 5.87, two concomitant

spiral waves are also implied in the AEA but there is an additional excitatory source

in comparison with the previous two cases (T = 37 oC and T = 33 oC).

As shown in Figs 5.87a and 5.87d, this additional excitatory source is generated before

that the two aforesaid spiral waves collide. These spiral waves and this additional

excitatory source coexist in a rather regular way for a while but the phenomenon is

not really periodic anymore.

After approximately 340 dimensionless time units, the AEA eventually vanishes due to
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a change in the spatio-temporal structure of the dimensionless membrane potential as

observed by comparing the regular-like spatio-temporal structure depicted in Fig. 5.87

with Fig. 5.88.

Note that another temperature value, 42 oC, slightly larger than 41 oC has also been

examined. The behavior is quite different from the one observed for 41 oC after the

increase of the temperature value which occurs between 90 and 91 dimensionless time

units: there is not an additional excitatory source and the two concomitant spiral waves

vanish, at approximately t̄ = 111.4, just after they collide for the first time after the

temperature change as shown in Fig. 5.89.

(a) (b)

(c) (d)

Fig. 5.87 – Snapshots of the spatial distribution of the dimensionless
membrane potential, V̄ , at t̄ = 195.8 (a), t̄ = 199 (b), t̄ = 203 (c), and t̄ =
207 (d). Parameter values: Tab. 5.6 with L̄ = 28.8, ḡsac = 1, κ̄σactive

= 20,
and T = 41 oC.

.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.88 – Snapshots of the spatial distribution of the dimensionless
membrane potential, V̄ , at t̄ = 323.4 (a), t̄ = 326 (b), t̄ = 328.4 (c), t̄ = 331
(d), 333.6 (e), and 336.2 (f). Parameter values: Tab. 5.6 with L̄ = 28.8,
ḡsac = 1, κ̄σactive

= 20, and T = 41 oC.
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(a) (b)

Fig. 5.89 – Spatial distribution in the square-shaped slice of cardiac
tissue of the dimensionless membrane potential, V̄ , with L̄ = 28.8, ḡsac =
1, κ̄σactive

= 20, and T = 42 oC at t̄ = 100.4 (a) and t̄ = 106 (b).

5.2.4.5 Summary of the two-dimensional time-dependent TEM study

In summary, this two-dimensional time-dependent TEM study has enabled to highlight

the arrhythmogenic consequences of the cardiac MEF within a TEM framework. The

AEA induced by the MEF has been shown to occur under specific conditions. The

existence and the persistence of this AEA has been characterized in terms of the size

of the domain and the SAC conductance, which are the key parameters regarding the

cardiac MEF. As in the one-dimensional case, this AEA occurs only for specific values

of the aforesaid parameters and its persistence also depends heavily on these parameter

values.

The location of the initial excitation has been observed to play a central role in the

spatio-temporal behavior of the electromechanical phenomena within a TEM frame-

work as in the one-dimensional study. Temperature variations also alter in a significant

way the electromechanical behavior of the cardiac muscle tissue. For instance, for a

given set of parameter values and a range of temperature values leading to similar pe-

riodic AEAs (e.g. two concomitant spiral waves such as those shown for T = 37 oC and

T = 33 oC), the APD and the time period of the AEA increase when the temperature

value decreases. The same behavior was also observed in the one-dimensional case for

periodic AEAs.

It is interesting to underline that the AEA generated by the MEF can be associated
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with different spatio-temporal patterns depending on the size of the domain, and the

physiological and mechanical properties as in the one-dimensional case. Moreover, drift

phenomena have been highlighted in certain conditions and depend on the size of the

domain.

This time-dependent two-dimensional TEM study, which can be viewed as a first qual-

itative extension of the quantitative one-dimensional time-dependent TEM study de-

scribed in the first part of this chapter, has enabled to pave the way for further more

extensive and quantitative studies. The numerical simulations performed in this two-

dimensional framework have shown that the additional dimension enables the develop-

ment of complex structures, such as spiral waves and fibrillation-like patterns, under

specific conditions. These results corroborate the fact that mechanical changes can

lead to arrhythmias due to the MEF as shown in [3, 4].





Conclusion

Cardiac arrhythmias such as atrial fibrillation and ventricular fibrillation consist in

rapid and irregular electrical activity, which lead to either an inefficient or a com-

pletely null pumping function of the heart. The underlying mechanisms generating

such phenomena are not all thoroughly elucidated and must be better characterized.

In that context, this doctoral study has aimed at gaining insight into a particular ar-

rhythmogenic mechanism: the mechano-electric feedback (MEF). This MEF consists

in the modulation of electrical activity induced by mechanical deformation of cells and

tissues of the heart. In a healthy heart, the MEF acts as a regulatory mechanism

able to damp a mechanical perturbation undergone by the heart, at a specific moment,

by modulating electrical activity, shortly after this perturbation. In this way, a new

healthy electromechanical situation is recovered. However, it has been shown that car-

diac arrhythmias can sometimes be caused by abnormal mechanical changes inducing

several electrophysiological alterations via the MEF [3, 4].

On the other hand, therapeutic hypothermia (TH) is known nowadays as the most ef-

ficient treatment for reducing post-resuscitation brain damage from a cardiac arrest.

In that context, this work has tackled the MEF by taking into account temperature

variations as those undergone by the heart during TH, or those corresponding to hy-
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perthermia. Therefore, this doctoral study comes within a thermo-electro-mechanical

(TEM) framework.

The arrhythmogenic consequences of the MEF in a TEM framework, have been clearly

highlighted by performing a huge amount of numerical simulations and meticulously

analyzing results from these simulations. Time-dependent TEM models of cardiac

muscle tissue have been especially developed to examine the role played by the MEF

in cardiac arrhythmogenesis in a TEM framework.

First, a general time-dependent TEM model has been developed from the model pro-

posed by Panfilov et al. [98]. This model takes into account three different couplings:

i. excitation-contraction coupling (ECC)

ii. thermo-electric coupling (TEC)

iii. MEF

The ECC, which describes the contraction of cardiomyocytes resulting from an elec-

trical excitation, has been modeled by assuming a direct dependence of the active

tension development with respect to the membrane potential. A single ordinary dif-

ferential equation is used to describe the dynamics of the active tension. It enables

to mimic the time delay between the beginning of the depolarization of a cell and the

final contraction resulting from a complex signaling pathway triggered by the initial

depolarization. The electrical excitation process in cardiomyocytes has been described

by using a phenomenological model combining the Rogers–McCulloch model [18] and

the Aliev–Panfilov model [19].

The TEC accounts for the modulation of electrical activity due to a temperature vari-

ation. In this work, three temperature-dependent properties have been considered.

On the one hand, the gating kinetics of ion channels and the active tension devel-

opment have been assumed to be dependent on temperature in an exponential way.

On the other hand, the ionic conductances have been described as linear temperature-

dependent functions. This TEC is a one-directional coupling (weak coupling).

The MEF, which provides the modulation of the electrophysiology by mechanical de-

formation of cells and tissues of the heart, may be split into two components: the

physiological MEF and the geometric MEF. Stretch-activated currents (SACs), which
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are the physiological contribution to the MEF, have been modeled by using the generic

description suggested in [98, 100]. Regarding the geometric contribution to the MEF, it

is induced by structural deformation of the cardiac tissue, controlled by the mechanical

response of this tissue. This response is provided by material constitutive laws which

describe intrinsic properties of materials. This geometric contribution is hidden in the

diffusive term from the deformable monodomain equation, which has been adopted to

model propagation of depolarization waves in cardiac muscle tissue.

The passive mechanical behavior of the cardiac muscle tissue has been modeled by as-

suming a compressible hyperelastic isotropic material. The active mechanical behavior

of the cardiac tissue is taken into account by linearly superimposing active stresses

to the passive ones. The active stresses depend on the active tension, which is con-

trolled by the ECC model, and the Green-Lagrange strain tensor. It is important to

underline that the formulation used in this study for the active part of the second

Piola–Kirchhoff stress tensor has been analyzed in detail and contrasted with other

previous formulations.

Second, the general time-dependent TEM model has been particularized to cardiac

muscle tissue subject to deformation only in one dimension, corresponding to a patch

of cardiac muscle tissue subject to a one-dimensional deformation or a one-dimensional

cardiac muscle fiber. The patch or the fiber is assumed to be surrounded by an electrical

insulator and their boundaries (perpendicular to the direction of the one-dimensional

deformation regarding the patch) are held fixed. Assuming small deformations of the

cardiac muscle tissue, a simplified model has been derived from the one-dimensional

time-dependent TEM model: the modified global coupling minimal model (modified GC

minimal model).

A numerical comparison between the one-dimensional TEM model and the modified

GC minimal model has been performed. The differences between these two models

have been identified and discussed in detail. In addition, for specific parameter values,

large deformations, characterized by stretchings and shortenings reaching up to 15 %

and 20 %, have been highlighted with the one-dimensional TEM model. Besides, this

comparison has shown that, from a pragmatic point of view, the modified GC minimal

model is suitable to study TEM cases involving large one-dimensional deformations

with an order of magnitude equal to that encountered in the cardiac muscle tissue
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(10 %-20 %). Moreover, these first simulations have shown that the MEF can induce

an autonomous electrical activity (AEA) in the cardiac muscle tissue due to particular

mechanisms, which have been extensively discussed.

To understand the role played by each parameter of the model, a parametric study

has been performed for a given length of the fiber and a given temperature value.

This parametric study has highlighted the main effects of each parameter on the TEM

system. Depending on the parameter values, different spatio-temporal behaviors of the

AEA, have been shown and described. The AEA has been observed to be characterized

by periodic phenomena with period-1 cycles, spatially synchronized or desynchronized

alernans phenomena, and periodic phenomena for which several wavefronts are involved

in one period for different set of parameter values. For period-1 phenomena, the periods

have been shown to be very dependent on the parameter values. Drift phenomena have

also been emphasized regarding the excitatory source in the cardiac fiber. Finally, this

parametric study has clearly demonstrated that the AEA is only induced by the MEF

for specific ranges of parameter values. Further to this parametric study, a more

quantitative examination aiming at characterizing the arrhythmogenic effects of the

MEF in a TEM framework has been conducted. More precisely, the AEA induced by

the MEF has been studied in terms of the two key parameters regarding the MEF: the

dimensionless ionic conductance of the SACs, g̃sac, and the length of the fiber, L. The

effects of a temperature change have then been considered before examining the role

played by the location and the magnitude of the initial stimulus applied to the cardiac

muscle tissue enabling to trigger the first depolarization wave.

A systematic scanning of the (L, g̃sac) space has proved that the AEA induced by the

MEF is heavily dependent on these two parameters. For each value of L, ranging from

2 cm to 13.96 cm, a lower critical value and an upper critical value of g̃sac have been

identified, under and above which the AEA is not indefinitely sustained by the MEF,

respectively. Inversely, a lower critical value and an upper critical value of L have been

determined for each value of g̃sac. In other words, a region, referred to as the main

dark red spot (DRS) in this work, in which the AEA lasts infinitely has been drawn in

the (L, g̃sac) space.

The analysis of spatio-temporal features of the AEA in different parts of the main DRS

has shown that the AEA always behaves in a periodic way with a period-1 cycle as long
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as the AEA is observed not ‘too’ close to the boundary of the main DRS. However,

the AEA observed for the points in the (L, g̃sac) space located on the boundary of this

region or close to it behaves in a different way: the AEA is not characterized by a

period-1 cycle anymore. Depending on the value of L and whether the value of g̃sac is

close to its lower critical value or its upper critical value, under and above which the

AEA is not perpetual, different spatio-temporal patterns define the AEA.

As indicated by the Floquet stability analysis conducted in this work, these different

patterns observed close to the boundaries of the main DRS are induced by specific

bifurcations. These bifurcations correspond to the loss of stability of the branch of

period-1 solutions. Shortly after these bifurcations, particular phenomena are induced

such as intermittencies and periodic solutions with period-2 or period-3 cycles. Slightly

further than these bifurcations, these spatio-temporal phenomena eventually lead to

the end of the AEA. In addition, some small isolated regions in the (L, g̃sac) space

correspond to an AEA which is indefinitely sustained. The solutions corresponding to

these regions are also characterized by particular spatio-temporal patterns as empha-

sized in this study. However, no clear explanation has been found to understand why

perpetual or finite AEAs are observed far from the main DRS.

This study has also shown that a temperature variation, such as that undergone by

the heart during TH or hyperthermia, has a significant effect on the AEA induced

by the MEF. In particular, this work has highlighted that a decrease of temperature

dramatically reduces the area of the main DRS and modulates the shape of this region.

These effects have been explained mainly due to the lengthening (shortening) of the

action potential duration resulting from a decrease (increase) of the temperature value.

Besides, numerical simulations have shown that the AEA depends heavily on the loca-

tion of the initial excitation. The role played by the location of the initial excitation in

the arrhythmogenic effects of the MEF has been underlined for different temperature

values. The existence of attractors in the cardiac fiber has also been highlighted. The

number of these attractors, their locations, and the sizes of their basins of attraction

have been shown to be dependent on the temperature value. The analysis has also

underlined that the spatial width of the final excitatory source is heavily dependent

on the location of the initial excitation. Finally, the time period which characterizes

the AEA was also shown to depend on the location of the initial excitation and the
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temperature value.

Finally, an extension of the one-dimensional time-dependent TEM study to a two-

dimensional framework has been addressed. This extension which was mainly qualita-

tive has been conducted to pave the way for further more quantitative studies. As in

the one-dimensional configuration, the existence of an AEA has been highlighted under

specific conditions. In particular, a region in the
(
L̄, ḡsac

)
space in which the AEA is

indefinitely sustained can be defined. Inside this region, different spatio-temporal be-

haviors occur. For an initial depolarization applied to the center of the square-shaped

slice of cardiac tissue, circular-like waves, spiral waves, and more complex situations

such as fibrillation-like patterns have been observed.

The influence of the location of the initial excitation has clearly been emphasized.

In particular, for all the parameter values held fixed, the existence itself of an AEA

depends heavily on the location of the initial excitation. In addition, this study has

enabled to highlight the presence of attractors located at specific sites in the two-

dimensional geometry. The location of these attractors has been shown to depend on

the size of the domain. The temperature has also been observed to play a significant

role in the electromechanical behavior of the cardiac tissue.

Perspectives

This doctoral study was developed in a multidisciplinary framework and has involved

several complex fields: cardiac electrophysiology, mathematics, engineering, and pro-

gramming. A big challenge has been to deal with the specific skills related to each area

and even more the interactions between these fields.

The one-dimensional study has shown that the electromechanical behavior of cardiac

tissue in a TEM framework is intrinsically complex, even in a very simple geometry.

Many interesting results have been established and analyzed. In further modeling

works, it could be interesting to corroborate the conclusions drawn from the Floquet

stability analysis by using a Floquet theory specially designed for partial differential

equations, namely for spatially extended systems. It could also be interesting to develop

a tracking algorithm able to follow the solutions after that Floquet multipliers have

crossed the unit circle.

The two-dimensional study has enabled to underline, in a qualitative way, some inter-
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esting phenomena occurring due to the cardiac MEF in a TEM framework. To carry

on these first investigations, a more systematic quantitative approach should be used

such as the one adopted in the one-dimensional study. In addition, more realistic hy-

potheses with respect to electrical propagation and passive mechanical behavior should

be examined (e.g. anisotropy properties of the cardiac tissue). In terms of geometries,

other two-dimensional configurations and more complex three-dimensional configura-

tions, including specific structural details, should also be tested. Finally, it could be

also interesting to examine the possibility to develop some reduce models in two- or

three-dimensional configurations as the modified GC minimal model developed in the

one-dimensional framework.

This work has clearly highlighted that the MEF can generate fibrillation under specific

conditions. In addition, temperature variations have been shown to significantly alter

the properties of the AEA induced by the MEF. Therefore, from these results, it could

be thought that hypothetical defibrillation techniques based on mechanical shocks,

thermal shocks, or thermo-mechanical shocks could be developed and would be much

less traumatic for patients than the present defibrillation techniques.
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A.1 Observer, coordinate system, and Euclidean trans-

formation

To describe a physical process in a three-dimensional Euclidean space, a frame of

reference or an observer, labeled O, which can measure relative positions of points

in space (with a ruler) and instants of time (with a clock) must be introduced. In

a general way, it is important to underline that two distinct observers will describe

the same physical process in a different way. Moreover, for a given observer, the

description of the physical process depends on the choice of a particular coordinate

system. Actually, there is an infinite number of choices of coordinate systems for a

given observer. As a result, a change of observer and a change of coordinate system

are two different notions.

An event is noticed by an observer in terms of position x and time t. That being

so, assume two arbitrary events observed by two different observers, O and O+. The

two events are characterized by the pairs (x0, t0) and (x, t) for the first observer and

by the pairs
(
x+

0 , t
+
0

)
and (x+, t+) for the second one. The distance measured by the

observers O and O+ between the two events are |x − x0| and |x+ − x+
0 |, respectively.

Moreover, the time intervals between the two events recorded by O and O+ are given

by t−t0 and t+−t+0 , respectively. Here, the case where the pairs (x0, t0) and (x, t) map

onto
(
x+

0 , t
+
0

)
and (x+, t+), in such a way that the distance and the time interval are

preserved, is considered. Choosing one Cartesian coordinate system rigidly attached

to each observer, the mapping between x − x0 and x+ − x+
0 can be described by the

time-dependent transformation

x+ − x+
0 = Q (t) · (x− x0) , (A.1)

where Q (t) is a proper orthogonal tensor: Q−1 = QT and det Q = 1. Although, in

a general way, a change of coordinate systems is not the same thing as a change of

observer, the relative motion of the two Cartesian coordinate systems can be identified

with the rigid-body relative motion of the two observers [49].

Actually, x+−x+
0 and x−x0 can be viewed as vectors which are related through Q (t).
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Therefore, taking into account Eq. (A.1), the following relation can be written:

x+ = c (t) + Q (t) · x , (A.2)

with t+ = t + α where α is a real number denoting the time-shift and c (t) = x+
0 −

Q (t) · x0. In Eq. (A.2), x+ and x can be thought as position vectors characterizing

two points and the one-to-one mapping described by Eq. (A.2) is often referred to as

a Euclidean transformation.

Fig. A.1 – Mapping between two events preserving distance and time
interval.

A.2 The principle of virtual work (PVW)

In this section, a fundamental variational principle, namely the principle of virtual

work (PVW) (also called by some authors the principle of virtual displacements), is

introduced. The Cauchy’s first equation of motion [Eq. (3.126)] may also be written,

in terms of the displacement field, u, in the following form:

ρ ü = divσ + ρb . (A.3)

In Eq. (A.3), the body force (measured per unit mass), b, is assumed to be a prescribed

force and the term ρ ü represents the inertia force (measured per unit current volume).

Note that ˙(•) denotes the material time derivative operator, previously referred to as
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D (•) /Dt. To find the displacement field, u, induced by the motion, x = χ (X, t),

associated with some boundary conditions (BCs) and initial conditions (ICs), the so-

called (nonlinear) initial boundary-value problem (IBVP) (formulated in the strong

form) must be solved:

ρ ü = divσ + ρb in Ω , (A.4)

u = ū on ∂Ωu , (A.5)

t = σ · n̂ = t̄ on ∂Ωσ , (A.6)

u|t=0 = u0 in Ω , (A.7)

u̇|t=0 = u̇0 in Ω . (A.8)

As shown in Eqs (A.5) and (A.6), there are two different classes of BCs applied to two

disjoint parts of the the boundary surface, ∂Ω, of the considered continuous body, B,

occupying the region Ω such that ∂Ω = ∂Ωu ∪ ∂Ωσ with ∂Ωu ∩ ∂Ωσ = ∅ (Fig. A.2).

Fig. A.2 – The boundary surface ∂Ω of a continuous body B occupying
the region Ω is decomposed in two disjoint parts such that ∂Ω = ∂Ωu∪∂Ωσ

with ∂Ωu ∩ ∂Ωσ = ∅.

The BCs applied to ∂Ωu are known as the Dirichlet boundary conditions, which corre-

spond to the prescription of a displacement field. The BCs applied to ∂Ωσ are known

as the von Neumann boundary conditions, which are identified physically with the

surface traction. Note that quantities written as (•̄) denote prescribed functions on

the boundaries whereas quantities written as (•)0 denote prescribed functions in the

reference configuration, Ω0. Eqs (A.7) and (A.8) give the displacement field and the

velocity field at initial time t = 0, respectively. In addition, the compatibility of the

BCs and ICs is achieved because the functions u0 and ū are equal on ∂Ωu.
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A.2.1 PVW in spatial description on the current configuration

An analytical solution of the (nonlinear) IBVP is only possible for a few special cases.

That is why, a numerical method is very often necessary to achieve an approximate

solution such as the finite element method (FEM) based on variational principles or

weak forms as previously mentioned in section A.2. To establish the PVW in spatial

description, we start with the Cauchy’s first equation of motion which we multiply by

an arbitrary vector-valued function η (x), defined on the current configuration, Ω. The

result is then integrated over the region Ω occupied by the considered continuous body,

B, resulting in the following scalar-valued function:

f (u,η) =
∫

Ω
(−divσ − ρb + ρ ü) · η dV = 0 . (A.9)

The vector-valued function η (x) is known as a test function or weighting function. This

is a smooth function such that η = 0 on ∂Ωu. Eq. (A.9) is known as the weak form

of the Cauchy’s first equation of motion with respect to the current configuration, Ω.

Actually, since η is an arbitrary function, (−divσ − ρb + ρ ü) must vanish to satisfy

Eq. (A.9). Therefore, the solution of Eq. (A.3) (strong form) is equivalent to the

solution of Eq. (A.9) (weak form). In addition, the term −divσ · η can be written as

−divσ · η = −div (σ · η) + σ : gradη . (A.10)

Substituting Eq. (A.10) into Eq. (A.9), the following relation can be written:

f (u,η) =
∫

Ω
[σ : gradη − div (σ · η)− ρ (b− ü) · η] dV = 0 . (A.11)

Applying the divergence theorem, Eq. (A.11) is eventually written as

f (u,η) =
∫

Ω
[σ : gradη − ρ (b− ü) · η] dV −

∫

∂Ω
(σ · η) · n dA = 0 .(A.12)

The surface integral in Eq. (A.12) only needs to be integrated on ∂Ωσ given that

η vanishes on ∂Ωu where the displacement field is prescribed. Taking into account

Eq. (A.6), Eq. (A.12) can be written as

f (u,η) =
∫

Ω
[σ : gradη − ρ (b− ü) · η] dV −

∫

∂Ωσ

t̄ · η dA = 0 . (A.13)
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Moreover, the ICs given by Eqs (A.7) and (A.8) can be formulated in the weak form:

∫

Ω
u|t=0 · η dV =

∫

Ω
u0 · η dV , (A.14)

∫

Ω
u̇|t=0 · η dV =

∫

Ω
u̇0 · η dV . (A.15)

The set constituted by Eqs (A.13)-(A.15) characterizes the weak form of the IBVP.

In addition, note that the stress BCs [Eq. (A.6)] applied on ∂Ωσ are part of the weak

form and for this reason, they are often referred to as natural BCs. In turn, the BCs

given by Eq. (A.5) which are prescribed on ∂Ωu are referred to as essential BCs of

the variational problem. Moreover, as previously mentioned, in Eq. (A.13), η is an

arbitrary function. Therefore, η can be considered as the virtual displacement field

(section A.2.1.1), δu, defined on the current configuration, Ω. In this case, Eq. (A.13)

leads to the fundamental PVW. As result, the PVW can be thought as a particular

weak form of the Cauchy’s first equation of motion in which the arbitrary function is

a virtual displacement.

A.2.1.1 Notion of virtual displacement field

The virtual displacement field, referred to as δu, is assumed to be an arbitrary, in-

finitesimal, and virtual change such that

δu = u⋆ − u = εw , (A.16)

where ε is a scalar value which tends towards 0 (ε→ 0), u⋆ is the modified displacement

vector field which characterizes the virtual configuration, Ω⋆, induced by w which is an

arbitrary vector field (Fig. A.3). In addition, the variation of the time-dependent dis-

placement vector field, δu, is performed at a fixed instant of time t. Now, substituting

δu for η into Eq. (A.13) and taking into account the symmetry of the Cauchy stress

tensor, the PVW in the spatial description expressed in terms of δu can be written in

the following form:

f (u, δu) =
∫

Ω

[1
2
σ :

(
gradT δu + grad δu

)
− ρ (b− ü) · δu

]
dV

−
∫

∂Ωσ

t̄ · δu dA = 0 , (A.17)



A. Mechanics 255

with the following associated ICs:

∫

Ω
u|t=0 · δu dV =

∫

Ω
u0 · δu dV , (A.18)

∫

Ω
u̇|t=0 · δu dV =

∫

Ω
u̇0 · δu dV . (A.19)

Fig. A.3 – Virtual slightly modified deformed configuration Ω⋆ in the
neighborhood of u induced by an arbitrary vector field w.

Note that the virtual displacement field, δu, is a kinematically admissible displacement

field1. In addition, Eq. (A.17) can be formulated in terms of the so-called internal

virtual work, δWint, and external virtual work, δWext:

∫

Ω
ρ ü · δu dV + δWint = δWext . (A.20)

Using the Euler–Almansi strain tensor, e, δWint and δWext can be written as

δWint =
∫

Ω

[1
2
σ :

(
gradT δu + grad δu

)]
dV

=
∫

Ω
[σ : δe] dV , (A.21)

δWext =
∫

Ω
b · δu dV +

∫

∂Ωσ

t̄ · δu dA . (A.22)

In the case where data depend on time and the acceleration is assumed to vanish,

namely ü = 0, the considered problem is called quasi-static and the PVW states that

1A kinematically admissible displacement field is one satisfying any prescribed displacement bound-
ary conditions and possessing continuous first partial derivatives in the interior of the body [49].



256 A.2. The principle of virtual work (PVW)

the internal virtual work equals the external virtual work:

δWint = δWext . (A.23)

Note that, in the PVW, stresses and forces are assumed to remain unchanged during

the virtual displacement.

A.2.2 PVW in material description on the reference configuration

Taking into account Eqs (3.107) and (3.136), the PVW [Eq. (A.17)] can be written in

the material description in terms of the PK1 stress tensor:

F (U, δU) =
∫

Ω0

[
P : Grad δU− ρ0

(
B− Ü

)
· δU

]
dV0

−
∫

∂Ω0 σ

T̄ · δU dA0 = 0 , (A.24)

where T is the traction vector associated with the PK1 stress tensor, P. Using the

relation F · S = P [Eq. (3.141)], where S is the PK2 stress tensor, Eq. (A.24) can also

be written as

F (U, δU) =
∫

Ω0

[
(F · S) : Grad δU− ρ0

(
B− Ü

)
· δU

]
dV0

−
∫

∂Ω0 σ

T̄⋆ · δU dA0 = 0 , (A.25)

where T⋆ is the traction vector associated with the PK2 stress tensor, S. Moreover,

it is important to note that the three different formulations of the PVW given by

Eqs (A.17), (A.24), and (A.25) are completely equivalent.
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B.1 Global interpolations

Consider a one-dimensional function of the independent variable x and assume that

the value, f , of this function, f (x), is known at a set of N points, namely x0, x1,

. . . , xN−2, xN−1 with x0 < x1 < . . . < xN−2 < xN−1. In other words, the N pairs

constituted by xi and fi = f (xi) with i = 0, 1, . . . , N − 2, N − 1 are known. In

some cases, it is useful to know the value of the function in an arbitrary point inside

the interval bounded by x0 and xN−1: in any x ∈ [x0, xN−1]. This problem is called

interpolation. From a conceptual point of view, the interpolation process can be split

into two steps. First, an interpolating function, f̂ (x), must be fitted to the N data

points provided (x0, x1, . . . , xN−2, xN−1) and second, the considered interpolating

function at the desired target point must be evaluated.

In a general way, the interpolating function can be written in terms of N unknown

coefficients, αk, and N basis functions, φk (x) (k = 0, 1, . . . , N −2, N −1), which are

known:

f (x) ≈ f̂ (x) =
N−1∑

k=0

αk φk (x) . (B.1)

The N unknown coefficients, αk, are found by imposing the following N relations:

f̂ (xi) =
N−1∑

k=0

αk φk (xi) = fi . (B.2)

B.1.1 Lagrange interpolation

A Lagrange polynomial of degree n is defined by the following relation:

Lnj (x) =
n∏

i=0, i6=j

x− xi
xj − xi

. (B.3)
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As an example, the three Lagrange polynomials of degree two (n = 2) are explicitly

written as follows:

L2
0 (x) =

(x− x1) (x− x2)
(x0 − x1) (x0 − x2)

, (B.4)

L2
1 (x) =

(x− x0) (x− x2)
(x1 − x0) (x1 − x2)

, (B.5)

L2
2 (x) =

(x− x0) (x− x1)
(x2 − x0) (x2 − x1)

. (B.6)

Note that the Lagrange polynomials of degree n satisfy the relations

Lnj (xk) = δj k , (B.7)

where δ represents the Kronecker symbol and δj k is equal to 1 if j = k else 0 if j 6= k.

Using the Lagrange polynomials as basis functions, the interpolating function is written

as

f̂ (x) =
N−1∑

k=0

αk LN−1
k (x) . (B.8)

Due to the properties of the Lagrange polynomials, αk = fk = f (xk). Therefore,

Eq. (B.8) can be rewritten as

f̂ (x) =
N−1∑

k=0

f (xk) LN−1
k (x) . (B.9)

B.1.2 Hermite interpolation

In this section, the Hermite interpolation, where both function and derivatives are

involved in the process, is introduced. As before, assume that the value, f , of the

function f (x) is known at a set of N points (x0, x1, . . . , xN−2, xN−1). Moreover,

assume also that its first derivative is known at each point. Therefore, a polynomial

interpolating function, f̂ (x), which satisfy the 2N constraints

f̂ (xk) = f (xk) , (B.10)

df̂ (xk)
dx

=
df (xk)

dx
, (B.11)
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with k = 0, 1, . . . , N − 2, N − 1 must be constructed. As a result, the unique

polynomial interpolating function of least degree agreeing with Eqs (B.10) and (B.11)

is the polynomial of degree at most 2N − 1 given by

f̂ (x) =
N−1∑

k=0

f (xk)HN−1
k (x) +

N−1∑

k=0

df (xk)
dx

H̃N−1
k (x) , (B.12)

with

HN−1
k (x) =

[
1− 2 (x− xk)

dLN−1
k (xk)

dx

] [
LN−1
k (x)

]2
, (B.13)

H̃N−1
k (x) = (x− xk)

[
LN−1
k (x)

]2
. (B.14)

Note that the Lagrange polynomials used in Eqs (B.13) and (B.14) have been already

defined in section B.1.1.

B.2 Local interpolations

B.2.1 Local or natural coordinate system

To introduce the local coordinate system, a one-dimensional case is assumed and an

element delimited by the nodes xa and xb is considered.

From a computational point of view, it is convenient to define a local or natural coor-

dinate system with respect to each element. For the present element, x ∈ [xa, xb] in

terms of the global coordinates. The procedure consisting in using one of the following

changes of variables

x = xa + ξ (xb − xa) , (B.15)

x =
1
2

(xb − xa) ξ⋆ +
1
2

(xa + xb) , (B.16)

where ξ ∈ [0, 1] and ξ⋆ ∈ [−1, +1], enables to define one kind of shape functions

independently of the discretization used and thus to systematize the computations.
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B.2.2 Lagrange one-dimensional basis functions in the ξ-coordinate

system

Using the local coordinate system defined by Eq. (B.15) in a one-dimensional case

and assuming an element involving two data points, an arbitrary field f (ξ) can be

interpolated by an interpolating function in the present element in terms of its two

nodal values f (0) and f (1) as follows:

f̂ (ξ) = f (0) L1
0 (ξ) + f (1) L1

1 (ξ) , (B.17)

where the two first-order Lagrange polynomials (Fig. B.1a) are given by

L1
0 (ξ) = 1− ξ , (B.18)

L1
1 (ξ) = ξ . (B.19)

In a similar way, assuming a three data points element, the interpolating function f̂ (ξ)

is written in terms of the three nodal values f (0), f (1/2), and f (1) in the following

way:

f̂ (ξ) = f (0) L2
0 (ξ) + f (1/2) L2

2 (ξ) + f (1) L2
1 (ξ) , (B.20)

where the three second-order Lagrange polynomials (Fig. B.1b) with respect to the

ξ-coordinate system are written as

L2
0 (ξ) = (ξ − 1) (2 ξ − 1) , (B.21)

L2
1 (ξ) = ξ (2 ξ − 1) , (B.22)

L2
2 (ξ) = 4 ξ (1− ξ) . (B.23)

B.2.3 Hermite one-dimensional basis functions in the ξ-coordinate

system

Assuming a two data points element bounded by xa and xb in the global coordinate

system (x ∈ [xa, xb] within the element) and using the ξ-coordinate system, the inter-

polating function f̂ (ξ) is written, in terms of the four cubic Hermite shape functions
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(Fig. B.2), as follows:

f̂ (ξ) = f (0) H1
0 (ξ) +

df
dξ

∣∣∣∣∣
ξ=0

H̃1
0 (ξ) + f (1) H1

1 (ξ) +
df
dξ

∣∣∣∣∣
ξ=1

H̃1
1 (ξ) , (B.24)

where

H1
0 (ξ) = (1− ξ)2 (1 + 2 ξ) , (B.25)

H̃1
0 (ξ) = (1− ξ)2 ξ , (B.26)

H1
1 (ξ) = ξ2 (3− 2 ξ) , (B.27)

H̃1
1 (ξ) = ξ2 (1− ξ) . (B.28)
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Fig. B.1 – Linear (a) and quadratic (b) Lagrange basis functions in
terms of the ξ-coordinate.
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Fig. B.2 – Cubic Hermite basis functions in terms of the ξ-coordinate.

B.2.4 Lagrange basis functions in two dimensions

To generalize in a higher spatial dimension, assume a two-dimensional square element

such that ξ ∈ [0, 1] and η ∈ [0, 1] and considering a discretization of ξ and η involving

m+1 equidistant nodes (namely ξi = i/m and ηj = j/m with i = 0, 1, . . . ,m−1,m and
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j = 0, 1, . . . ,m− 1,m). In this context, a two-dimensional field f (ξ, η) is interpolated

in terms of the (m+ 1)× (m+ 1) nodal values of the present field within the element

as follows:

f̂ (ξ, η) =
m∑

j=0

m∑

i=0

f (ξi, ηj) Lmi (ξ) Lmj (η) . (B.29)

In the case where m = 1 and m = 2, the two-dimensional basis functions are called

bilinear and biquadratic, respectively.

B.2.5 Hermite basis functions in two dimensions

Assuming the same kind of element (square) with m = 1, a two-dimensional field

f (ξ, η) is interpolated with bicubic Hermite basis functions as follows:

f̂ (ξ, η) =
1∑

j=0

1∑

i=0

f (ξi, ηj) H1
i (ξ) H1

j (η)

+
∂f

∂ξ

∣∣∣∣∣
(ξi,ηj)

H̃1
i (ξ) H1

j (η)

+
∂f

∂η

∣∣∣∣∣
(ξi,ηj)

H1
i (ξ) H̃1

j (η)

+
∂2f

∂ξ ∂η

∣∣∣∣∣
(ξi,ηj)

H̃1
i (ξ) H̃1

j (η) . (B.30)

As shown in Eq. (B.30), the bicubic Hermite interpolation requires four parameters

per node.
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