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SUMMARY. A model relativistic quantum field theory is used

to calculate the average binding energy per nucleon and,
mainly, the single-particle nuclear potential at low and at
intermediats energy. We consider the interaction of the
nucleon field with effective scalar and vector meson flelds.
We 1imit ourselves to lowest order, i.e, to the Hartree-Fock
approximation. We construct a non-relativistic local shell~-
model potential which yields axactly the same elastic scatte~
ring phase shifts and bound state snsrgies as the relativistie
single-particle potential. The comparison of this shelil-model
potential with empirical data {s satisfactory provided that
the coupling strengths between the nucleon and the meson fields
are suitably chosen. The wine-bottle bottom shape that we had
previously found in the framework of the Hartrea spproximation
for the single-particle potential at intermediate energy i
mainteined when the Fock contribution fis included.
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1.~ INTRODUCTION

Walecka [1] and collaborators [2,3] heve rscantly davelerad
a model relativistic quantum field theory of nuclezar matter acd
of finite nuclai. In the simplest and most investigated fourx
of this model, the nucleon field interacts with s neutrel
scalar meson (0) field and with a neutral vactor meson (&
fleld. Although this is a daring over-simplification of ths
nuclesr Lagrangian, the model deserves detalled scrutiny not
only becatse it yields fair agreement with a number of expe-
rimental data, but mainly becauss it includes some mesonic
degress of freedom in a way which is completely consistent
with the requirements of relstivistic quantum field theory.

All equations therefore appesr in a Lorants covariant form.

In particular, it is natural that ia this approach the singla-
particle wave equation of the shell-model emerges in the form
of the relativistic Dirac squation rather tham in the form of
the non-relativistic Schroedinger equation. The present paper
fs mainly devoted to this relativietic single-particla wave
equation, and to its relationship with the familiar aon-
relativistic shall-model potential, More specifically, our
main purpose is tvofold : (i) We discuss the relativistic
Hartree-Fock approximation, While the Hartres spproximation

has already been investigated in some detail in the availadl:
titerature [4-7]1, the Fock contribution had never been propecly
investigated. (il) We construct a local single-particle
potential which can be introduced in the Schroedinger equatisn
and then yields exsctly the same phase shift and bound stat:
energies as those vhich would be obtained from the relativictie
vave equation. This wtep is largely independent of the {e.g.
Hartree or Hartree-Fock) approximation which has lad to e
relativistic wave equation, whence its intrinsic interest.

The mein festures of the relativietic quantum field model
ste brisfly described in Section II. The Wartree and ths Rertree-
Fock approximations are investigated in Sections IIT and IV,
raspectively. In Bection V, we discuss some limitations and
possible extensions of our work, In mady instances we vrite the
squations only in tha limit of infinite auclesr matter, in which
thay take s eimpler and more transparent form,
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IT.~ THE RELATIVISTIC QUANTUM FIELD MODEL

Following Walecka (1] and others [4,35], we adopt the
following Legrangian density

fres free g free int int
(1) L e L“ + Lu + L“ + LaN + Lu" e

where the last two terms respectively describe the interaction
between the nucleomn N on the one hand, and the scalar meson o
and the vector meson w on the other hand. The relativistie
single-particle potential can be {dentified with the self-
enargy operator. The vost systematic calculational procedurae
yrobably consists in expanding the self-energy in powers of

the strength of the meson-nucleon interaction [8]. Alternative
methods exist, mee e.g, refs. [I] and [9]. These methods are
largely equivalent in the the Hartree approximation. Hare, {t
is convenient to adopt the presentation of Miller and Greea (4]
and of Brockmann (5], to whom we refer for further detail.
These authors treat the meson fields as classical fields ;

this implies the owmission of all quantities containing annihi~
lation or creation operators for antiparticles and renders

this approach inappropriste for going beyond the Hartrea~Fock
spproximation in a systematic way. They obtain the following
nuclear Hamiltonian

{2) B - u{a' I dix f:.(5) Yo (~iy-T+m) £ (x) b:. b+

5 I ' I i, dx, £5,(x)) £z V““'(Ih-z‘.zl)
a,a

§,8'

t +
fa(lz) !a(}-l) x bﬂ' b, bﬂ btl . .
Hers, (fa(ﬁ)} is a complete set of Dirac spinors and bu
(resp. b:) deuotes an snnihilation (resp. a creation) operator
for a nucleon in state a . The nucleoan-nucleon interaction in
Equation (2) resds
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where Ai is a cut-off momentum and m, is the mass of
meson 1 , while E, denotes the relativistic total energy
of a nucleon in state ao

3.~ HARTREE APPROAXIMATION

3°1. Relativiatic form

The Hartres spproximation for the single-particle pocentisl
can be derived from the model Hamiltonian (2) in the usurl wzy
[4,5]. Tt is a local and energy independent operator. In a
doubly-wagic nucleus, the corresponding relaetivistic sirgle-~
psrticle wave equation reads

n (2 + volm + 0J(r) + v, WO} v () = £ v (5)
vhere the upper indax H rafers to "Hartree”" and the lower

index q labels the sigenstates. The scalar and tha vector
ralativistic single-~particla potentiale are given by

e v
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(8) o) = - [ ade’ e e v (g-x'D ;
(9) Ug(r) - I d3c* o(r') V:u(lg‘z'l) .

dere, p(r) and p.(r) are the baryon density and the self~
consistent scalar density, respectively :

A
10 - *
(10) p(r) qu Vo (®) v () ’
A —
(i pylr) = qEI Vqlr) ¥q (o) .

The sums in Equations (10) and (1]) run over the A lovest
occupied eigenstates.
These relations take a simple form in the case of nuclear

matter. If k; denotes the Fermi momentuw, one then finde (7}
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where
(14) e
s

is the "effective mass". In ths Hartree approximation, the
averags binding energy per nucleon is givan by

(15) Ac Lo I,
<kP
wheres
(16) T(k) « <y v (ykemd | > = m '

aad

an ) = < JUG + v, Uhlv>

denota the relativistic kinetic energy and tho‘potontial
energy, respectively, of a nucleon with momentum k .
The results presentad belov have besn obtained from the

following parameter values
(18a) ga/4 = 6.57 ; m, = 550 MeV ,
(18b) g:/bt - 9.25 . m, = 782.8 MeV .

and with a cut-off form factor characterized by a masse

A s 1530 MeV . These are the values wvhich had been adopted

by Brockmara [5] in his self-consistent relativistic Hartree
calculation of the ground states of 169 and of “%Ca . They
are identical to the o- and w-meson parameters of the one~
boson-exchange potential (0BEP) of the Bomn group [10]. We
emphasize, however, that the latter property does not imply

_ that this particular cholce has sny "fundamental” implicatios.

Indeed, the Boun OBEP contains s number of components which
are omitted here and correspond to the exchanga of other messne
(%, Py +e+). Moreover, thers cartainly exist sizeable correc—
tions to the Hartree approximation, due to the Fock term
(Section 1V) and to higher order diagrams [8,11]. In genaral,
the input meson parameters of a Hartree or of a Hartree-Fock
calculation should therefore be considered as effactive
coupling constants and masses {1]. We return to this point in
Section V.

The Full curve in fig. | represents the average binding
energy per nucleon as calculated from the Hartree approxima=
tion (15). We note that st saturatiom the calculated Feromi

momentum (kv - 1.51 fm ) and the calculated average bindiag

energy per nucleon (B/A = - 21.6 MeV) are both larger thacn
the emplrical valuss (kp. = 1.36 £ | , B/A w = 16 MeV) .
This indicates, in particular, thast in finite nuclei the roeot
mean square radius of the deasity distribucion as calzulated

from this relativistic Hartres model will be somevhat too smsll.
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This 1 confirm;d by Breckmann's calculation [5}. It can be lent potentisl" and we denote it by H.(r;c) wvhere € = ¢ + & .,
checked that Equations (12)-(17) are identical to those Its constructlon procesds aw» follows. ’
derived by Walecks [1] in the framework of his "mean field Let us denore by G(t;e) the radial part of the large
approximation". They differ from the direct part of the lowest components of tha relativistie single~particla wave fuaction
order contribution to tha self-energy [8] by the fact that wq(:) . It can easily be showan [5] that the quantity
here the effective mass  m* has to be caslculated self- 1
consistently from Equations (12)-(14). Correspondingly, the (19) - glrie) = (0(e;)1 2 G(ric) ’
epinor Vi in Equation (17) does not describea a free plane
wave but‘?z instead includes the effect of the Hartree potential with
UE vy, Ug . It appears that this self-consistent requirement
has been neglected in ref. [11], We also note that the baryon {20) D(rie) = ¢ ¢+ 2m + UE(!) - U:(t)
density p differs from the scalar density Py o+ Bem Equa~
ticns (13). Figure 2 shows that this difference increases fulfils the followlng Schroedinger-like radial wave equatioa [7]

with increasing Fermi momentum. This hae the effect of in-
creasing the density at saturation as comparéd to the value

2 5
that it would take if one would set p = p . {21) 5~1£§¢£l + (k: - 515§ll - 2m [U.(t;t) * % U.o(r;:) ag.L]}
. * dr : T .
8 (ric) = 0 .

3°2. Non-relativistic form

. vhere k_ denotes the relativietic momentum at large distanc:
In tha case of finite nuclei, one possibla test of the

ralativistic Hattres approxiwmation consistes in comparing with (22) k: e 2me + el »
experiment the bound single=-particle energles Bk and the
baryon density distribution p(r) calculated from the self- while

consistent set of equations (7)-(11) [4,5]. However, one can

perform a more severe test, Indeed, the accumulstion of data ; (23) U‘(r;t) « U'(r) + Uo(r) + (2:1).I [U:(t) - B:(r)] + % Uc(r)
oa bound and, mainly, scattering states of many nuclei have

led to & very good knowledge of the shell-model potential. (24) U (rit) = - (2m D(t;t)]—| 4 v (¢) - v ()] .

In its practical formulation, the latter is a local, energy- 80 dr s e

dependent operator which, when substituted in the non-

telativistic Schroedinger equation, yields the experimentsl Here and in the following we usually drop the upper index ® ,
single-particle energies and, if supplemented by asn imaginary for simplicity. In Equation (23), the sign = refers to the
component, the experimental elastic scattering phase shifts. omission of negligible surface terms. We note that "a depands
Hence, it is useful to construct here a potential which, when on energy and that the Schroedingar-equivalent potentisl
inserted in a Schroedinger equation, yields the same bound contains & spin-orbit componsnt.

state anergies and the same elastic scattering phase shiftes The quantities “u(t") and UIO(r;‘) can be compared

as those which would be obtained from the relativistic Dirac with the central snd spin-orbit components of tha empirical

Equation (7). We dub this potential the "Schrosdinger squive- shell-model potential., The quantity which ie best determined
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by the sxperimental data is the volume integral per nucleon

nl .
(2% JU./A - A [ ddc U (xie) .

Figure 3 shows that in the case of “0ca the calculated and
enpitrical values of this quantity are in good agreement over
a wide energy range. The same holds in the case of 150 [6].
The calculated and empirical values of the spin-orbit component
Uau(t;‘) are also in fair agreement (7],
We now turn to & brief discussion of the meaningfulness

of thess agresments, The model contains two wain parameters,
namely the strengthe U, a&od U of the vector and o: the

which
corresponds to the central density of nuclei. The theoretical

scalar potentials at the Fermi womentum k, = 1.15 fu

potential depth U, is energy-dependent, with & slops given

by Uolu (see Equation (26) below). Since the empirical valus
of this slepe is approximately equal to 0.3 , the value of

Uo must be approximately equal to + 300 MeV . Since more=
ovar the depth U‘ at low snergy is approximately equal to

- 55 MeV , one must have U. « = 350 MeV , This shows that
the model parsieters cac #lways be chosen in such & way thast

U, i# is fair sgreanint with sxpatimait at lew and latermadistse
energy. Then, however, no parameter is left i "ao is uniquaiy
predictad by the model ; the fair sgreement between the
empirical and experimental values of U'a(t;e) is therefors

by no means a trivisl consequence of the choice of the input
parameters.

Another noticesble and unavoidable feature of the present
model is that U, and U' are cumparable in magnitude to thae
nucleon rest mass. Hence, it appears that a relativistic
approach f{s not a luxury. Indeed, it is then quite difficule
to derive a Schroedinger equation as an accurate non-
relativistic limit of the Dirac Equation (7). In particular,
the Poldy-Wouthuysen transformation is not very useful [71.

We emphasize that the Schroedinger-like equation (21) is exact
in the sense that the eigenvalues calculated from Equation (21)

are the same as those of Equatlion (7) and that the asymptotic
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behaviour of g(r;e) Efor large v {s the ssme as that of
G(c3e) . . In order to completse
the proof that it is legitimate to identify U.(r;e) with

the standard non-relstivistic optical-model potential, one
must still show that the differential elastic scattering and
polarisation crose sactions can be obtained in the ssme way
from Equation (21) as from the usual phase shift formula
associsted with the Schroedinger equation. Thie can be checked
by comparing the equations contained in refs. [12] aud [13].

3'3, Wine-bottle bottom shape

In infinite nuclear watter, the Schroedinger-equivalent
potential reads

(26) U (e) = U, + U +\ em” lug - ull e Sy, .
Qh.tu Uo and U‘ are glven by Equations (12) in the case of
the Hartres approximation, This quantity is plotted in fig. 4
for two values of the Farmi momentum, nemely ky = 1,35 fm-l

which corresponds to the nuclear interior, and k, = 1.10 tn'
which corresponds to the nuclear surfacs, We note that the twe

curves interssct. This Iindicates that in s finite nucleus the

2

Schroedinger-squivalent potential is still sttractive at ths
nuclear surface at the energy at which it becomes repulaive ic
the nuclear interior, This “wine-bottle bottom shape” is exhi-
bited in fig. 5. Its origin has been diacussed in vefs. [6,7].
It mainly lies in the quadratic term (2«1).l [U: - D:] in
Equation (23). This quadratic term ies characteristic of the
relativietic Dirac approach, and of the scalar and vector

nature of U. and of T, Uo , respectively. Early empirical
evidence for a wine-bottle bottom shape wvas claimed by Elton [14]
who fitted polarization, reaction and elastic scattering data
for 180 MeV protons on S6Fe ., In fig. 6 we show that Elten's
phenomenological potential is in fair agreement with the
Schroedinger-equivalent potential as calculated from our nuclear

matter results by means of a local density approximation. Receat



analyses of the scattering of I81 MeV protons by "Pca [i15]
sad of 200 MeV protons by !2¢ and 1}3C [16] corroborate
the existence of a wine-bottle bottom shape for the real part
of the optical-model potential. We note that this shape has
also been found in a theoretical caslculation performed in the
framewvork of the Brueckner—~Hartree-Fock approximation based on
Reid's hard core nucleon-nucleon interaction [I7]. However,

the iuterpretation of the phenomenon appears to be quite diffe-
rent in the latter theoretical model, in which it ias due to

Pauli and binding corrections (18],

4.~ HARTREE-FOCK APPROXIMATION

4°1. Schroedinger-equivalent potential in nuclear matter

In the relativistic Hartree-Fock approximation, the siagle-
particle potential contains non-local terms, as in the familiar
non-relativistic case, In other words, the left~hand~-side of
the relativistic Dirac single-particle wave Equation (7) now
contains an sddicional term of the form

(2n S I ader o'’y v (") '

vhere the upper indax NL rafers to "non-local”, and whera
UNL in general contains several components which transform
as Lorentz-scalar, -vector,-pseaudoscalar,... quantitiaes,
respectively, if several types of mesons are considered [19].
in order to keep the discussion simple, it is advantageous to
consider the case of infinite nuclear matter. Then, UNL(ﬁ.;')

is a function of l£-£'| only, whila

{28) b () = u(k) exp(i k.x) ’
-~ ]

whare wu(k) is a four component spinor. It is then appropriate

to use the momentum representation, It can be shown [B] that

-lz-
. write the Fourier transform of

one csan

U“L(Ix-g'l) in the form

k
NL ' NL ~ _NL
(290 ™) = ulho v v, U TR 4oy aap VTR .
where the quantities UfL , U:L and U?L are scalar

functions of k , rather than matrices.

The form (29) is of course also valid for the local part,
or equivalently for the momentum independent part, of the
single-particle potential. We thus temporarily drop tha uppes
index "NL"
Teads

. The relativistic single~particle wave equation

x
K

(30) fa.k + v lm + U (k) + v, U (k) + v, aF U (K 1hu(k) = B, ulk)

In order to obtain ; Sehroedinger-equivalent potential, we
proceed as in Section 3'2. We thus eliminate the small cowmpo-
nents of wu(k) and obtain the following diepersion relation
(!k L w) ¢

2
(31) -‘%‘; + ll.(k.:) -tk

with

(B2 U (k€)= U (k) ¢ U ) ¢ (2m)70 [URCR) - UZOR) ¢ UGN

S0 00 ¢ Eu .

whera k and ¢ are ralsted to one another by Equation (31).
By comparing this result with Equstion (26), we note that since
all quantities now depend on the momentum k one can probably
not Infer accurate inforanation on each of these various quan-
tities from our knowledge of the enargy dependence of the depth
of the empirical optical-model potential. One must thus turn to
dynamical models, In tha next Section, we briefly discusa the
Hartrea~Fock approximstion in the case of the o,w wmodel.

v
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42, Hartree-Fock approximation

We restrict the present discussion to the case of infiuite
nuclear matter and to the o,w model. We only astate some
results., A detailed discussion will be published elsewhere.

In keeping with the general expressions given in Section &4°1,
the Hartree~-Fock approximation yields the following relati-

vistic single-particle wave equation

() dakr v, meud ey ot e o e me 0w,
with

i = 0T s v, 00 ¢y, 5 e
(34) - a Yo % o ="k v *

The quantities Ug and U? are still given by Equations (12).
However, the expregsion of Py which was given by Equation (13)

in the Hartree approximation is now modified by the fact that

the spinor u(k) contains the influence of QF(k) : one has
k
F -—
(35) by =~ di —ole
@ (k2 + w217

vhere the momentum~dependent "aeffective mass" m(k) reads

(36) (k) =a+uh Uz(k)

while

(37) k. =k + UF (k) .
v v

The expressions of Ui(k) " Uz(k) and Us(k) will not
ba given here. They are similar to results given in refs. [£,20]
with, hcvevar; some complications due to ;ha fact that here wa
calculate wu(k) self-consistently rather than taking a fres
plane-wave spinor. One striking difference with the Hartree
approximation is that the o0- and the w-mesons both contribute
to all three terms Uﬁ(k) " Us(k) and Ui(k) ¢

- 14 -

It turns out that the contribution of Us(k) to tha
expression (32) of the Schroedinger-equivalent potential is
rather negligible. For low k , the attractive quantity
Uf(k) ie equal to about 25 per cent of the Hartree componexnt
UE of the scalar potential ; it tends towards zeroc for large
k . For low k , the repulsive quantity Uz(k) is equal :o
approximately forty per cent of the Hartree contribution Eﬁ
to the fourth component of ths vector potential. The Schrosdinger~
equivalent potential UHF(E) (fig. 7) that corresponds tc ol
relativistic Hartree-Fock approximation in the o0, model i:
thus less attractive than the Schroedinger-equivalent patential
associated with the relativistic Hartree approximation. Hence,
the fair asgreement with the empirical shell-model potential
depth which had been found in the case of the relativistic
Hartree approximation no longer holds for the Hartree-Fock
approximation if one adopts the input parameters (18}, Clearly,
however, it is possible to somewhat increase the strength a:
of the coupling between the scalar and the nucleon fields in
order to obtain a good agreemeant between the Hartree-Fock
approximation and the empirical data. This increase would be
legitimate since we emphasized in Section 3°'1 that the input
parsmeters should be considered as "effective" coupling
constants. We find it remarkable that the wmodification which
is required is rather small. We also note that the two curves
in fig. 7 intersect, as was also the case in fig, 4. This shows
that the relativistic Hartree-Fock maintains a wine-bottie
bottom shape for the Schroedinger~equivalent potential at
intermediate energy. In turn, this reflects the fact that the
momentum dependence of U:(k) and of Uz(k) is quite weak
because in the present model the wffective nucleon-nucleon
interaction has short range.

In the self-consistent relativistic Hartree~Fock approxi-

mation, the average binding energy per nucleon is given by

k

(38) e pal szd'f['I—U(k)+l[0(k)-(k)+ku(k1

. A K3 - '2 "o 2 s L vyl
F ‘o .

. 1
[kl ¢ @200177 + [m @) + k k1[kZ + 2017 h

.
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The quantity B/A as calculated from this spproximation is
represented by the dashed cuxve in fig. |. As expectad from
the preceding discussion, it is less attractive than the
Hartree~Fock approximation., Saturation is reached for kp -
1.36 fm ' , where B/A = - B.6 MeV .

5.~ DISCUSSION

The present contribution is centered on the belief that a
formulation of the shell wodel in the framework of relativistic
quantum field theory will lead to a relativigtic Dirac single-

particle wave equation rather than to a non-relativistie

. Schroedinger single-particle wave equation. In the non-

relativistic approach, the shell model emerges from the Hartreae~
Fock approximation, in which the effective nucleun-nucleon
interaction is in practice either adjusted in a purely pheno-
menological way or else is estimated from reallstic nucleon-
nacléon potentials via some (e.g. Brueckner) approximation
schems, Likswise, we considered hore the shall-modsl potentisl
in the framework of a relativistic Hartree-Fock approximation.
We adopted a simple model in which the interaction between two
nucleons is wmediated by the exchange of a scalar meson and of

a vector meson [1]. To our kanwledge, the prasent work is the
first investigation ia which the self-consistent Tweck contri-
bution is inciuded. We focused on the predictlion of this model
concerning the average nucleon-nucleus potential, i.e. concer=
ning the shell-model potential or more generally the real part
of the optical-model potential. For this purpose, we constricted
8 Schroedinger-equivalent potential, The ltatter is a single~
particle potential which when introduced in the non-relativistie
Schroedinger equation yields the same bound state energies and
the same elastic scattering phase shifts as the original
relativistic single-particle potential did when used in con-
junction with the Dirac equation. The comparison between this
Schroedinger-equivalent potential and the central and spin-
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orbit components of the empirical optical-model potential is .
rather satisfactory provided that the coupling constants
between the nucleon and the meson fields are suitably adjuatad.
This adjustment correspondes to the use of an effective mescn-
nucleon intevaction {1,11]. One characteristic feature of tha
calculated Schroedinger-equivalent potential is that it hss =
“"wine-bottle bottom" shape at intermediate energy ; in the
present approach this ashape is due to relativistic effects.

We hope that the relativiatic Hartree~Fock model may bocome
s workable and useful one if the experimental data ara invokzd
to constrain the choice of the various meson-nucleen couplirng
constants. Here, we have put emphasis on the single-particle
potential at low and intermediate energy. Other data should of
course be considered. The most stringent reastrictions will
probably arise from those observables which involve the small
components of the relativistic single-particle spinors [21, 22]}.
Wea believe that a relativistic approach will become not only
of theoretical but also of practical interest if it is aven-
tually confirmed that the relativistic single-particla potential
involves several components which are comparable in magnituds
to the nucleon rest mase.
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FIGURE CAPTIONS
Fig, 1. Dependence upon the Fermi momentum ky of the average

binding energy per nucleon as calculated from the input para-~
meter (I8), The full curve corresponds to the Hartree appro-
ximation and the dashes to the Hartree-Fock approximation.

Fig. 2. Ratio between the baryon density p and the scalar
deansity Py » as calculated from Equations (13) with the input

parametears (18).

Fig., 3. Adapted from ref. [7]. Comparison between the empirical
(crosses, triangles, squares, dot) values of the volume integral
per nucleon (25) and the theoretical value calcniated from the
self-consistent Hartree approxization with the input parame~
ters (i8), in the case of “ICa .,

Flg, 4. Schroedinger-equivalant potential in the case of infinite
nuclear matter witch kp = 1.35 fm-' 7

1.10 fm'l (dashed curve), in the case of Lha relativistie
Hartree approximation with the input parameters (18,

(full curve) and k, =

Fig. 5. Adapted from ref, [7]. Schroedinger~equivalent potential
as calculated from the relativistic Hartree approximation in
the case of “%Ca at ¢ = 163 MeV

Fig. 6. Adapted from ref, [7]. The dashed curve represents the
real part of the optical-model potential determined by Elton [14]
from the analysis of 180 MeV protons scattering by 56pra ,

The full curve shows the Schroedinger-equivalent potential as
calculated from the relativisctic Hartree approximation with the
input parametar (18).

Fig. 7. Schroedinger-equivalent potential {n the case of infinite
nuclear matter with k? = 1,35 fm~l (full curve) and kp -
1.10 fm_l (dashed curve), in the case of the relativiastie

Hatvee~Fock approximation with the input parameters (18).
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