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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Definitions

Definition: Pseudo-Boolean functions
A pseudo-Boolean function is a mapping f : {0, 1}n → R.

Multilinear representation
Every pseudo-Boolean function f can be represented uniquely by a
multilinear polynomial (Hammer, Rosenberg, Rudeanu [7]).

Example:

f (x1, x2, x3) = 9x1x2x3 + 8x1x2 − 6x2x3 + x1 − 2x2 + x3
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Applications: MAX-SAT

MAX-SAT problem

INPUT: a set of Boolean clauses Ck =
(
∨i∈Ak x̄i

)
∨
(
∨j∈Bkxj

)
, for

k = 1, . . . ,m, where xi ∈ {0, 1}, and x̄i = 1− xi .
OBJECTIVE: find an assignment of the variables, x∗ ∈ {0, 1}n that
maximizes the number of satisfied clauses.

Pseudo-Boolean formulation

min
m∑

k=1

∏
i∈Ak

xi

∏
j∈Bk

x̄j

 ,

Ck takes value 1 iff the term
∏

i∈Ak
xi
∏

j∈Bk
x̄j takes value 0.
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Applications: Computer Vision

Image restoration problems modelled as energy minimization

E (l) =
∑
p∈P

Dp(lp) +
∑

S⊆P,|S |≥2

∑
p1,...,ps∈S

Vp1,...,ps (lp1 , . . . , lps ),

where lp ∈ {0, 1} ∀p ∈ P.

(Image from "Corel database" with additive Gaussian noise.)
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Applications

Constraint Satisfaction Problem
Data mining, classification, learning theory...
Graph theory
Operations research
Production management
...
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Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

min
x∈{0,1}n

f (x)

Optimization is NP-hard, even if f is quadratic (MAX-2-SAT,
MAX-CUT modelled by quadratic f ).

Much progress has been done for the quadratic case (exact algorithms,
heuristics, polyhedral results...).
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Quadratizations

Definition: Quadratization
Given a pseudo-Boolean function f (x) on {0, 1}n, we say that g(x , y) is a
quadratization of f if g(x , y) is a quadratic polynomial depending on x and
on m auxiliary variables y1, . . . , ym, such that

f (x) = min{g(x , y) : y ∈ {0, 1}m} ∀x ∈ {0, 1}n.

Then, min{f (x) : x ∈ {0, 1}n} = min{g(x , y) : x ∈ {0, 1}n, y ∈ {0, 1}m}.

Which quadratizations are “good”?
Small number of auxiliary variables.
Good optimization properties: submodularity.

A quadratic pseudo-Boolean function is submodular iff all quadratic
terms have non-positive coefficients.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 10 / 36



Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Quadratizations

Definition: Quadratization
Given a pseudo-Boolean function f (x) on {0, 1}n, we say that g(x , y) is a
quadratization of f if g(x , y) is a quadratic polynomial depending on x and
on m auxiliary variables y1, . . . , ym, such that

f (x) = min{g(x , y) : y ∈ {0, 1}m} ∀x ∈ {0, 1}n.

Then, min{f (x) : x ∈ {0, 1}n} = min{g(x , y) : x ∈ {0, 1}n, y ∈ {0, 1}m}.

Which quadratizations are “good”?
Small number of auxiliary variables.
Good optimization properties: submodularity.

A quadratic pseudo-Boolean function is submodular iff all quadratic
terms have non-positive coefficients.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 10 / 36



Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Quadratizations

Definition: Quadratization
Given a pseudo-Boolean function f (x) on {0, 1}n, we say that g(x , y) is a
quadratization of f if g(x , y) is a quadratic polynomial depending on x and
on m auxiliary variables y1, . . . , ym, such that

f (x) = min{g(x , y) : y ∈ {0, 1}m} ∀x ∈ {0, 1}n.

Then, min{f (x) : x ∈ {0, 1}n} = min{g(x , y) : x ∈ {0, 1}n, y ∈ {0, 1}m}.

Which quadratizations are “good”?
Small number of auxiliary variables.
Good optimization properties: submodularity.

A quadratic pseudo-Boolean function is submodular iff all quadratic
terms have non-positive coefficients.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 10 / 36



Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Quadratic pseudo-Boolean optimization methods

Quadratic optimization is NP-hard, but much work has been done:
Algorithms based on MAX-CUT (which reduces to a polynomial
MIN-CUT problem when f is submodular).

Heuristics such as local search.
In computer vision: approaches based on Roof Duality (1984) ([8]).
Polyhedral results: Isomorphism between boolean quadric polytope
(associated to quadratic pseudo-Boolean optimization) and cut
polytope (associated to MAX-CUT) (1990) ([4]), good separation
algorithms...
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Rosenberg

Rosenberg (1975) [11]: first quadratization method.
1 Take a product xixj from a highest-degree monomial of f and

substitute it by a new variable yij .
2 Add a penalty term M(xixj − 2xiyij − 2xjyij + 3yij) (M large enough)

to the objective function to force yij = xixj at all optimal solutions.
3 Iterate until obtaining a quadratic function.

Advantages:
Can be applied to any pseudo-Boolean function f .
The transformation is polynomial in the size of the input.

Drawbacks: The obtained quadratization is highly non-submodular.
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Termwise quadratizations

Multilinear expression of a pseudo-Boolean function:

f (x) =
∑

S∈2[n]

aS
∏
i∈S

xi

Idea: quadratize monomial by monomial, using different sets of auxiliary
variables for each monomial.
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Termwise quadratizations: negative monomials

Kolmogorov and Zabih [10], Freedman and Drineas [6].

a
n∏

i=1

xi = min
y∈{0,1}

ay

(
n∑

i=1

xi − (n − 1)

)
, a < 0.

Advantages: one single auxiliary variable, submodular quadratization.
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Termwise quadratizations: positive monomials

Ishikawa [9]

a
d∏

i=1

xi = a min
y1,...ynd∈{0,1}

nd∑
i=1

yi (ci ,d (−S1 + 2i)− 1) + aS2,

S1, S2: elementary linear and quadratic symmetric polynomials in d

variables, nd = bd−1
2 c and ci ,d =

{
1, if d is odd and i = nd ,

2, otherwise.

Number of variables: best known bound for positive monomials.
Submodularity:

(d
2

)
positive quadratic terms, but very good

computational results.
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Number of variables

Using termwise quadratizations:

One variable per negative monomial and bd−1
2 c per positive monomial

(d : degree of the monomial).
Best known upper bounds: O(nd ) variables for a polynomial of fixed
degree d , O(n2n) for an arbitrary function.

Can we do better?
Tight upper and lower bounds independent of the quadratization procedure
by Anthony, Boros, Crama and Gruber [1]

Θ(2
n
2 ) for a general pseudo-Boolean function.

Θ(n
d
2 ) for a fixed polynomial of degree d .

Note: bounds are polynomial in the size of the input:
f (x) =

∑
S∈2[n] aS

∏
i∈S xi can have up to 2n monomials.
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Summary: known quadratization techniques

What has been done until now?
Specific quadratization procedures, experimental evaluations...

Several quadratizations known for monomials.

Case of negative monomials well-solved (one auxiliary variable,
submodular).
Improvements can perhaps be done for positive monomials.

Non-termwise quadratization techniques: reduce degree of several
terms at once (Fix, Gruber, Boros, Zabih [5]).

Objective: Global perspective
Systematic study of quadratizations, understand properties and structure.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 17 / 36



Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Summary: known quadratization techniques

What has been done until now?
Specific quadratization procedures, experimental evaluations...

Several quadratizations known for monomials.
Case of negative monomials well-solved (one auxiliary variable,
submodular).

Improvements can perhaps be done for positive monomials.

Non-termwise quadratization techniques: reduce degree of several
terms at once (Fix, Gruber, Boros, Zabih [5]).

Objective: Global perspective
Systematic study of quadratizations, understand properties and structure.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 17 / 36



Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Summary: known quadratization techniques

What has been done until now?
Specific quadratization procedures, experimental evaluations...

Several quadratizations known for monomials.
Case of negative monomials well-solved (one auxiliary variable,
submodular).
Improvements can perhaps be done for positive monomials.

Non-termwise quadratization techniques: reduce degree of several
terms at once (Fix, Gruber, Boros, Zabih [5]).

Objective: Global perspective
Systematic study of quadratizations, understand properties and structure.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 17 / 36



Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Summary: known quadratization techniques

What has been done until now?
Specific quadratization procedures, experimental evaluations...

Several quadratizations known for monomials.
Case of negative monomials well-solved (one auxiliary variable,
submodular).
Improvements can perhaps be done for positive monomials.

Non-termwise quadratization techniques: reduce degree of several
terms at once (Fix, Gruber, Boros, Zabih [5]).

Objective: Global perspective
Systematic study of quadratizations, understand properties and structure.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 17 / 36



Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Summary: known quadratization techniques

What has been done until now?
Specific quadratization procedures, experimental evaluations...

Several quadratizations known for monomials.
Case of negative monomials well-solved (one auxiliary variable,
submodular).
Improvements can perhaps be done for positive monomials.

Non-termwise quadratization techniques: reduce degree of several
terms at once (Fix, Gruber, Boros, Zabih [5]).

Objective: Global perspective
Systematic study of quadratizations, understand properties and structure.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 17 / 36



Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Summary: known quadratization techniques

What has been done until now?
Specific quadratization procedures, experimental evaluations...

Several quadratizations known for monomials.
Case of negative monomials well-solved (one auxiliary variable,
submodular).
Improvements can perhaps be done for positive monomials.

Non-termwise quadratization techniques: reduce degree of several
terms at once (Fix, Gruber, Boros, Zabih [5]).

Objective: Global perspective
Systematic study of quadratizations, understand properties and structure.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 17 / 36



Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Polynomial pseudo-Boolean optimization

Reductions to quadratic
pseudo-Boolean optimization

Linearizing quadratic problems

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 18 / 36



Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Standard linearization

Original polynomial problem

min
x∈{0,1}n

f (x) =
∑
S∈S

aS
∏
i∈S

xi

S: set of non-constant monomials.

1. Substitute monomials

min
zS

∑
S∈S

aSzS

s.t. zS =
∏
i∈S

zi , ∀S ∈ S

zS ∈ {0, 1}, ∀S ∈ S

2. Linearize constraints

min
zS

∑
S∈S

aSzS (A)

s.t. zS ≤ zi , ∀i ∈ S ,∀S ∈ S

zS ≥
∑
i∈S

zi − |S |+ 1, ∀S ∈ S

zS ∈ {0, 1}, ∀S ∈ S
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zi , ∀S ∈ S

zS ∈ {0, 1}, ∀S ∈ S

2. Linearize constraints

min
zS

∑
S∈S

aSzS (A)

s.t. zS ≤ zi , ∀i ∈ S ,∀S ∈ S

zS ≥
∑
i∈S

zi − |S |+ 1, ∀S ∈ S

zS ∈ {0, 1}, ∀S ∈ S
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min
x∈{0,1}n+m

∑
Q∈Q

bQ
∏
i∈Q

xi

where Q is the set of non-constant monomials in the original {x1, . . . , xn}
and the auxiliary {xn+1, . . . , xn+m} variables and all Q ∈ Q have degree at
most 2.
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Comparing relaxations of linearizations

Relaxation of standard linearization
(A)

min
zS

∑
S∈S

aSzS

s.t. zS ≤ zi , ∀i ∈ S , ∀S ∈ S

zS ≥
∑
i∈S

zi − |S |+ 1, ∀S ∈ S

0 ≤ zS ≤ 1, ∀S ∈ S

Relaxation of linearized
quadratization (B)

min
wQ

∑
Q∈Q

bQwQ

s.t. wQ ≤ wi , ∀i ∈ Q, ∀Q ∈ Q

wQ ≥
∑
i∈Q

wi − |Q|+ 1, ∀Q ∈ Q

0 ≤ wQ ≤ 1, ∀Q ∈ Q
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Comparing relaxations of linearizations

Questions:
Which relaxation is tighter?

Relaxation (B) also depends on the chosen quadratization method,
which quadratization gives better relaxations?
What happens if we intersect the constraints of the relaxed
linearizations of all quadratizations of f ?
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Comparing polytopes at substitution step

Standard linearization (A)

min
zS

∑
S∈S

aSzS

s.t. zS =
∏
i∈S

zi , ∀S ∈ S

zS ∈ {0, 1}, ∀S ∈ S

Quadratization (B)

min
wQ

∑
Q∈Q

bQwQ

s.t. wQ =
∏
i∈Q

wi , ∀Q ∈ Q

wQ ∈ {0, 1}, ∀Q ∈ Q
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Comparing polytopes at substitution step

Questions:
Do we have a better knowledge of one of the convex hull of feasible
solutions of one of these problems? (i.e., polyhedral description, good
separation algorithms...).
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Buchheim and Rinaldi’s approach

Polynomial Optimization Problem

LP-relaxation (standard lin.), polytope P

Fractional solution x∗

Cut from P
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Polynomial Optimization Problem

LP-relaxation (standard lin.), polytope P

Fractional solution x∗

Cut from another polytope P∗
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Buchheim and Rinaldi’s approach: Polytope P∗?

Presented in [2], [3].

Original polynomial problem

min
x∈{0,1}n

f (x) =
∑
S∈S

aS
∏
i∈S

xi

S: set of non-constant monomials

Assumption: every S ∈ S can be written as the union of two other
monomials Sl , Sr ∈ S.

For a given S , there might be several pairs of subsets Sl , Sr such that
Sl ∪ Sr = S .
Set of monomials can be “completed” heuristically if necessary.
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Buchheim and Rinaldi’s approach: Polytope P∗?

Buchheim and Rinaldi’s formulation over a quadric polytope

Consider the set S∗ = {{S ,T} | S ,T ∈ S and S ∪ T ∈ S}.

min
y{S}

∑
S∈S

aSy{S} (C)

s.t. y{S ,T} = y{S}y{T}, ∀{S ,T} ∈ S∗

y{S ,T} ∈ {0, 1}, ∀{S ,T} ∈ S∗

P∗: convex hull of feasible solutions of problem (C)

Observation: P∗ is a boolean quadric polytope.
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Buchheim and Rinaldi’s approach: polytope P∗?

Polytope P∗

Is isomorph to a Cut-Polytope (efficient separation algorithms are
known).
Lives in a higher-dimensional space (introducing auxiliary variables).

P is isomorph to a face of P∗ (imposing some additional constraints
to P∗): cutting on P∗ is equivalent to cutting on P .

Objective:
We are interested in understanding the quadratic problem that is used to
define P∗:

Is it a quadratization in our sense?
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Buchheim and Rinaldi’s formulation and Rosenberg’s
quadratization

Theorem
Buchheim and Rinaldi’s formulation over a quadric polytope can be
obtained (up to elimination of redundant constraints) by linearizing a
variant of Rosenberg’s quadratization where:

the order of substituting variables is induced by the decomposition
Sl , Sr of each monomial S , and
when substituting a product by a variable, we do not impose yij = xixj
with a penalty, but with a constraint.

Assumption: every S ∈ S can be written as the union of two other
monomials Sl , Sr ∈ S.
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Linearization
of Rosenberg’s

quadratization (B)
identical

Buchheim and Rinaldi’s
formulation over a

quadric polytope (C)

Standard
linearization (A)

equivalent equivalent
(P ∼= face
of P∗)
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Polynomial pseudo-Boolean optimization
Reductions to quadratic pseudo-Boolean optimization

Linearizing quadratic problems

Conclusions

Understand quadratization methods from a global perspective:
Properties and structure, which quadratizations are “better”?

Describe all quadratizations of f .
Linearizing quadratizations:

How does the tightness of a relaxation depend on the quadratization?
How do relaxations of linearized quadratizations relate to other
methods (e.g. standard linearization)?
Can we use the knowledge about the polytopes associated to
linearizations? (e.g. cut polytope separation techniques...)?
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Linearizing quadratic problems
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