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Polynomial pseudo-Boolean optimization

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping f : {0,1}" — R.
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Polynomial pseudo-Boolean optimization

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping f : {0,1}" — R.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a
multilinear polynomial (Hammer, Rosenberg, Rudeanu [7]).

Example:

f(Xl, X2, X3) = Ox1x0x3 + 8x1X0 — 6x0x3 + X1 — 2X2 + X3
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Polynomial pseudo-Boolean optimization

Applications: MAX-SAT

MAX-SAT problem

o INPUT: a set of Boolean clauses C = (Vjca, %i) V (Vjep,x;j), for
k=1,...,m, where x; € {0,1}, and X; = 1 — x;.

e OBJECTIVE: find an assignment of the variables, x* € {0,1}" that
maximizes the number of satisfied clauses.
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Polynomial pseudo-Boolean optimization

Applications: MAX-SAT

MAX-SAT problem

o INPUT: a set of Boolean clauses C = (Vjca, %i) V (Vjep,x;j), for
k=1,...,m, where x; € {0,1}, and X; = 1 — x;.

e OBJECTIVE: find an assignment of the variables, x* € {0,1}" that
maximizes the number of satisfied clauses.

Pseudo-Boolean formulation

m

minz Hx,- H)_(J ,

k=1 \icA, JEBy

Ck takes value 1 iff the term [[;c 4 xi [[;cp, X takes value 0.
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Polynomial pseudo-Boolean optimization

Applications: Computer Vision

Image restoration problems modelled as energy minimization

E(l) = ZDP(IP)+ Z Z Vor,opsUpys -+ Ips ),

peP SCP,|S|>2p1,....psES

where I, € {0,1} Vpe P.

(Image from "Corel database" with additive Gaussian noise.)
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Polynomial pseudo-Boolean optimization

Applications

Constraint Satisfaction Problem

Data mining, classification, learning theory...
Graph theory

Operations research

Production management
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Polynomial pseudo-Boolean optimization

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

in f
XGTOIH}" (X)
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Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

in f
XGTOIH}" (X)

e Optimization is A'P-hard, even if f is quadratic (MAX-2-SAT,
MAX-CUT modelled by quadratic f).
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Polynomial pseudo-Boolean optimization

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

in f
XGTOIH}" (X)

e Optimization is A'P-hard, even if f is quadratic (MAX-2-SAT,
MAX-CUT modelled by quadratic f).

@ Much progress has been done for the quadratic case (exact algorithms,
heuristics, polyhedral results...).
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Reductions to quadratic pseudo-Boolean optimization

[ Polynomial pseudo-Boolean optimization ]

Reductions to quadratic

pseudo-Boolean optimization

[ Linearizing quadratic problems ]
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Reductions to quadratic pseudo-Boolean optimization

Quadratizations

Definition: Quadratization

Given a pseudo-Boolean function f(x) on {0,1}", we say that g(x,y) is a
quadratization of f if g(x,y) is a quadratic polynomial depending on x and
on m auxiliary variables y1, ..., ym, such that

f(x) = min{g(x,y) : y € {0,1}"} V¥x € {0,1}".

Then, min{f(x) : x € {0,1}"} = min{g(x,y) : x € {0,1}",y € {0,1}™}.
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Reductions to quadratic pseudo-Boolean optimization

Quadratizations

Definition: Quadratization

Given a pseudo-Boolean function f(x) on {0,1}", we say that g(x,y) is a
quadratization of f if g(x,y) is a quadratic polynomial depending on x and
on m auxiliary variables y1, ..., ym, such that

f(x) = min{g(x,y) : y € {0,1}"} V¥x € {0,1}".
Then, min{f(x) : x € {0,1}"} = min{g(x,y) : x € {0,1}",y € {0,1}™}.

Which quadratizations are “good’?

@ Small number of auxiliary variables.
@ Good optimization properties: submodularity.
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Reductions to quadratic pseudo-Boolean optimization

Quadratizations

Definition: Quadratization

Given a pseudo-Boolean function f(x) on {0,1}", we say that g(x,y) is a
quadratization of f if g(x,y) is a quadratic polynomial depending on x and
on m auxiliary variables y1, ..., ym, such that

f(x) = min{g(x,y) : y € {0,1}"} V¥x € {0,1}".
Then, min{f(x) : x € {0,1}"} = min{g(x,y) : x € {0,1}",y € {0,1}™}.

Which quadratizations are “good’?

@ Small number of auxiliary variables.
@ Good optimization properties: submodularity.

e A quadratic pseudo-Boolean function is submodular iff all quadratic
terms have non-positive coefficients.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 10 /36



Reductions to quadratic pseudo-Boolean optimization

Quadratic pseudo-Boolean optimization methods

Quadratic optimization is A"P-hard, but much work has been done:
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Quadratic pseudo-Boolean optimization methods

Quadratic optimization is A"P-hard, but much work has been done:

@ Algorithms based on MAX-CUT (which reduces to a polynomial
MIN-CUT problem when f is submodular).
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Quadratic optimization is A"P-hard, but much work has been done:

@ Algorithms based on MAX-CUT (which reduces to a polynomial
MIN-CUT problem when f is submodular).

o Heuristics such as local search.

@ In computer vision: approaches based on Roof Duality (1984) ([8]).
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Reductions to quadratic pseudo-Boolean optimization

Quadratic pseudo-Boolean optimization methods

Quadratic optimization is A"P-hard, but much work has been done:
@ Algorithms based on MAX-CUT (which reduces to a polynomial
MIN-CUT problem when f is submodular).
@ Heuristics such as local search.
@ In computer vision: approaches based on Roof Duality (1984) ([8]).

o Polyhedral results: Isomorphism between boolean quadric polytope
(associated to quadratic pseudo-Boolean optimization) and cut
polytope (associated to MAX-CUT) (1990) ([4]), good separation

algorithms...

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 11/36



Reductions to quadratic pseudo-Boolean optimization

Rosenberg

Rosenberg (1975) [11]: first quadratization method.

@ Take a product x;x; from a highest-degree monomial of f and
substitute it by a new variable yj;.

@ Add a penalty term M(x;xj — 2x;y;j — 2xjy;j + 3y;j) (M large enough)
to the objective function to force y;; = x;x; at all optimal solutions.

© lterate until obtaining a quadratic function.
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@ Add a penalty term M(x;xj — 2x;y;j — 2xjy;j + 3y;j) (M large enough)
to the objective function to force y;; = x;x; at all optimal solutions.

© lterate until obtaining a quadratic function.

o Advantages:

o Can be applied to any pseudo-Boolean function f.
e The transformation is polynomial in the size of the input.
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Reductions to quadratic pseudo-Boolean optimization

Rosenberg

Rosenberg (1975) [11]: first quadratization method.

@ Take a product x;x; from a highest-degree monomial of f and
substitute it by a new variable yj;.

@ Add a penalty term M(x;xj — 2x;y;j — 2xjy;j + 3y;j) (M large enough)
to the objective function to force y;; = x;x; at all optimal solutions.

© lterate until obtaining a quadratic function.

o Advantages:

o Can be applied to any pseudo-Boolean function f.
e The transformation is polynomial in the size of the input.

o Drawbacks: The obtained quadratization is highly non-submodular.
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Reductions to quadratic pseudo-Boolean optimization

Termwise quadratizations

Multilinear expression of a pseudo-Boolean function:
f)= > as][x

Sealnl  ieS

Idea: quadratize monomial by monomial, using different sets of auxiliary
variables for each monomial.
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Reductions to quadratic pseudo-Boolean optimization

Termwise quadratizations: negative monomials

Kolmogorov and Zabih [10], Freedman and Drineas [6].
n n
al|lxi= min ay xi—(n—1)],a<0.
IT- 2, (&0-0-)
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Reductions to quadratic pseudo-Boolean optimization

Termwise quadratizations: negative monomials

Kolmogorov and Zabih [10], Freedman and Drineas [6].
n n
al|lxi= min ay xi—(n—1)],a<0.
IT- 2, (&0-0-)

@ Advantages: one single auxiliary variable, submodular quadratization.
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Reductions to quadratic pseudo-Boolean optimization

Termwise quadratizations: positive monomials

Ishikawa [9]

d
aHx;:a min Zy, Gid(—S1+2i) — 1)+ aS,
i=1

Y1,---Yny € {01

51, S2: elementary linear and quadratic symmetric polynomials in d
1,if d is odd and i = ny,

variables, ng = L%J and ¢j g = )
2, otherwise.
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Reductions to quadratic pseudo-Boolean optimization

Termwise quadratizations: positive monomials

Ishikawa [9]

d
aHx;:a min Zy, Gid(—S1+2i) — 1)+ aS,
i=1

Y1,---Yny € {01

51, S2: elementary linear and quadratic symmetric polynomials in d

) 1.if disodd and i =n

variables, ng = L%J and ¢i g =< ) &
2, otherwise.

@ Number of variables: best known bound for positive monomials.

@ Submodularity: (g) positive quadratic terms, but very good
computational results.
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Reductions to quadratic pseudo-Boolean optimization

Number of variables

Using termwise quadratizations:
@ One variable per negative monomial and L%

(d: degree of the monomial).

| per positive monomial

@ Best known upper bounds: O(n9) variables for a polynomial of fixed
degree d, O(n2") for an arbitrary function.
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Reductions to quadratic pseudo-Boolean optimization

Number of variables

Using termwise quadratizations:

@ One variable per negative monomial and L%J per positive monomial
(d: degree of the monomial).

@ Best known upper bounds: O(n9) variables for a polynomial of fixed
degree d, O(n2") for an arbitrary function.

Can we do better?

Tight upper and lower bounds independent of the quadratization procedure
by Anthony, Boros, Crama and Gruber [1]

e ©(22) for a general pseudo-Boolean function.

° @(ng) for a fixed polynomial of degree d.
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Reductions to quadratic pseudo-Boolean optimization

Number of variables

Using termwise quadratizations:

@ One variable per negative monomial and L%J per positive monomial
(d: degree of the monomial).

@ Best known upper bounds: O(n9) variables for a polynomial of fixed
degree d, O(n2") for an arbitrary function.

Can we do better?

Tight upper and lower bounds independent of the quadratization procedure
by Anthony, Boros, Crama and Gruber [1]

e ©(22) for a general pseudo-Boolean function.

° @(ng) for a fixed polynomial of degree d.

Note: bounds are polynomial in the size of the input:
f(x) = > geotn as [[jcs xi can have up to 2" monomials.
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Reductions to quadratic pseudo-Boolean optimization

Summary: known quadratization techniques

What has been done until now?

Specific quadratization procedures, experimental evaluations...
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What has been done until now?

Specific quadratization procedures, experimental evaluations...

@ Several quadratizations known for monomials.

o Case of negative monomials well-solved (one auxiliary variable,
submodular).
e Improvements can perhaps be done for positive monomials.

o Non-termwise quadratization techniques: reduce degree of several
terms at once (Fix, Gruber, Boros, Zabih [5]).
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Reductions to quadratic pseudo-Boolean optimization

Summary: known quadratization techniques

What has been done until now?

Specific quadratization procedures, experimental evaluations...
@ Several quadratizations known for monomials.

o Case of negative monomials well-solved (one auxiliary variable,
submodular).
e Improvements can perhaps be done for positive monomials.

o Non-termwise quadratization techniques: reduce degree of several
terms at once (Fix, Gruber, Boros, Zabih [5]).

Objective: Global perspective

Systematic study of quadratizations, understand properties and structure.
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Linearizing quadratic problems
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Polynomial pseudo-Boolean optimization

Y
Reductions to quadratic
pseudo-Boolean optimization

Y
Linearizing quadratic problems
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Linearizing quadratic problems

Standard linearization

Original polynomial problem
min  f(x) = a b
ETRCES

Ses i€S

S: set of non-constant monomials.
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Linearizing quadratic problems

Standard linearization

Original polynomial problem
min  f(x) = a b
i f00 =2 as ][

Ses ieS

S: set of non-constant monomials.

1. Substitute monomials

zs €{0,1}, VS e S
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Linearizing quadratic problems

Standard linearization

Original polynomial problem
min  f(x) = a b
i f00 =2 as ][

Ses ieS

S: set of non-constant monomials.

1. Substitute monomials 2. Linearize constraints
min Z aszs min Z aszs (A)

* ses * ses
s.t. 25:HZ,-, vSeS st. zs <z, VieSVSeS
i€s 7z5>Y z—|S|+1,VS€eS
zs €{0,1}, VS e S ies

zs €{0,1}, VS e S
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Linearizing quadratic problems

Linearization of a quadratization

Original polynomial problem

Xer{noig}n f(x) = Z as Hx,-

Ses i€S

S: set of non-constant monomials
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Linearizing quadratic problems

Linearization of a quadratization

Original polynomial problem
min f(x):ZaSHx,-
xe{0.1} SesS €S

S: set of non-constant monomials

1. Define quadratization for f

i > bo ][

QReQ i€eQ

where Q is the set of non-constant monomials in the original {xi,...,x,}
and the auxiliary {Xp+1,...,Xn+m} variables and all Q € Q have degree at
most 2.
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Linearizing quadratic problems

Linearization of a quadratization

2. Substitute monomials

QeQ
st. wo = H wi, VQ € @
i€eQ
wqQ € {0,1}, V@ e 9

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 21/36



Linearizing quadratic problems

Linearization of a quadratization

2. Substitute monomials 3. Linearize constraints

rm?n Z bowg Tvl,n Z bowq (B)
QeQ QeQ
s.t. wo = H w;, VQ € O st. wq<w;, Vie Q,VQ € Q
icQ we =Y wi—|Ql+1, VQeQ
wq € {0,1}, VQ € Q i€cQ

wqQ € {0,1}, VQ € Q
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Linearizing quadratic problems

Comparing relaxations of linearizations

Relaxation of linearized
quadratization (B)

Relaxation of standard linearization

(A)

= Ses ve QeQ
st. zg <z, Vie S;VS €S st. wo <w;, Vie QVQeQ
ZSZZZ;—]5|—|—1,V5€S WQZZW;—\QH—I,VQGQ

i€eQ

i€S
0<wqp <1, VQ € 9

0<z5<1,VSeS
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Linearizing quadratic problems

Comparing relaxations of linearizations

Questions:

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 23 /36



Linearizing quadratic problems

Comparing relaxations of linearizations

Questions:

@ Which relaxation is tighter?

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 23 /36



Linearizing quadratic problems

Comparing relaxations of linearizations

Questions:
@ Which relaxation is tighter?

@ Relaxation (B) also depends on the chosen quadratization method,
which quadratization gives better relaxations?
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Linearizing quadratic problems

Comparing relaxations of linearizations

Questions:
@ Which relaxation is tighter?

@ Relaxation (B) also depends on the chosen quadratization method,
which quadratization gives better relaxations?

@ What happens if we intersect the constraints of the relaxed
linearizations of all quadratizations of 7
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Linearizing quadratic problems

Comparing polytopes at substitution step

Standard linearization (A) Quadratization (B)
min Z aszs
* ses
s.t. zg = HZ,', vSeS s.t. wg = H w;, VQ € Q
i€eS i€EQ
zs € {0,1}, VS € S wo € {0,1}, VQ € Q
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Linearizing quadratic problems

Comparing polytopes at substitution step

Questions:
@ Do we have a better knowledge of one of the convex hull of feasible
solutions of one of these problems? (i.e., polyhedral description, good
separation algorithms...).
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Linearizing quadratic problems

Buchheim and Rinaldi’'s approach

Polynomial Optimization Problem

\

4

ard lin.), polytope P

\

4

Fractional solution x*
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Linearizing quadratic problems

Buchheim and Rinaldi’'s approach

Polynomial Optimization Problem

Y
@(standard lin.), polytope P
Y

Fractional solution x*

Cut from another polytope P*
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Linearizing quadratic problems

Buchheim and Rinaldi's approach: Polytope P*7

Presented in [2], [3].

Original polynomial problem

Xer{noi’q}n f(x) = Z as Hx,-

Ses i€S

S: set of non-constant monomials
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Linearizing quadratic problems

Buchheim and Rinaldi's approach: Polytope P*7

Presented in [2], [3].

Original polynomial problem

Xer{noi’q}n f(x) = Z as Hx,-

Ses i€S

S: set of non-constant monomials

@ Assumption: every S € S can be written as the union of two other
monomials 5;, S, € S.
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Linearizing quadratic problems

Buchheim and Rinaldi's approach: Polytope P*7

Presented in [2], [3].

Original polynomial problem

Xer{noi’q}n f(x) = Z as Hx,-

Ses i€S

S: set of non-constant monomials
@ Assumption: every S € S can be written as the union of two other
monomials 5;, S, € S.

@ For a given S, there might be several pairs of subsets S;, S, such that
SUS, =S.
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Linearizing quadratic problems

Buchheim and Rinaldi's approach: Polytope P*7

Presented in [2], [3].

Original polynomial problem

Xer{noig}n f(x) = Z as Hx,-

Ses i€S

S: set of non-constant monomials

@ Assumption: every S € S can be written as the union of two other
monomials 5;, S, € S.

@ For a given S, there might be several pairs of subsets S;, S, such that
SUS, =S.

@ Set of monomials can be “completed” heuristically if necessary.
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Linearizing quadratic problems

Buchheim and Rinaldi's approach: Polytope P*7

Buchheim and Rinaldi's formulation over a quadric polytope
Consider the set S* = {{S5, T} | S, TeSand SUT € S}.

min a C
i, _Z;g SY(s} (9
st. yis,my = Yisyymy, S, THeS”

Y{s,T} € {07 1}7 v{57 T} S

P*: convex hull of feasible solutions of problem (C)

Observation: P* is a boolean quadric polytope.
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Linearizing quadratic problems

Buchheim and Rinaldi's approach: polytope P*?

Polytope P*

@ Is isomorph to a Cut-Polytope (efficient separation algorithms are
known).
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Linearizing quadratic problems

Buchheim and Rinaldi's approach: polytope P*?

Polytope P*

@ Is isomorph to a Cut-Polytope (efficient separation algorithms are
known).

@ Lives in a higher-dimensional space (introducing auxiliary variables).
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Linearizing quadratic problems

Buchheim and Rinaldi's approach: polytope P*?

Polytope P*

@ Is isomorph to a Cut-Polytope (efficient separation algorithms are
known).

@ Lives in a higher-dimensional space (introducing auxiliary variables).

@ P is isomorph to a face of P* (imposing some additional constraints
to P*): cutting on P* is equivalent to cutting on P.
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Linearizing quadratic problems

Buchheim and Rinaldi's approach: polytope P*?

Polytope P*

@ Is isomorph to a Cut-Polytope (efficient separation algorithms are
known).

@ Lives in a higher-dimensional space (introducing auxiliary variables).

@ P is isomorph to a face of P* (imposing some additional constraints
to P*): cutting on P* is equivalent to cutting on P.

Objective:

We are interested in understanding the quadratic problem that is used to
define P*:
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Buchheim and Rinaldi's approach: polytope P*?

Polytope P*

@ Is isomorph to a Cut-Polytope (efficient separation algorithms are
known).

@ Lives in a higher-dimensional space (introducing auxiliary variables).

@ P is isomorph to a face of P* (imposing some additional constraints
to P*): cutting on P* is equivalent to cutting on P.

Objective:

We are interested in understanding the quadratic problem that is used to
define P*:

@ Is it a quadratization in our sense?
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Buchheim and Rinaldi's formulation and Rosenberg's

quadratization

Buchheim and Rinaldi's formulation over a quadric polytope can be
obtained (up to elimination of redundant constraints) by linearizing a
variant of Rosenberg's quadratization where:

@ the order of substituting variables is induced by the decomposition
S, S, of each monomial S, and

@ when substituting a product by a variable, we do not impose y;; = x;x;
with a penalty, but with a constraint.

Assumption: every S € S can be written as the union of two other
monomials 5;, S, € S.
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Linearization Buchheim and Rinaldi's
of Rosenberg's formulation over a

quadratization (B) quadric polytope (C)

equivalent
(P = face
of P*)

equivalent

Standard
linearization (A)
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Conclusions

@ Understand quadratization methods from a global perspective:

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 33/36



Linearizing quadratic problems

Conclusions

@ Understand quadratization methods from a global perspective:
o Properties and structure, which quadratizations are “better’"?

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 33/36



Linearizing quadratic problems

Conclusions

@ Understand quadratization methods from a global perspective:

o Properties and structure, which quadratizations are “better’"?
e Describe all quadratizations of f.

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 33/36



Linearizing quadratic problems

Conclusions

@ Understand quadratization methods from a global perspective:

o Properties and structure, which quadratizations are “better’"?
e Describe all quadratizations of f.

@ Linearizing quadratizations:

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions



Linearizing quadratic problems

Conclusions

@ Understand quadratization methods from a global perspective:

o Properties and structure, which quadratizations are “better’"?
e Describe all quadratizations of f.

@ Linearizing quadratizations:
o How does the tightness of a relaxation depend on the quadratization?

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 33/36



Linearizing quadratic problems

Conclusions

@ Understand quadratization methods from a global perspective:
o Properties and structure, which quadratizations are “better’"?
e Describe all quadratizations of f.
@ Linearizing quadratizations:
o How does the tightness of a relaxation depend on the quadratization?
o How do relaxations of linearized quadratizations relate to other
methods (e.g. standard linearization)?

Elisabeth Rodriguez-Heck and Yves Crama Quadratizations of pseudo-Boolean functions 33/36



Linearizing quadratic problems

Conclusions

@ Understand quadratization methods from a global perspective:

o Properties and structure, which quadratizations are “better’"?
e Describe all quadratizations of f.
@ Linearizing quadratizations:

o How does the tightness of a relaxation depend on the quadratization?

o How do relaxations of linearized quadratizations relate to other
methods (e.g. standard linearization)?

e Can we use the knowledge about the polytopes associated to
linearizations? (e.g. cut polytope separation techniques...)?
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