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ABSTRACT
Time is a parameter playing a central role in our most fundamental modeling of natural
laws. Relativity theory shows that the comparison of times measured by different clocks
depends on their relative motions and on the strength of the gravitational field in which
they are embedded. In standard cosmology, the time parameter is the one measured
by fundamental clocks, i.e. clocks at rest with respect to the expanding space. This
proper time is assumed to flow at a constant rate throughout the whole history of
the Universe. We make the alternative hypothesis that the rate at which cosmological
time flows depends on the dynamical state of the Universe. In thermodynamics, the
arrow of time is strongly related to the second law, which states that the entropy of
an isolated system will always increase with time or, at best, stay constant. Hence,
we assume that time measured by fundamental clocks is proportional to the entropy
of the region of the Universe that is causally connected to them. Under that simple
assumption, we build a cosmological model that explains the Type Ia Supernovae data
(the best cosmological standard candles) without the need for exotic dark matter nor
dark energy.
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1 INTRODUCTION

Since its introduction nearly a century ago (Einstein 1916),
general relativity (GR) has been brilliantly confirmed by a
number of observations, most notably the perihelion preces-
sion of Mercury, the gravitational redshift and the deflection
of light by massive bodies. GR has also been used in cos-
mology to describe the evolution of the Universe as a whole,
and the model that currently gives the best description of the
large-scale structure and evolution of the Universe, namely
the Lambda Cold Dark Matter (ΛCDM) model, is based on
the equations of GR. However, in order to provide an accu-
rate description of large-scale and long-term phenomena, a
number of ingredients had to be added to the theory. The
motion of stars in the outskirts of spiral galaxies and the
velocity dispersions of galaxies in clusters required the ad-
dition of dark matter. The acceleration of the expansion of
the Universe called for the introduction of a repulsive com-
ponent called dark energy.

One may note that all the successful tests of GR are
dealing with small scales and are quasi-instantaneous in
terms of cosmological time. Conversely, additional ingredi-
ents (dark matter and dark energy) are necessary to bring
the models in agreement with observations dealing with very
large scales and very long term phenomena. We are thus
faced with the following alternative: either these dark com-
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ponents are actual constituents of the Universe (in which
case they should sooner or later be identified) or there is
something wrong with the application of GR on very large
scales and, especially, on the Universe as a whole.

The vast majority of specialists are in favour of the
existence of dark matter and dark energy. However, despite
considerable effort, these dark components have not been
identified yet. Some alternative theories have been proposed,
the most popular being the so-called Modified Newtonian
Dynamics (MOND, Milgrom 1983).

In this paper, we want to explore another hypothesis,
namely that the problems encountered when dealing with
large scales are related to our fundamental understanding of
time. Special relativity has shown that the time measured
by different clocks depends on their relative motions. GR
has shown that the time measured by a clock also depends
on the strength of the gravitational field in which it is em-
bedded. We wish to go one step further and postulate that
cosmological time – the time measured by a fundamental,
comoving clock – depends on the dynamical state of the
Universe in which it is embedded.

In section 2, we discuss coordinate time, cosmological
time and entropy. Section 3 considers the entropy budget of
the Universe. In section 4, we use a simple method to derive
the relation between cosmological time and coordinate time
and we discuss some of its consequences. In section 5, we
show that the varying flow of cosmological time does not
result in an additional redshift. Finally, in Section 6, we
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compare the predictions of our model to those of the ΛCDM
model and test it on Type Ia Supernovæ data.

2 COSMOLOGICAL TIME AND
COORDINATE TIME

When applying GR to the whole Universe in order to de-
rive the ΛCDM model, one assumes that the Universe is
homogeneous on large scales and that the small scale inho-
mogeneities have no impact on the evolution of the Universe
as a whole. One also assumes that the 4-dimentional space-
time can be sliced into 3-dimensional space-like hypersur-
faces labeled with a time parameter t. This time parame-
ter is usually taken as the time measured by fundamental,
comoving, clocks (Hobson et al. 2006). The time t is then
identified with the proper time of fundamental observers. It
is generally taken for granted that, if the Universe is homo-
geneous, this proper time flows at the same rate all along
the history of the Universe. When Einstein derived the ba-
sic theory of GR, the Universe was believed to be essentially
static and there was no reason to question that hypothe-
sis. However, in the framework of an evolving Universe, one
might ask whether the rate at which time flows could not
depend on the dynamical state of the Universe itself. We
thus propose to distinguish between two different times: (1)
the (conventional) coordinate time parameter t, which is the
one measured by our present clocks and is assumed to flow
at a constant rate and (2) the cosmological time τ , which is
the one measured by fundamental clocks at any times, may
depend on the state of the Universe and controls all phys-
ical processes. When building our cosmological model, this
proper time τ may not be used as an independent coordi-
nate, as it is a function of other parameters and, thus, an
emergent property.

It is often argued that the direction of time flow, the
arrow of time, is dictated by the second law of thermo-
dynamics: the direction of time flow is the one for which
the entropy of an isolated system increases. Let us consider
fundamental observers in the Universe. The largest system
possibly interacting with such observers is the region of the
Universe that is causally connected to them. That region is
bounded by the particle horizon, defined by the distance a
light signal could travel from the beginning of time to the
observers. From their very point of view, that system can be
considered isolated since no interaction can happen with ob-
jects located further than the particle horizon. A very simple
assumption we could thus make is that the proper time τ
measured by such observers is proportional to the entropy
of the region of the Universe which is causally connected to
them.

3 ENTROPY OF THE UNIVERSE

Conventional estimates of the entropy budget (e.g. Egan
& Lineweaver 2010) result in back holes dominating by
far the entropy of the Universe. Indeed, if one accepts the
Bekenstein-Hawking estimate for the black hole entropy
(Bekenstein 1973; Hawking 1976), the entropy budget of the
stellar black holes would exceed the entropy budget of the
(much more numerous) stars by 17 orders of magnitude and

that of the cosmic microwave background (CMB) by 7 to 8
orders of magnitude (Egan & Lineweaver 2010). Even more
dramatically, a handful of supermassive black holes as those
found at the centres of galaxies would completely dominate
the entropy budget of the Universe.

We do not consider these possible sources of entropy
in our calculations for the following reason. Let us consider
the typical situation in which a stellar black hole can be de-
tected. This is a binary stellar system in which one of the
stars is a red giant filling its Roche lobe and loosing matter
to its compact companion. An accretion disk forms around
the compact object and emits high energy radiation as its
temperature reaches high values close to the central object.
Whether the compact object is a neutron star or a black
hole can only be known by estimating its mass and verify-
ing whether or not it exceeds the maximum mass of neutron
stars (∼ 3M�). The effect of a black hole just above the
mass limit on its surroundings – and, even more, on the
causally connected region – hardly differs from that of a
neutron star just below the mass limit. On the other hand,
the Bekenstein-Hawking entropies would differ by many or-
ders of magnitude without having any measurable effect on
the causally connected region and, thus, on our cosmologi-
cal time. One may thus adopt one of the following reasons
not to consider black holes entropy: (1) not to concur with
the Bekenstein-Hawking entropy; (2) consider that the black
hole entropy has no effect on the entropy budget outside of
their horizons; (3) rewrite our fundamental hypothesis such
that cosmological time is proportional to the entropy of ra-
diation in the causally connected region of the Universe.

Setting black holes aside, the entropy of the Universe
is dominated by the CMB (Egan & Lineweaver 2010). Relic
neutrinos are predicted to contribute nearly as much as the
CMB. However, as their entropy has the same dependence
on temperature and volume as the CMB photons, including
them would only change the proportionality coefficient be-
tween entropy and cosmological time, and not the relation
between cosmological time τ and coordinate time t.

4 EVOLUTION OF THE COSMOLOGICAL
TIME

The CMB is a photon gas very close to thermodynamic equi-
librium, whose entropy S only depends on its volume V and
temperature T via (Egan & Lineweaver 2010)

S =
4π2k4

B

45c3h̄3
V T 3, (1)

where kB is the Boltzmann constant, c the speed of light
and h̄ the reduced Planck constant.

Vhoriz being the causally connected volume, we assume
τ ∝ S(Vhoriz) ∝ VhorizT

3 and, as T is inversely propor-
tional to the scale factor R of the expanding Universe,
τ ∝ VhorizR

−3. As always, the scale factor R is obtained
by solving the Einstein equations of GR.

By construction, GR is a local theory. Applying it to
the whole Universe results in trying to use a local theory to
solve a global problem. However, if the Universe is spatially
homogeneous, applying the Einstein equations in the vicin-
ity of any observer is equivalent to applying them anywhere
else, which means this local theory may be extended to any
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point of space. But, in our model, this is not true for any
instant in time, as the cosmological time τ , i.e. the proper
time of a fundamental observer, will not flow at a constant
rate.

As GR has been successfully verified locally, we make
the hypothesis that the Einstein equations are valid at any
location in space-time, when written as a function of the
local space-time coordinates (t, r, θ, φ). Then, under the as-
sumptions of homogeneity and isotropy of the Universe, the
interval ds is given by the Robertson-Walker metric:

ds2 = c2dt2 −R2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (2)

where (r, θ, φ) are the comoving spherical coordinates and
k is a constant measuring the spatial curvature. The
Robertson-Walker metric and the Einstein equations are
thus assumed to be valid at any point in space and at any
time. However, the proper time flow of fundamental comov-
ing observers will vary with time. After solving the equations
for any local proper time t, we must connect these local
proper times together by replacing them by the cosmolog-
ical proper time τ(t). As already mentioned, the equations
cannot be directly solved as a function of τ , as the latter
depends on the global properties of the Universe and is not
an independent variable. Of course, such a procedure should
later be tested in a more rigorous mathematical framework,
the aim of the present paper being to give a first idea of
the effect of our basic hypothesis on the evolution of the
Universe.

The Einstein equations in t reduce to the usual Fried-
mann equations. The solutions are very simple in the case
of a flat Universe (k = 0) with no cosmological constant.
If radiation dominates the matter-energy budget, one gets
R ∝ t1/2 and, if matter dominates, R ∝ t2/3. In both cases,
Vhoriz ∝ t3 (e.g. Weinberg 2008). Combining these two re-
sults, we get, in a flat matter-dominated Universe, τ ∝ t
and cosmological time flows at a constant rate. However,
considering matter only, our Universe is not flat but open,
with a negative spatial curvature depending on the density
parameter Ω0 (the actual matter-energy density measured
in units of the critical matter-energy density, for which the
spatial curvature vanishes). The best estimates, considering
only ordinary baryonic matter, range from Ω0 ' 0.03 from
an inventory of the observable Universe (Fukugita & Pee-
bles 2004; Shull et al. 2012) to Ω0 ' 0.05 from predictions
of cosmological nucleosynthesis (Schramm & Turner 1998).
The variation of the cosmological time rate throughout the
history of the Universe is displayed on Fig. 1, which shows
that τ(t) continuously slows down in an open Universe.

The evolution of the scale factor R as a function of
proper time is shown in Fig. 2. In the ΛCDM model, the
accelerated expansion in the last ∼ 6 billion years is due
to the cosmological constant Λ (Suzuki et al. 2012), which
is generally interpreted as the effect of dark energy. In our
model, it is the slowing down of the cosmological proper
time τ that makes the expansion appear accelerated.

At early epochs, the Universe was radiation-dominated
and essentially flat (Weinberg 2008). In this case, we get
τ(t) ∝ t3/2 and thus dτ/dt → 0 as t → 0. This means that
the unit of cosmological proper time τ(t), as measured in
constant conventional time t units, becomes infinitely large
at the Big Bang. For any observer inside the Universe, while
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Figure 1. Variation of the cosmological time flow dτ/dt as a

function of time τ(t) in an open matter-dominated Universe with

different density parameters Ω0 (0.051: baryonic matter only, con-
tinuous black line; 0.32: dark matter included, dashed red line).

The cosmological time τ continuously slows down in the present

matter dominated era. The units of τ and t are set equal at the
beginning of the matter era, when the Universe was essentially

flat and τ = 0 corresponds to the present epoch.
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Figure 2. Evolution of the scale factor as a function of proper

time in several cosmological models: the ΛCDM concordance
model (dashed red curve), the same model without cosmologi-
cal constant (dash-dotted green curve) and our new model (full

black curve. With Ω0 = 0.051 ± 0.014 and a Hubble constant
H0 = 70 km/s/Mpc, as deduced from SNIa data (see Sect. 6),

our model predicts an age of the Universe, as measured in cos-
mological proper time units, of 15.0 ± 0.5 billion years.

the Universe has a finite age, the Big Bang (as measured in
the time t units of that observer) happened infinitely far in
the past. Obviously, this may have interesting philosophical
consequences.
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5 COSMOLOGICAL REDSHIFT

It is important to note that all physical laws have to be writ-
ten as a function of the cosmological proper time τ , which
flows at a varying rate as the Universe evolve. One might
expect this to affect the presently observed duration or fre-
quency of phenomena occurring far away, and thus long ago.
In fact, this is not the case, as can easily be shown, e.g., for
the cosmological redshift.

For a photon emitted at cosmological time τE and trav-
elling towards an observer who receives it at time τR, ds2

= 0. Putting the source and the observer at the same θ and
φ and taking into account that the time parameter t has
to be replaced by the proper time τ(t) at the instants of
emission and reception respectively, the Robertson-Walker
metric implies that

c

∫ τR

τE

dτ

R
=

∫ rR

rE

dr

1− kr2
, (3)

with rE and rR being the comoving radial coordinates of the
emitter and observer.

Consider a second photon emitted at time τE + δτE
and received at τR + δτR. It obeys a similar equation, the
right hand side being equal as the emitter and observer are
supposed to be at rest in the expanding space. We thus have∫ τR

τE

dτ

R
=

∫ τR+δτR

τE+δτE

dτ

R

⇒
∫ tR

tE

1

R

dτ

dt
dt =

∫ tR+δtR

tE+δtE

1

R

dτ

dt
dt. (4)

Assuming that the variation of R is negligible during
the times δτE and δτR, this implies

1

R(tE)

(
dτ

dt

)
E
δtE =

1

R(tR)

(
dτ

dt

)
R
δtR. (5)

With

δτE =
(
dτ

dt

)
E
δtE and δτR =

(
dτ

dt

)
R
δtR, (6)

we get

δτR
δτE

=
νE
νR

=
R(τR)

R(τE)
, (7)

which is the usual expression for the cosmological redshift,
with no additional factor due to the variation of cosmological
time flow.

6 COMPARISON WITH SUPERNOVÆ DATA

The fundamental test of cosmological models is the Hubble
diagram, which uses standard candles such as Type Ia Su-
pernovæ (SNIa) and compares their luminosity distances to
their cosmological redshifts z:

z =
δλ

λ0
=

1

R
− 1, (8)

where λ0 is the rest wavelength of radiation emitted by these
objects and δλ its wavelength shift due to cosmological ex-
pansion.

To build our Hubble diagram, we consider the 580 SNIa
from the Union 2.1 compilation of the Supernova Cosmology
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Figure 3. Comparison of cosmological models with SNIa data.

Top: Hubble diagram for 580 SNIa from the SCP Union 2.1 com-

pilation (Suzuki et al. 2012) compared with the standard ΛCDM
model (Ωm,0 = 0.32,ΩΛ,0 = 0.68, dashed red line) and our best-

fit cosmological model (Ω0 = 0.051, continuous blue line). Bot-

tom: same comparison after subtraction of an empty cosmological
model and binning the SNIa data in bins of constant nδz, where

n is the number of SNIa per bin and δz the redshift range of the
bin.

Project (Suzuki et al. 2012). These SNIa can be considered
as nearly perfect standard candles once their luminosities are
corrected for a so-called stretch factor and for the SNIa color.
Indeed, their peak absolute magnitudes Mmax are correlated
with the slope of their post maximum brightness decrease
and with their color C via (Phillips 1993; Tripp 1998)

Mmax = α+ β(∆m15 − 1.05) + γC, (9)

where ∆m15 is the decline in magnitudes during the first
15 days beyond maximum (directly related to the stretch
factor; Perlmutter et al. 1997) and α, β and γ are parameters
fitted on nearby SNIa (Tripp 1998). Our SNIa data thus
slightly differ from those of the Union 2.1 compilation, whose
stretch and colour corrections use all SNIa data (not only
low redshift ones) and assumes a priori that the cosmological
model is a flat ΛCDM model (Suzuki et al. 2012).

The Hubble diagram for 580 SNIa (Suzuki et al. 2012)
is displayed in Fig. 3 together with our best fit cosmolog-
ical model and the ΛCDM model. The quality of the fits
is shown on Fig. 4, where the reduced χ2 and the associ-
ated probability distributions are plotted as a function of
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Figure 4. Quality of the fit of the cosmological models onto the

SNIa data. Top: reduced χ2 as a function of the density param-

eter Ω0 for the ΛCDM model (dashed red curve) and for our
alternative model (full black curve). Bottom: the corresponding

probability distributions Q, giving the probability that a χ2 as

high as the one measured is compatible with random fluctuations
(Press et al. 1989). Models with low Q are excluded by the data.

Our model gives Ω0 = 0.051 ± 0.014 (one sigma error bar), per-

fectly compatible with ordinary (baryonic) matter only.

the present day density parameter Ω0. It clearly shows that,
while – obviously – the ΛCDM model requires dark mat-
ter to fit the SNIa data, our models best fit Ω0 amounts to
0.051 ± 0.014, which is perfectly compatible with baryonic
matter only (Fukugita & Peebles 2004; Shull et al. 2012;
Schramm & Turner 1998), without any need for exotic dark
matter.

7 CONCLUSION

From the very simple assumption that the proper time of
fundamental observers is proportional to the entropy of the
region of the Universe causally connected to them, we ob-
tain a cosmological model that perfectly fits the SNIa data
without recourse to exotic dark matter nor dark energy.

Of course, more tests are needed. In particular, the ef-
fects of the slowing down of proper time on the rotation
curves of spiral galaxies and on the velocity dispersions of
galaxies in clusters have to be investigated. Qualitatively,
one would predict an apparent acceleration – similar to the

one observed for the scale factor R – which might explain
the larger than expected observed velocities.

Our model also leaves much more time for the formation
of structures in between the time of the matter-radiation
decoupling (z ∼ 1000) and the earliest galaxies observed
(z ∼ 10). Whether or not some dark matter would still be
needed to accelerate the baryonic matter condensation has
also to be investigated.

Cosmological nucleosynthesis and CMB anisotropies
also have to be studied in the framework of the present
model, for it to become a viable alternative to the ΛCDM
model.
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